1
|
Chen M, Xu G, Guo W, Lin Y, Yao Z. Bilobalide Activates Autophagy and Enhances the Efficacy of Bone Marrow Mesenchymal Stem Cells on Spinal Cord Injury Via Upregulating FMRP to Promote WNK1 mRNA Decay. Neurochem Res 2024; 50:33. [PMID: 39601946 DOI: 10.1007/s11064-024-04287-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Transplantation of bone marrow mesenchymal stem cells (BMSCs) represents an encouraging strategy for the repair of spinal cord injury (SCI), however, its effectiveness on treating SCI remains controversial. Bilobalide isolated from Ginkgo biloba leaves shows significant neuroprotective effects. We examined the role and underlying mechanism of bilobalide in the efficacy of BMSC transplantation on SCI. Primary BMSCs were isolated from neonatal rats, and cell viability was assessed by MTT assay. Neuronal markers (MAP-2, NeuN, NSE and Tuj1), autophagy markers (LC3 and Beclin1), and Fragile X mental retardation protein (FMRP)/With-no-lysine kinase-1 (WNK1) signaling were measured using RT-qPCR and western blotting. The relationship of FMRP and WNK1 was estimated by RNA immunoprecipitation, while WNK1 mRNA stability was assessed with actinomycin D assay. In a SCI rat model, tissue injury was examined using HE and Nissl staining. Bilobalide treatment facilitated neural differentiation of BMSCs, as well as enhanced autophagy and inhibited WNK1 signaling. The promotive effect of bilobalide on BMSC differentiation was antagonized when overexpressing WNK1 or inhibiting autophagy. Bilobalide upregulated FMRP to promote WNK1 mRNA decay, thus reducing WNK1 expression. FMRP knockdown reversed the promoted functions of bilobalide on autophagy and neuronal differentiation in BMSCs. Additionally, compared to either monotherapy, simultaneous treatments with bilobalide and BMSCs further facilitated autophagy and neuronal differentiation, thereby enhancing the repair of SCI in rats. Bilobalide enhances autophagy activity to promote BMSC neuronal differentiation via FMRP/WNK1 axis, thus improving functional recovery following SCI, which indicates a promising therapeutic approach for SCI.
Collapse
Affiliation(s)
- Min Chen
- Department of Orthopedics, Fujian Medical University Union Hospital, No.29, Xinquan Road, Gulou District, Fuzhou, 350001, Fujian Province, People's Republic of China
- Department of Orthopedics, Fujian Pingtan Comprehensive Experimental Area Hospital, Fuzhou, 350400, Fujian Province, People's Republic of China
| | - Guanghui Xu
- Department of Orthopaedics, Fujian Provincial Governmental Hospital, Fuzhou, 350003, Fujian Province, People's Republic of China
| | - Wenbin Guo
- Department of Pathology, Fujian Pingtan Comprehensive Experimental Area Hospital, Fuzhou, 350400, Fujian Province, People's Republic of China
| | - Yu Lin
- Department of Orthopedics, Fujian Medical University Union Hospital, No.29, Xinquan Road, Gulou District, Fuzhou, 350001, Fujian Province, People's Republic of China
- Department of Orthopedics, Fujian Pingtan Comprehensive Experimental Area Hospital, Fuzhou, 350400, Fujian Province, People's Republic of China
| | - Zhipeng Yao
- Department of Orthopedics, Fujian Medical University Union Hospital, No.29, Xinquan Road, Gulou District, Fuzhou, 350001, Fujian Province, People's Republic of China.
| |
Collapse
|
2
|
Ames S, Brooks J, Jones E, Morehouse J, Cortez-Thomas F, Desta D, Stirling DP. NKCC1 inhibition reduces periaxonal swelling, increases white matter sparing, and improves neurological recovery after contusive SCI. Neurobiol Dis 2024; 199:106611. [PMID: 39032797 DOI: 10.1016/j.nbd.2024.106611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024] Open
Abstract
Ultrastructural studies of contusive spinal cord injury (SCI) in mammals have shown that the most prominent acute changes in white matter are periaxonal swelling and separation of myelin away from their axon, axonal swelling, and axonal spheroid formation. However, the underlying cellular and molecular mechanisms that cause periaxonal swelling and the functional consequences are poorly understood. We hypothesized that periaxonal swelling and loss of connectivity between the axo-myelinic interface impedes neurological recovery by disrupting conduction velocity, and glial to axonal trophic support resulting in axonal swelling and spheroid formation. Utilizing in vivo longitudinal imaging of Thy1YFP+ axons and myelin labeled with Nile red, we reveal that periaxonal swelling significantly increases acutely following a contusive SCI (T13, 30 kdyn, IH Impactor) versus baseline recordings (laminectomy only) and often precedes axonal spheroid formation. In addition, using longitudinal imaging to determine the fate of myelinated fibers acutely after SCI, we show that ∼73% of myelinated fibers present with periaxonal swelling at 1 h post SCI and ∼ 51% of those fibers transition to axonal spheroids by 4 h post SCI. Next, we assessed whether cation-chloride cotransporters present within the internode contributed to periaxonal swelling and whether their modulation would increase white matter sparing and improve neurological recovery following a moderate contusive SCI (T9, 50 kdyn). Mechanistically, activation of the cation-chloride cotransporter KCC2 did not improve neurological recovery and acute axonal survival, but did improve chronic tissue sparing. In distinction, the NKKC1 antagonist bumetanide improved neurological recovery, tissue sparing, and axonal survival, in part through preventing periaxonal swelling and disruption of the axo-myelinic interface. Collectively, these data reveal a novel neuroprotective target to prevent periaxonal swelling and improve neurological recovery after SCI.
