1
|
Ariza D, Castellar-Visbal L, Marquina M, Rivera-Porras D, Galbán N, Santeliz R, Gutiérrez-Rey M, Parra H, Vargas-Manotas J, Torres W, Quintana-Espinosa L, Manzano A, Cudris-Torres L, Bermúdez V. COVID-19: Unveiling the Neuropsychiatric Maze-From Acute to Long-Term Manifestations. Biomedicines 2024; 12:1147. [PMID: 38927354 PMCID: PMC11200893 DOI: 10.3390/biomedicines12061147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
The SARS-CoV-2 virus has spread rapidly despite implementing strategies to reduce its transmission. The disease caused by this virus has been associated with a diverse range of symptoms, including common neurological manifestations such as dysgeusia, anosmia, and myalgias. Additionally, numerous cases of severe neurological complications associated with this disease have been reported, including encephalitis, stroke, seizures, and Guillain-Barré syndrome, among others. Given the high prevalence of neurological manifestations in this disease, the objective of this review is to analyze the mechanisms by which this virus can affect the nervous system, from its direct invasion to aberrant activation of the immune system and other mechanisms involved in the symptoms, including neuropsychiatric manifestations, to gain a better understanding of the disease and thus facilitate the search for effective therapeutic strategies.
Collapse
Affiliation(s)
- Daniela Ariza
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (D.A.); (M.M.); (N.G.); (R.S.); (H.P.); (W.T.); (A.M.)
| | - Lily Castellar-Visbal
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla 080001, Colombia; (L.C.-V.); (M.G.-R.); (J.V.-M.); (L.Q.-E.)
| | - Maria Marquina
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (D.A.); (M.M.); (N.G.); (R.S.); (H.P.); (W.T.); (A.M.)
| | - Diego Rivera-Porras
- Universidad Simón Bolívar, Facultad de Ciencias Jurídicas y Sociales, Centro de Investigación en Estudios Fronterizos, Cúcuta 540001, Colombia;
| | - Nestor Galbán
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (D.A.); (M.M.); (N.G.); (R.S.); (H.P.); (W.T.); (A.M.)
| | - Raquel Santeliz
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (D.A.); (M.M.); (N.G.); (R.S.); (H.P.); (W.T.); (A.M.)
| | - Melissa Gutiérrez-Rey
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla 080001, Colombia; (L.C.-V.); (M.G.-R.); (J.V.-M.); (L.Q.-E.)
| | - Heliana Parra
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (D.A.); (M.M.); (N.G.); (R.S.); (H.P.); (W.T.); (A.M.)
| | - José Vargas-Manotas
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla 080001, Colombia; (L.C.-V.); (M.G.-R.); (J.V.-M.); (L.Q.-E.)
| | - Wheeler Torres
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (D.A.); (M.M.); (N.G.); (R.S.); (H.P.); (W.T.); (A.M.)
| | - Laura Quintana-Espinosa
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla 080001, Colombia; (L.C.-V.); (M.G.-R.); (J.V.-M.); (L.Q.-E.)
| | - Alexander Manzano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (D.A.); (M.M.); (N.G.); (R.S.); (H.P.); (W.T.); (A.M.)
| | - Lorena Cudris-Torres
- Departamento de Ciencias Sociales, Universidad de la Costa, Barranquilla 080001, Colombia;
| | - Valmore Bermúdez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla 080001, Colombia; (L.C.-V.); (M.G.-R.); (J.V.-M.); (L.Q.-E.)
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Centro de Investigaciones en Ciencias de la Vida, Barranquilla 080001, Colombia
| |
Collapse
|
2
|
Jiang X, Lin P, Sun F, Xu Y, Tao Y, Shi P, Liu Y, Li X, Liu S, Gao X, Wang C, Cao Y. Tolerability, safety, and pharmacokinetics of a single intravenous administration of a novel recombinant humanized anti-interleukin-6 receptor monoclonal antibody in healthy Chinese volunteers. Front Pharmacol 2024; 14:1267178. [PMID: 38357364 PMCID: PMC10864494 DOI: 10.3389/fphar.2023.1267178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/13/2023] [Indexed: 02/16/2024] Open
Abstract
Aim: VDJ001 is a novel recombinant humanized monoclonal antibody against the anti-interleukin-6 receptor. As an analog of tocilizumab, it exhibited improved affinity and in vitro activity. Based on preclinical studies, a first-in-human clinical study was conducted to evaluate the safety, tolerability, and pharmacokinetics of VDJ001. Methods: This is a single-center, randomized, double-blinded, placebo-controlled phase I dose-escalation study conducted in healthy Chinese volunteers. Four cohorts were designed with dosages ranging from 1 to 8 mg/kg. There were equal numbers of female and male volunteers in each cohort. Enrolled subjects randomly received a single intravenous administration of VDJ001 or placebo (VDJ001: placebo = 4:1 in both female and male volunteers). Three sentinel volunteers in the 1 mg/kg cohort were first administered, and the treatment of the other seven volunteers was carried out after a safety assessment on D15. The following cohort was conducted only when the safety profile was evaluated as acceptable on D29 of the previous cohort. Samples for pharmacokinetics (PK), pharmacodynamics (PD), and immunogenicity were collected at specified time points and analyzed through validated methods. Adverse events and the results of the examination and laboratory were analyzed to assess the safety profile. Results: All cohorts