1
|
Heck VJ, Rauschmann M, Prasse T, Vinas-Rios JM, Slavici A. Tips and tricks for using cement augmentation of pedicle screws and vertebral body replacements-A literature review supported by two case reports. Rev Esp Cir Ortop Traumatol (Engl Ed) 2024:S1888-4415(24)00155-3. [PMID: 39349168 DOI: 10.1016/j.recot.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/03/2024] [Indexed: 10/02/2024] Open
Abstract
BACKGROUND The prevalence of osteoporosis is escalating alongside an aging global population, increasing the demand for spinal surgeries, including those necessitating cement augmentation for enhanced construct stability. OBJECTIVE This article delves into the nuanced application of cement augmentation techniques for pedicle screws and vertebral body replacements (VBR), aimed at optimizing surgical outcomes in osteoporotic spines. METHOD Drawing from a comprehensive literature review according to important clinical and biomechanical studies and the authors' clinical experiences, we elucidate strategies to mitigate complications and improve surgical efficacy. RESULTS Cement augmentation has shown promise in managing vertebral fractures and in securing pedicle screws within osteoporotic vertebrae, with the advent of polymethylmethacrylate (PMMA) bone cement marking a pivotal advancement in spinal surgery. We highlight intraoperative measures like the choice between pre-injecting cement and utilizing cannulated or fenestrated screws, emphasizing the importance of controlling cement viscosity to prevent leakage and embolism. Through two case reports, we demonstrate the practical application of endplate cementation following VBR. CONCLUSION While the use of cement augmentation poses certain risks, its judicious application-supported by evidence-based guidelines and surgical expertise-can substantially enhance the stability of spinal constructs in osteoporotic patients. This allows a reduction in instrumentation length by enhancing biomechanical stability concerning pullout, bending, and rotational forces. Furthermore, the incidence of endplate sintering following VBF can be significantly reduced. Future research, particularly on antibiotic-loaded PMMA, may further expand its utility and optimize its safety profile.
Collapse
Affiliation(s)
- V J Heck
- Center for Spinal Surgery, Sana Klinikum Offenbach, Offenbach, Alemania; Department of Orthopedics and Trauma Surgery, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Alemania.
| | - M Rauschmann
- Center for Spinal Surgery, Sana Klinikum Offenbach, Offenbach, Alemania
| | - T Prasse
- Department of Orthopedics and Trauma Surgery, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Alemania
| | - J M Vinas-Rios
- Department of Orthopedics and Trauma Surgery, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Alemania
| | - A Slavici
- Center for Spinal Surgery, Sana Klinikum Offenbach, Offenbach, Alemania
| |
Collapse
|
2
|
Heck VJ, Rauschmann M, Prasse T, Vinas-Rios JM, Slavici A. Tips and tricks for using cement augmentation of pedicle screws and vertebral body replacements-A literature review supported by two case reports. Rev Esp Cir Ortop Traumatol (Engl Ed) 2024:S1888-4415(24)00126-7. [PMID: 39025361 DOI: 10.1016/j.recot.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND The prevalence of osteoporosis is escalating alongside an aging global population, increasing the demand for spinal surgeries, including those necessitating cement augmentation for enhanced construct stability. OBJECTIVE This article delves into the nuanced application of cement augmentation techniques for pedicle screws and vertebral body replacements (VBR), aimed at optimizing surgical outcomes in osteoporotic spines. METHOD Drawing from a comprehensive literature review according to important clinical and biomechanical studies and the authors' clinical experiences, we elucidate strategies to mitigate complications and improve surgical efficacy. RESULTS Cement augmentation has shown promise in managing vertebral fractures and in securing pedicle screws within osteoporotic vertebrae, with the advent of polymethylmethacrylate (PMMA) bone cement marking a pivotal advancement in spinal surgery. We highlight intraoperative measures like the choice between pre-injecting cement and utilizing cannulated or fenestrated screws, emphasizing the importance of controlling cement viscosity to prevent leakage and embolism. Through two case reports, we demonstrate the practical application of endplate cementation following VBR. CONCLUSION While the use of cement augmentation poses certain risks, its judicious application-supported by evidence-based guidelines and surgical expertise-can substantially enhance the stability of spinal constructs in osteoporotic patients. This allows a reduction in instrumentation length by enhancing biomechanical stability concerning pullout, bending, and rotational forces. Furthermore, the incidence of endplate sintering following VBF can be significantly reduced. Future research, particularly on antibiotic-loaded PMMA, may further expand its utility and optimize its safety profile.