Collapse
Affiliation(s)
- Spencer Ames
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, KY, USA 40202
| | - Jesse Brooks
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, KY, USA 40202
| | - Emma Jones
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, KY, USA 40202
| | - Johnny Morehouse
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, KY, USA 40202
| | - Francisco Cortez-Thomas
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, KY, USA 40202; Bioengineering, University of Louisville, School of Medicine, Louisville, KY, USA 40202
| | - Dereje Desta
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, KY, USA 40202
| | - David P Stirling
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, KY, USA 40202; Departments of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY, USA 40202; Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, KY, USA 40202.
| |
Collapse
|
3
|
Espinosa-Juárez JV, Chiquete E, Estañol B, Aceves JDJ. Optogenetic and Chemogenic Control of Pain Signaling: Molecular Markers. Int J Mol Sci 2023; 24:10220. [PMID: 37373365 DOI: 10.3390/ijms241210220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Pain is a complex experience that involves physical, emotional, and cognitive aspects. This review focuses specifically on the physiological processes underlying pain perception, with a particular emphasis on the various types of sensory neurons involved in transmitting pain signals to the central nervous system. Recent advances in techniques like optogenetics and chemogenetics have allowed researchers to selectively activate or inactivate specific neuronal circuits, offering a promising avenue for developing more effective pain management strategies. The article delves into the molecular targets of different types of sensory fibers such as channels, for example, TRPV1 in C-peptidergic fiber, TRPA1 in C-non-peptidergic receptors expressed differentially as MOR and DOR, and transcription factors, and their colocalization with the vesicular transporter of glutamate, which enable researchers to identify specific subtypes of neurons within the pain pathway and allows for selective transfection and expression of opsins to modulate their activity.
Collapse
Affiliation(s)
- Josue Vidal Espinosa-Juárez
- Escuela de Ciencias Químicas Sede Ocozocoautla, Universidad Autónoma de Chiapas, Ocozocoautla de Espinosa 29140, Mexico
| | - Erwin Chiquete
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Bruno Estañol
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - José de Jesús Aceves
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| |
Collapse
|
4
|
Miranpuri GS, Bali P, Nguyen J, Kim JJ, Modgil S, Mehra P, Buttar S, Brown G, Yutuc N, Singh H, Wood A, Singh J, Anand A. Role of Microglia and Astrocytes in Spinal Cord Injury Induced Neuropathic Pain. Ann Neurosci 2022; 28:219-228. [PMID: 35341227 PMCID: PMC8948321 DOI: 10.1177/09727531211046367] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/03/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Spinal cord injuries incite varying degrees of symptoms in patients, ranging
from weakness and incoordination to paralysis. Common amongst spinal cord
injury (SCI) patients, neuropathic pain (NP) is a debilitating medical
condition. Unfortunately, there remain many clinical impediments in treating
NP because there is a lack of understanding regarding the mechanisms behind
SCI-induced NP (SCINP). Given that more than 450,000 people in the United
States alone suffer from SCI, it is unsatisfactory that current treatments
yield poor results in alleviating and treating NP. Summary: In this review, we briefly discussed the models of SCINP along with the
mechanisms of NP progression. Further, current treatment modalities are
herein explored for SCINP involving pharmacological interventions targeting
glia cells and astrocytes. Key message: The studies presented in this review provide insight for new directions
regarding SCINP alleviation. Given the severity and incapacitating effects
of SCINP, it is imperative to study the pathways involved and find new
therapeutic targets in coordination with stem cell research, and to develop
a new gold-standard in SCINP treatment.