were carried out according to the protocol. With the escalation of dosage, Cmax increased linearly, and AUC0-t and AUC0-∞ increased in a non-linear manner, while clearance decreased and t1/2 prolonged. Six volunteers who received VDJ001 tested ADA-positive, among whom one participant tested Nab-positive on D57. One volunteer in the placebo group tested ADA-positive but Nab-negative. CRP concentrations were not found to be correlated with the dosage. Both IL-6 and sIL-6R concentrations increased after the administration of VDJ001. All adverse events were mild to moderate in severity. No serious adverse events were reported in this study. No unexpected or clinically significant safety issues were found. Conclusion: The safety and tolerability of VDJ001 are acceptable with a single intravenous dosage of 1∼8 mg/kg. Further clinical trials are warranted.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Chenjing Wang
- Phase I Clinical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yu Cao
- Phase I Clinical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Devlin L, Gombolay GY. Cerebrospinal fluid cytokines in COVID-19: a review and meta-analysis. J Neurol 2023; 270:5155-5161. [PMID: 37581633 PMCID: PMC10591843 DOI: 10.1007/s00415-023-11928-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023]
Abstract
INTRODUCTION Neurological involvement can occur in patients with SARS-CoV-2 infections, resulting in coronavirus disease 2019 (COVID-19). Cytokine alterations are associated with neurological symptoms in COVID-19. We performed a review of cytokines in the cerebrospinal fluid (CSF) of patients with COVID-19. METHODS Two reviewers independently searched PubMed for all relevant articles published prior to November 11, 2022. Active SARS-CoV-2 infection and CSF cytokine analyses were required for inclusion. RESULTS Three-hundred forty-six patients with COVID-19 and 356 controls from 28 studies were included. SARS-CoV-2 PCR was positive in the CSF of 0.9% (3/337) of patients with COVID-19. Thirty-seven different cytokines were elevated in the CSF of patients with COVID-19 when compared to controls and the standards set forth by individual assays used in each study. Of the 37 cytokines, IL-6 and IL-8 were most commonly elevated. CSF IL-6 is elevated in 60%, and CSF IL-8 is elevated in 51% of patients with COVID-19. CONCLUSION Levels of several inflammatory cytokines are elevated in the CSF of patients with COVID-19, and SARS-CoV-2 PCR is often not isolated in the CSF of patients with COVID-19. Many patients with COVID-19 have neurological symptoms and given the cytokine elevations in the absence of detectable viral RNA in cerebrospinal fluid; further study of the CSF cytokine profiles and pathogenesis of neurological symptoms in COVID-19 is needed.
Collapse
Affiliation(s)
- Lily Devlin
- Emory University School of Medicine, Atlanta, GA, USA
| | - Grace Y Gombolay
- Children's Healthcare of Atlanta, Division of Pediatric Neurology, Emory University, 1400 Tulle Road NE, 8th Floor, Atlanta, GA, USA.
| |
Collapse
|
4
|
Kaufmann C, Morris M, Gombolay GY. Antibody response to SARS-CoV-2 vaccination or infection in a prospective cohort of children with neuroinflammatory diseases. Eur J Paediatr Neurol 2023; 46:30-34. [PMID: 37399703 PMCID: PMC10307668 DOI: 10.1016/j.ejpn.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
INTRODUCTION Immune medications affect antibody responses to SARS-CoV-2 vaccination in adults with neuroinflammatory disorders, but little is known about antibody responses in children with neuroinflammation and on immune treatments. Here we measure antibody levels in response to SARS-CoV-2 vaccination in children receiving anti-CD20 monoclonal antibodies, or fingolimod. METHODS Children under 18 years of age with pediatric-onset neuroinflammatory disorders who received at least two mRNA vaccines were included. Plasma samples were assayed for SARS-CoV-2 antibodies (spike, spike receptor binding domain-RBD, nucleocapsid) and neutralization antibodies. RESULTS Seventeen participants with pediatric onset neuroinflammatory diseases were included: 12 multiple sclerosis, one neuromyelitis optica spectrum disorder, two MOG-associated disease, and two autoimmune encephalitis. Fourteen were on medications (11 on CD20 monoclonal antibodies-mAbs, one on fingolimod, one on steroids, one on intravenous immunoglobulin) and three were untreated. Nine patients also had pre-vaccination samples available. All participants had seropositivity to spike or spike RBD antibodies except for those receiving CD20 mAbs. However, this proportion was higher in children than in an adult MS patient cohort. The most significant contributor to antibody levels was duration of DMT. CONCLUSION SARS-CoV-2 antibodies are decreased in children on CD20 monoclonal antibodies than on other treatments. Treatment duration associated with vaccination responses.
Collapse
Affiliation(s)
| | - Morgan Morris
- Emory University School of Medicine, Department of Pediatrics, Division of Neurology, Atlanta, GA, USA
| | - Grace Y Gombolay
- Emory University School of Medicine, Department of Pediatrics, Division of Neurology, Atlanta, GA, USA; Children's Healthcare of Atlanta, Division of Neurology, Atlanta, GA, USA.
| |
Collapse
|