Collapse
Affiliation(s)
- Gurwattan S Miranpuri
- Department of Neurological Surgery, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Parul Bali
- Department of Biological Sciences, Indian Institute of Science Education & Research Mohali, India
| | - Justyn Nguyen
- Department of Neurological Surgery, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Jason J Kim
- Department of Neurological Surgery, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Shweta Modgil
- Neuroscience research lab, Department of Neurology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Priya Mehra
- Neuroscience research lab, Department of Neurology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.,Department of Biotechnology, Panjab University, Chandigarh, India
| | - Seah Buttar
- Department of Neurological Surgery, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Greta Brown
- Department of Neurological Surgery, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Noemi Yutuc
- Department of Neurological Surgery, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Harpreet Singh
- Department of Neurological Surgery, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Aleksandar Wood
- Department of Neurological Surgery, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Jagtar Singh
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Akshay Anand
- Neuroscience research lab, Department of Neurology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.,CCRYN- Collaborative Centre for Mind Body Intervention through Yoga.,Centre of Phenomenology and Cognitive Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
5
|
Chi G, Ebenhoch R, Man H, Tang H, Tremblay LE, Reggiano G, Qiu X, Bohstedt T, Liko I, Almeida FG, Garneau AP, Wang D, McKinley G, Moreau CP, Bountra KD, Abrusci P, Mukhopadhyay SMM, Fernandez‐Cid A, Slimani S, Lavoie JL, Burgess‐Brown NA, Tehan B, DiMaio F, Jazayeri A, Isenring P, Robinson CV, Dürr KL. Phospho-regulation, nucleotide binding and ion access control in potassium-chloride cotransporters. EMBO J 2021; 40:e107294. [PMID: 34031912 PMCID: PMC8280820 DOI: 10.15252/embj.2020107294] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/29/2021] [Accepted: 04/11/2021] [Indexed: 11/26/2022] Open
Abstract
Potassium-coupled chloride transporters (KCCs) play crucial roles in regulating cell volume and intracellular chloride concentration. They are characteristically inhibited under isotonic conditions via phospho-regulatory sites located within the cytoplasmic termini. Decreased inhibitory phosphorylation in response to hypotonic cell swelling stimulates transport activity, and dysfunction of this regulatory process has been associated with various human diseases. Here, we present cryo-EM structures of human KCC3b and KCC1, revealing structural determinants for phospho-regulation in both N- and C-termini. We show that phospho-mimetic KCC3b is arrested in an inward-facing state in which intracellular ion access is blocked by extensive contacts with the N-terminus. In another mutant with increased isotonic transport activity, KCC1Δ19, this interdomain interaction is absent, likely due to a unique phospho-regulatory site in the KCC1 N-terminus. Furthermore, we map additional phosphorylation sites as well as a previously unknown ATP/ADP-binding pocket in the large C-terminal domain and show enhanced thermal stabilization of other CCCs by adenine nucleotides. These findings provide fundamentally new insights into the complex regulation of KCCs and may unlock innovative strategies for drug development.
Collapse
Affiliation(s)
- Gamma Chi
- Nuffield Department of MedicineCentre of Medicines DiscoveryUniversity of OxfordOxfordUK
- Structural Genomics ConsortiumNuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Rebecca Ebenhoch
- Nuffield Department of MedicineCentre of Medicines DiscoveryUniversity of OxfordOxfordUK
- Structural Genomics ConsortiumNuffield Department of MedicineUniversity of OxfordOxfordUK
- Present address:
MedChem, Boehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
| | - Henry Man
- Nuffield Department of MedicineCentre of Medicines DiscoveryUniversity of OxfordOxfordUK
- Structural Genomics ConsortiumNuffield Department of MedicineUniversity of OxfordOxfordUK
- Present address:
Exscientia LtdOxfordUK
| | - Haiping Tang
- Physical and Theoretical Chemistry LaboratoryUniversity of OxfordOxfordUK
| | - Laurence E Tremblay
- Department of MedicineNephrology Research GroupFaculty of MedicineLaval UniversityQuebec CityQCCanada
| | | | - Xingyu Qiu
- Physical and Theoretical Chemistry LaboratoryUniversity of OxfordOxfordUK
| | - Tina Bohstedt
- Nuffield Department of MedicineCentre of Medicines DiscoveryUniversity of OxfordOxfordUK
- Structural Genomics ConsortiumNuffield Department of MedicineUniversity of OxfordOxfordUK
| | | | | | - Alexandre P Garneau
- Department of MedicineNephrology Research GroupFaculty of MedicineLaval UniversityQuebec CityQCCanada
- Cardiometabolic Axis, School of Kinesiology and Physical Activity SciencesUniversity of MontréalMontréalQCCanada
| | - Dong Wang
- Nuffield Department of MedicineCentre of Medicines DiscoveryUniversity of OxfordOxfordUK
- Structural Genomics ConsortiumNuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Gavin McKinley
- Nuffield Department of MedicineCentre of Medicines DiscoveryUniversity of OxfordOxfordUK
- Structural Genomics ConsortiumNuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Christophe P Moreau
- Nuffield Department of MedicineCentre of Medicines DiscoveryUniversity of OxfordOxfordUK
- Present address:
Celonic AGBaselGermany
| | | | - Patrizia Abrusci
- Nuffield Department of MedicineCentre of Medicines DiscoveryUniversity of OxfordOxfordUK
- Structural Genomics ConsortiumNuffield Department of MedicineUniversity of OxfordOxfordUK
- Present address:
Exscientia LtdOxfordUK
| | - Shubhashish M M Mukhopadhyay
- Nuffield Department of MedicineCentre of Medicines DiscoveryUniversity of OxfordOxfordUK
- Structural Genomics ConsortiumNuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Alejandra Fernandez‐Cid
- Nuffield Department of MedicineCentre of Medicines DiscoveryUniversity of OxfordOxfordUK
- Structural Genomics ConsortiumNuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Samira Slimani
- Department of MedicineNephrology Research GroupFaculty of MedicineLaval UniversityQuebec CityQCCanada
| | - Julie L Lavoie
- Cardiometabolic Axis, School of Kinesiology and Physical Activity SciencesUniversity of MontréalMontréalQCCanada
| | - Nicola A Burgess‐Brown
- Nuffield Department of MedicineCentre of Medicines DiscoveryUniversity of OxfordOxfordUK
- Structural Genomics ConsortiumNuffield Department of MedicineUniversity of OxfordOxfordUK
| | | | - Frank DiMaio
- Department of BiochemistryUniversity of WashingtonSeattleWAUSA
| | | | - Paul Isenring
- Department of MedicineNephrology Research GroupFaculty of MedicineLaval UniversityQuebec CityQCCanada
| | - Carol V Robinson
- Physical and Theoretical Chemistry LaboratoryUniversity of OxfordOxfordUK
| | - Katharina L Dürr
- Nuffield Department of MedicineCentre of Medicines DiscoveryUniversity of OxfordOxfordUK
- Structural Genomics ConsortiumNuffield Department of MedicineUniversity of OxfordOxfordUK
- OMass Therapeutics, Ltd.OxfordUK
| |
Collapse
|
6
|
Abbas M, Alzarea S, Papke RL, Rahman S. Effects of α7 Nicotinic Acetylcholine Receptor Positive Allosteric Modulator on BDNF, NKCC1 and KCC2 Expression in the Hippocampus following Lipopolysaccharide-Induced Allodynia and Hyperalgesia in a Mouse Model of Inflammatory Pain. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2021; 20:366-377. [PMID: 33380307 DOI: 10.2174/1871527319666201230102616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND & OBJECTIVES Hyperalgesia and allodynia are frequent symptoms of inflammatory pain. Neuronal excitability induced by the Brain-Derived Neurotrophic Factor (BDNF)-tyrosine receptor kinase B (TrkB) cascade has a role in the modulation of inflammatory pain. The effects of 3a,4,5,9b-tetrahydro-4-(1-naphthalenyl)-3H-cyclopentan[c]quinoline-8-sulfonamide (TQS), an α7 nicotinic Acetylcholine Receptor Positive Allosteric Modulator (nAChR PAM), on hippocampal BDNF, cation-chloride cotransporters, NKCC1 and KCC2, expression in inflammatory pain are not known. The objective of the study was to determine the effects of TQS on BDNF, NKCC1, and KCC2 expression in the hippocampus following lipopolysaccharide (LPS)-induced allodynia and hyperalgesia in a mouse model of inflammatory pain. METHODS Mice were treated with TQS followed by LPS (1 mg/kg, ip) administration. The effects of TQS on mRNA and BDNF in the hippocampus were examined using qRT-PCR and Western blot, respectively. Immunoreactivity of BDNF, NKCC1, and KCC2 in the hippocampus was measured after LPS administration using immunofluorescence assay. Allodynia and hyperalgesia were determined using von Frey filaments and hot plate, respectively. RESULTS The LPS (1 mg/kg) upregulates mRNA of BDNF and downregulates mRNA of KCC2 in the hippocampus and pretreatment of TQS (4 mg/kg) reversed the effects induced by LPS. In addition, the TQS decreased LPS-induced upregulation of BDNF and p-NKCC1 immunoreactivity in the dentate gyrus and CA1 region of the hippocampus. BDNF receptor (TrkB) antagonist, ANA12 (0.50 mg/kg), and NKCC1 inhibitor bumetanide (30 mg/kg) reduced LPS-induced allodynia and hyperalgesia. Blockade of TrkB with ANA12 (0.25 mg/kg) enhanced the effects of TQS (1 mg/kg) against LPS-induced allodynia and hyperalgesia. Similarly, bumetanide (10 mg/kg) enhanced the effects of TQS (1 mg/kg) against allodynia and hyperalgesia. CONCLUSION These results suggest that antinociceptive effects of α7 nAChR PAM are associated with downregulation of hippocampal BDNF and p-NKCC1 and upregulation of KCC2 in a mouse model of inflammatory pain.
Collapse
Affiliation(s)
- Muzaffar Abbas
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings SD 57007, United States
| | - Sami Alzarea
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings SD 57007, United States
| | - Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville FL 32610, United States
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings SD 57007, United States
| |
Collapse
|
7
|
Beverungen H, Klaszky SC, Klaszky M, Côté MP. Rehabilitation Decreases Spasticity by Restoring Chloride Homeostasis through the Brain-Derived Neurotrophic Factor-KCC2 Pathway after Spinal Cord Injury. J Neurotrauma 2020; 37:846-859. [PMID: 31578924 PMCID: PMC7071070 DOI: 10.1089/neu.2019.6526] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Activity-based therapy is routinely integrated in rehabilitation programs to facilitate functional recovery after spinal cord injury (SCI). Among its beneficial effects is a reduction of hyperreflexia and spasticity, which affects ∼75% of the SCI population. Unlike current anti-spastic pharmacological treatments, rehabilitation attenuates spastic symptoms without causing an active depression in spinal excitability, thus avoiding further interference with motor recovery. Understanding how activity-based therapies contribute to decrease spasticity is critical to identifying new pharmacological targets and to optimize rehabilitation programs. It was recently demonstrated that a decrease in the expression of KCC2, a neuronal Cl- extruder, contributes to the development spasticity in SCI rats. Although exercise can decrease spinal hyperexcitability and increase KCC2 expression on lumbar motoneurons after SCI, a causal effect remains to be established. Activity-dependent processes include an increase in brain-derived neurotrophic factor (BDNF) expression. Interestingly, BDNF is a regulator of KCC2 but also a potent modulator of spinal excitability. Therefore, we hypothesized that after SCI, the activity-dependent increase in KCC2 expression: 1) functionally contributes to reduce hyperreflexia, and 2) is regulated by BDNF. SCI rats chronically received VU0240551 (KCC2 blocker) or TrkB-IgG (BDNF scavenger) during the daily rehabilitation sessions and the frequency-dependent depression of the H-reflex, a monitor of hyperreflexia, was recorded 4 weeks post-injury. Our results suggest that the activity-dependent increase in KCC2 functionally contributes to H-reflex recovery and critically depends on BDNF activity. This study provides a new perspective in understanding how exercise impacts hyperreflexia by identifying the biological basis of the recovery of function.
Collapse
Affiliation(s)
- Henrike Beverungen
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Samantha Choyke Klaszky
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Michael Klaszky
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Marie-Pascale Côté
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
8
|
Mekhael W, Begum S, Samaddar S, Hassan M, Toruno P, Ahmed M, Gorin A, Maisano M, Ayad M, Ahmed Z. Repeated anodal trans-spinal direct current stimulation results in long-term reduction of spasticity in mice with spinal cord injury. J Physiol 2019; 597:2201-2223. [PMID: 30689208 PMCID: PMC6462463 DOI: 10.1113/jp276952] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 01/18/2019] [Indexed: 12/30/2022] Open
Abstract
KEY POINTS Spasticity is a disorder of muscle tone that is associated with lesions of the motor system. This condition involves an overactive spinal reflex loop that resists the passive lengthening of muscles. Previously, we established that application of anodal trans-spinal direct current stimulation (a-tsDCS) for short periods of time to anaesthetized mice sustaining a spinal cord injury leads to an instantaneous reduction of spasticity. However, the long-term effects of repeated a-tsDCS and its mechanism of action remained unknown. In the present study, a-tsDCS was performed for 7 days and this was found to cause long-term reduction in spasticity, increased rate-dependent depression in spinal reflexes, and improved ground and skill locomotion. Pharmacological, molecular and cellular evidence further suggest that a novel mechanism involving Na-K-Cl cotransporter isoform 1 mediates the observed long-term effects of repeated a-tsDCS. ABSTRACT Spasticity can cause pain, fatigue and sleep disturbances; restrict daily activities such as walking, sitting and bathing; and complicate rehabilitation efforts. Thus, spasticity negatively influences an individual's quality of life and novel therapeutic interventions are needed. We previously demonstrated in anaesthetized mice that a short period of trans-spinal subthreshold direct current stimulation (tsDCS) reduces spasticity. In the present study, the long-term effects of repeated tsDCS to attenuate abnormal muscle tone in awake female mice with spinal cord injuries were investigated. A motorized system was used to test velocity-dependent ankle resistance and associated electromyographical activity. Analysis of ground and skill locomotion was also performed, with electrophysiological, molecular and cellular studies being conducted to reveal a potential underlying mechanism of action. A 4 week reduction in spasticity was associated with an increase in rate-dependent depression of spinal reflexes, and ground and skill locomotion were improved following 7 days of anodal-tsDCS (a-tsDCS). Secondary molecular, cellular and pharmacological experiments further demonstrated that the expression of K-Cl co-transporter isoform 2 (KCC2) was not changed in animals with spasticity. However, Na-K-Cl cotransporter isoform 1 (NKCC1) was significantly up-regulated in mice that exhibited spasticity. When mice were treated with a-tsDCS, down regulation of NKCC1 was detected, and this level did not significantly differ from that in the non-injured control mice. Thus, long lasting reduction of spasticity by a-tsDCS via downregulation of NKCC1 may constitute a novel therapy for spasticity following spinal cord injury.
Collapse
Affiliation(s)
- Wagdy Mekhael
- Graduate CenterCity University of New YorkNew YorkNYUSA
| | - Sultana Begum
- Center for Developmental NeuroscienceThe College of Staten IslandStaten IslandNYUSA
| | - Sreyashi Samaddar
- Center for Developmental NeuroscienceThe College of Staten IslandStaten IslandNYUSA
- Department of Physical TherapyThe College of Staten IslandStaten IslandNYUSA
| | - Mazen Hassan
- Center for Developmental NeuroscienceThe College of Staten IslandStaten IslandNYUSA
| | - Pedro Toruno
- Center for Developmental NeuroscienceThe College of Staten IslandStaten IslandNYUSA
| | - Malik Ahmed
- Center for Developmental NeuroscienceThe College of Staten IslandStaten IslandNYUSA
| | - Alexis Gorin
- Center for Developmental NeuroscienceThe College of Staten IslandStaten IslandNYUSA
| | - Michael Maisano
- Center for Developmental NeuroscienceThe College of Staten IslandStaten IslandNYUSA
| | - Mark Ayad
- Center for Developmental NeuroscienceThe College of Staten IslandStaten IslandNYUSA
| | - Zaghloul Ahmed
- Graduate CenterCity University of New YorkNew YorkNYUSA
- Center for Developmental NeuroscienceThe College of Staten IslandStaten IslandNYUSA
- Department of Physical TherapyThe College of Staten IslandStaten IslandNYUSA
| |
Collapse
|
9
|
Abstract
Background Neuropathic pain (NP) is a debilitating condition that may result from spinal
cord injury (SCI). Nearly 75% of all SCI results in NP affecting 17,000 new
individuals in the United States every year, and an estimated 7–10% of
people worldwide. It is caused by damaged or dysfunctional nerve fibers
sending aberrant signals to pain centers in the central nervous system
causing severe pain that affects daily life and routine. The mechanisms
underlying NP are not fully understood, making treatment difficult.
Identification of specific molecular pathways that are involved in pain
syndromes and finding effective treatments has become a major priority in
current SCI research. Yoga has therapeutic applications may prove beneficial
in treating subjects suffering chronically with SCI induced NP, chronic back
and associated pains if necessary experimental data is generated Summary This review aims to discuss the implications of various mechanistic
approaches of yoga which can be tested by new study designs around various
nociceptive molecules including matrix metalloproteinases (MMPs),
cation-dependent chloride transporter (NKCC1) etc in SCI
induced NP patients. Key messages Thus, yogic practices could be used in managing SCI induced NP pain by
regulating the action of various mechanisms and its associated molecules.
Modern prescriptive treatment strategies combined with alternative
approaches like yoga should be used in rehabilitation centers and clinics in
order to ameliorate chronic NP. We recommend practical considerations of
careful yoga practice as part of an integrative medicine approach for NP
associated with SCI.
Collapse
|
10
|
Folic Acid Modulates Matrix Metalloproteinase-9 Expression Following Spinal Cord Injury. Ann Neurosci 2019; 26:60-65. [PMID: 31975775 PMCID: PMC6894625 DOI: 10.5214/ans.0972.7531.260205] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 01/17/2023] Open
Abstract
Background Treatment of spinal cord injury (SCI) induced neuropathic pain (NP) proves to
be extremely clinically challenging as the mechanism behind SCINP is poorly
understood. Matrix metalloproteinase (MMP) is largely responsible for the
early disruption of the blood spinal cord barrier. This system initiates
macrophage infiltration and degradation of myelin, which plays a pivotal
role in how NP occurs. In a recent study, we demonstrated that folic acid
(FA) treatment to cSCI rats reduced NP and improved functional recovery by
repressing MMP-2 expression. We hypothesize that MMP-2 expression is
suppressed because FA actively methylates the DNA sequence that encodes for
the MMP-2 protein. However, modulation of MMP-2 expression for alleviation
of NP is only pertinent to the mid- to late-phase of injury. Therefore, we
need to explore alternate therapeutic methods to target the early- to
mid-phase of injury to wholly alleviate NP. Purpose Furthering our previous findings on inhibiting MMP-2 expression by FA in mid-
and late- phase following cSCI in rats, we hypothesized that FA will
methylate and suppress MMP-9 expression during the early- phase, day 1, 3, 7
post cSCI and mid- phase (day 18 post cSCI), in comparison with MMP-2
expression during mid- and the late-phase of cSCI. Methods Adult male Sprague Dawley rats (250–270g) underwent cSCI, using a NYU
impactor, with 12.5 gm/cm injury. The spinal cord-injured animals were
treated intraperitoneally (i.p.) with a standardized dose of FA (80 μg/kg
body weight) on day 1, 2, 3, prior to cSCI, followed by daily injection up
to 14 or 17 days post-cSCI in different experiments. Animals were euthanized
on day 1, 3, 7 post cSCI (early- phase), day 18 post cSCI (mid- phase), and
day 42 post cSCI (late-phase) and the epicenter region of injured spinal
cord were harvested for MMP-9 and MMP-2 expression analysis by Western blots
technique. Results i) During early-phase on day 1, 3, and 7, the quantitation displayed no
statistical significance in MMP-9 expression, between water- and FA-
injected rats. ii) On day 18 post-cSCI, FA significantly modulates the
expression of MMP-9 (p = 0.043) iii) Comparing results with MMP-2 expression
and inhibition, FA significantly modulates the expression of MMP-2 on day 18
post cSCI (FA- and water-injected rats (p = 0.003). iv) In addition, FA
significantly modulates the expression of MMP-2 on day 42 post-cSCI
comparing FA- and water- injected rat groups (p = 0.034). Conclusion We report that FA administration results in alleviating cSCI-induced NP by
inhibiting MMP-9 in the proposed mid- phase of cSCI. However, FA
administration resulted in MMP-2 decline during both mid- through late-
phase following cSCI. Our study elucidates a new phase of cSCI, the
mid-phase. We conclude that further investigation on discovering and
quantifying the nature of the mid- phase of SCI injury is needed.
Collapse
|
11
|
Wang F, Wang X, Shapiro LA, Cotrina ML, Liu W, Wang EW, Gu S, Wang W, He X, Nedergaard M, Huang JH. NKCC1 up-regulation contributes to early post-traumatic seizures and increased post-traumatic seizure susceptibility. Brain Struct Funct 2016; 222:1543-1556. [PMID: 27586142 PMCID: PMC5368191 DOI: 10.1007/s00429-016-1292-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 08/16/2016] [Indexed: 11/15/2022]
Abstract
Traumatic brain injury (TBI) is not only a leading cause for morbidity and mortality in young adults (Bruns and Hauser, Epilepsia 44(Suppl 10):210, 2003), but also a leading cause of seizures. Understanding the seizure-inducing mechanisms of TBI is of the utmost importance, because these seizures are often resistant to traditional first- and second-line anti-seizure treatments. The early post-traumatic seizures, in turn, are a contributing factor to ongoing neuropathology, and it is critically important to control these seizures. Many of the available anti-seizure drugs target gamma-aminobutyric acid (GABAA) receptors. The inhibitory activity of GABAA receptor activation depends on low intracellular Cl−, which is achieved by the opposing regulation of Na+–K+–Cl− cotransporter 1 (NKCC1) and K+–Cl−–cotransporter 2 (KCC2). Up-regulation of NKCC1 in neurons has been shown to be involved in neonatal seizures and in ammonia toxicity-induced seizures. Here, we report that TBI-induced up-regulation of NKCC1 and increased intracellular Cl− concentration. Genetic deletion of NKCC1 or pharmacological inhibition of NKCC1 with bumetanide suppresses TBI-induced seizures. TGFβ expression was also increased after TBI and competitive antagonism of TGFβ reduced NKKC1 expression, ameliorated reactive astrocytosis, and inhibited seizures. Thus, TGFβ might be an important pathway involved in NKCC1 up-regulation after TBI. Our findings identify neuronal up-regulation of NKCC1 and its mediation by TGFβ, as a potential and important mechanism in the early post-traumatic seizures, and demonstrate the therapeutic potential of blocking this pathway.
Collapse
Affiliation(s)
- Fushun Wang
- Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester, Rochester, NY, 14642, USA.,Department of Surgery, Texas A&M University Health Science Center, College of Medicine, Temple, TX, 76504, USA.,Department of Neurosurgery, Neuroscience Institute, Baylor Scott and White Health, Central Division, Temple, TX, 76508, USA
| | - Xiaowei Wang
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester, Rochester, NY, 14642, USA.,Neuroscience Graduate Program, University of Rochester, Rochester, NY, 14642, USA
| | - Lee A Shapiro
- Department of Surgery, Texas A&M University Health Science Center, College of Medicine, Temple, TX, 76504, USA.
| | - Maria L Cotrina
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester, Rochester, NY, 14642, USA
| | - Weimin Liu
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester, Rochester, NY, 14642, USA
| | - Ernest W Wang
- Department of Neurosurgery, Neuroscience Institute, Baylor Scott and White Health, Central Division, Temple, TX, 76508, USA
| | - Simeng Gu
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wei Wang
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaosheng He
- Department of Neurosurgery, Xijing Hospital, 4th Military Medical University, Xi'an, China
| | - Maiken Nedergaard
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester, Rochester, NY, 14642, USA
| | - Jason H Huang
- Department of Surgery, Texas A&M University Health Science Center, College of Medicine, Temple, TX, 76504, USA. .,Department of Neurosurgery, Neuroscience Institute, Baylor Scott and White Health, Central Division, Temple, TX, 76508, USA.
| |
Collapse
|
12
|
Tang BL. (WNK)ing at death: With-no-lysine (Wnk) kinases in neuropathies and neuronal survival. Brain Res Bull 2016; 125:92-98. [PMID: 27131446 DOI: 10.1016/j.brainresbull.2016.04.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/11/2016] [Accepted: 04/24/2016] [Indexed: 12/22/2022]
Abstract
Members of With-no-lysine (WNK) family of serine-threonine kinase are key regulators of chloride ion transport in diverse cell types, controlling the activity and the surface expression of cation-chloride (Na(+)/K(+)-Cl(-)) co-transporters. Mutations in WNK1 and WNK4 are linked to a hereditary form of hypertension, and WNKs have been extensively investigated pertaining to their roles in renal epithelial ion homeostasis. However, some members of the WNK family and their splice isoforms are also expressed in the mammalian brain, and have been implicated in aspects of hereditary neuropathy as well as neuronal and glial survival. WNK2, which is exclusively enriched in neurons, is well known as an anti-proliferative tumor suppressor. WNK3, on the other hand, appears to promote cell survival as its inhibition enhances neuronal apoptosis. However, loss of WNK3 has been recently shown to reduce ischemia-associated brain damage. In this review, I surveyed the potentially context-dependent roles of WNKs in neurological disorders and neuronal survival.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore.
| |
Collapse
|
13
|
Schomberg D, Miranpuri G, Duellman T, Crowell A, Vemuganti R, Resnick D. Spinal cord injury induced neuropathic pain: Molecular targets and therapeutic approaches. Metab Brain Dis 2015; 30:645-58. [PMID: 25588751 DOI: 10.1007/s11011-014-9642-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/05/2014] [Indexed: 10/24/2022]
Abstract
Neuropathic pain, especially that resulting from spinal cord injury, is a tremendous clinical challenge. A myriad of biological changes have been implicated in producing these pain states including cellular interactions, extracellular proteins, ion channel expression, and epigenetic influences. Physiological consequences of these changes are varied and include functional deficits and pain responses. Developing therapies that effectively address the cause of these symptoms require a deeper knowledge of alterations in the molecular pathways. Matrix metalloproteinases and tissue inhibitors of metalloproteinases are two promising therapeutic targets. Matrix metalloproteinases interact with and influence many of the studied pain pathways. Gene expression of ion channels and inflammatory mediators clearly contributes to neuropathic pain. Localized and time dependent targeting of these proteins could alleviate and even prevent neuropathic pain from developing. Current therapeutic options for neuropathic pain are limited primarily to analgesics targeting the opioid pathway. Therapies directed at molecular targets are highly desirable and in early stages of development. These include transplantation of exogenously engineered cell populations and targeted gene manipulation. This review describes specific molecular targets amenable to therapeutic intervention using currently available delivery systems.
Collapse
Affiliation(s)
- Dominic Schomberg
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI, 53792, USA
| | | | | | | | | | | |
Collapse
|
14
|
Pathogenesis of spinal cord injury induced edema and neuropathic pain: expression of multiple isoforms of wnk1. Ann Neurosci 2014; 21:97-103. [PMID: 25206073 PMCID: PMC4158783 DOI: 10.5214/ans.0972.7531.210305] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/06/2014] [Accepted: 06/27/2014] [Indexed: 01/15/2023] Open
Abstract
Background Neuropathic pain (NP) is a common occurrence following spinal cord injury (SCI). Identification of specific molecular pathways that are involved in pain syndromes has become a major priority in current SCI research. We have investigated the role of a cation-dependent chloride transporter, Cl-regulatory protein Na+-K+-Cl- 1 (NKCC1), phosphorylation profile of NKCC1 and its specific involvement in neuropathic pain following contusion SCI (cSCI) using a rat model. Administration of the NKCC1 inhibitor bumetanide (BU) increases the mean hindpaw withdrawal latency time (WLT), thermal hyperalgesia (TH) following cSCI. These results demonstrate implication of NKCC1 co-transporter and BUin SCI-induced neuropathic pain. The with-no-lysine (K)–1 (WNK1) kinase has been shown to be an important regulator of NKCC1 phosphorylation in many systems, including nocioception. Mutations in a neuronal-specific exon of WNK1 (HSN2) was identified in patients that have hereditary sensory neuropathy type II (HSANII) also implicates WNK1 in nocioception, such that these patients have loss of perception to pain, touch and heat. In our ongoing research we proposed two studies utilizing our contusion SCI (cSCI) NP model of rat. Purpose Study 1 aimed at NKCC1 expression and activity is up-regulated following cSCI in the early edema and chronic neuropathic pain phases. Study 2 aimed at identifying the expression profile of alternatively spliced WNK1 isoforms in animals exhibiting thermal hyperalgesia (TH) following cSCI. Methods Adult male Sprague Dawley rats (275–300 g) following laminectomy received cSCI at T9 with the NYU impactor-device II by dropping 10 g weight from the height of 12.5 mm. Control rats obtained laminectomy but no impaction. Following injury, functional recovery was assessed by BBB locomotor scores on day 1, 7, 14, 21, 35, and 42 and development of thermal hyperalgesia on day 21, 28, 35, and 42 day of injury by monitoring hind paw withdraw latency time (WLT) in seconds compared with the baseline data before injury. Results Increased NKCC1 may explain observed increase in magnetic resonance imaging (MRI) T2, exhibiting NKCC1 localization in neurons. This data supports NKCC1’s role in the pathogenesis of acute and chronic phases of injury, namely spinal cord edema and chronic phase neuropathic pain. NKCC1 dependent chloride influx requires the phosphorylation at specific residues. Probing for the HSN2 exon of WNK1 reveals two key findings: i) the HSN2 exon is found in alternatively spliced neuronal isoforms found at 250 kDa and 230 kDa; ii) the 250 kDa isoform is found only in tissue that is injured. Conclusions This data implicates the NKCC1/WNK1/WNK1HSN2 involvement in post-injury response that contributes to the development of neuropathic pain. Targeting this system may have therapeutic benefit.
Collapse
|
15
|
Côté MP, Gandhi S, Zambrotta M, Houlé JD. Exercise modulates chloride homeostasis after spinal cord injury. J Neurosci 2014; 34:8976-87. [PMID: 24990918 PMCID: PMC6608257 DOI: 10.1523/jneurosci.0678-14.2014] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/20/2014] [Accepted: 05/24/2014] [Indexed: 01/09/2023] Open
Abstract
Activity-based therapies are routinely integrated in spinal cord injury (SCI) rehabilitation programs because they result in a reduction of hyperreflexia and spasticity. However, the mechanisms by which exercise regulates activity in spinal pathways to reduce spasticity and improve functional recovery are poorly understood. Persisting alterations in the action of GABA on postsynaptic targets is a signature of CNS injuries, including SCI. The action of GABA depends on the intracellular chloride concentration, which is determined largely by the expression of two cation-chloride cotransporters (CCCs), KCC2 and NKCC1, which serve as chloride exporters and importers, respectively. We hypothesized that the reduction in hyperreflexia with exercise after SCI relies on a return to chloride homeostasis. Sprague Dawley rats received a spinal cord transection at T12 and were assigned to SCI-7d, SCI-14d, SCI-14d+exercise, SCI-28d, SCI-28d+exercise, or SCI-56d groups. During a terminal experiment, H-reflexes were recorded from interosseus muscles after stimulation of the tibial nerve and the low-frequency-dependent depression (FDD) was assessed. We provide evidence that exercise returns spinal excitability and levels of KCC2 and NKCC1 toward normal levels in the lumbar spinal cord. Acutely altering chloride extrusion using the KCC2 blocker DIOA masked the effect of exercise on FDD, whereas blocking NKCC1 with bumetanide returned FDD toward intact levels after SCI. Our results indicate that exercise contributes to reflex recovery and restoration of endogenous inhibition through a return to chloride homeostasis after SCI. This lends support for CCCs as part of a pathway that could be manipulated to improve functional recovery when combined with rehabilitation programs.
Collapse
Affiliation(s)
- Marie-Pascale Côté
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Sapan Gandhi
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Marina Zambrotta
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - John D Houlé
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| |
Collapse
|