Collapse
Affiliation(s)
- V J Heck
- Center for Spinal Surgery, Sana Klinikum Offenbach, Starkenburgring 66, 63069 Offenbach, Germany; Department of Orthopedics and Trauma Surgery, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany.
| | - M Rauschmann
- Center for Spinal Surgery, Sana Klinikum Offenbach, Starkenburgring 66, 63069 Offenbach, Germany
| | - T Prasse
- Department of Orthopedics and Trauma Surgery, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - J M Vinas-Rios
- Department of Orthopedics and Trauma Surgery, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - A Slavici
- Center for Spinal Surgery, Sana Klinikum Offenbach, Starkenburgring 66, 63069 Offenbach, Germany
| |
Collapse
|
3
|
Sircar K, Weber M, Walter SG, Ott N, Prescher A, Eysel P, Kernich N. Torque forces of expandable titanium vertebral body replacement cages during expansion and subsidence in the osteoporotic lumbar spine. Clin Biomech (Bristol, Avon) 2024; 114:106239. [PMID: 38599132 DOI: 10.1016/j.clinbiomech.2024.106239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND The application of expandable titanium-cages has gained widespread use in vertebral body replacement for indications such as burst fractures, tumors and infectious destruction. However, torque forces necessary for a satisfactory expansion of these implants and for subsidence of them into the adjacent vertebrae are unknown within the osteoporotic spine. METHODS Six fresh-frozen human, osteoporotic, lumbar spines were dorsally instrumented with titanium implants (L2-L4) and a partial corpectomy of L3 was performed. An expandable titanium-cage was inserted ventrally and expanded by both residents and senior surgeons until fixation was deemed sufficient, based on haptic feedback. Torque forces for expansion were measured in Nm. Expansion was then continued until cage subsidence occurred. Torque forces necessary for subsidence were recorded. Strain of the dorsal rods during expansion was measured with strain gauges. FINDINGS The mean torque force for fixation of cages was 1.17 Nm (0.9 Nm for residents, 1.4 Nm for senior surgeons, p = .06). The mean torque force for subsidence of cages was 3.1 Nm (p = .005). Mean peak strain of the dorsal rods was 970 μm/m during expansion and 1792 μm/m at subsidence of cages (p = .004). INTERPRETATION The use of expandable titanium-cages for vertebral body replacement seems to be a primarily safe procedure even within the osteoporotic spine as torque forces required for subsidence of cages are nearly three times higher than those needed for fixation. Most of the expansion load is absorbed by straining of the dorsal instrumentation. Rod materials other than titanium may alter the torque forces found in this study.
Collapse
Affiliation(s)
- Krishnan Sircar
- Department of Orthopedic and Trauma Surgery, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener-Strasse 62, 50937 Cologne, Germany.
| | - Maximilian Weber
- Department of Orthopedic and Trauma Surgery, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener-Strasse 62, 50937 Cologne, Germany
| | - Sebastian G Walter
- Department of Orthopedic and Trauma Surgery, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener-Strasse 62, 50937 Cologne, Germany
| | - Nadine Ott
- Department of Orthopedic and Trauma Surgery, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener-Strasse 62, 50937 Cologne, Germany
| | - Andreas Prescher
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University Hospital, Wendlingweg 2, 52070 Aachen, Germany
| | - Peer Eysel
- Department of Orthopedic and Trauma Surgery, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener-Strasse 62, 50937 Cologne, Germany
| | - Nikolaus Kernich
- Department of Orthopedic and Trauma Surgery, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener-Strasse 62, 50937 Cologne, Germany
| |
Collapse
|
4
|
Hu X, Barber SM, Ji Y, Kou H, Cai W, Cheng M, Liu H, Huang W, Yan W. Implant failure and revision strategies after total spondylectomy for spinal tumors. J Bone Oncol 2023; 42:100497. [PMID: 37635708 PMCID: PMC10457450 DOI: 10.1016/j.jbo.2023.100497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023] Open
Abstract
Background Although there have been several risk factors reported for implant failure (IF), little consensus exists. Potential applicable measures to protect patients from IF are relatively few. This study aimed to discover new risk factors for IF and explore potential protective measures from IF after total spondylectomy for spinal tumors. Methods A total of 145 patients undergoing total spondylectomy for thoracic and lumbar spinal tumors between 2010 and 2021 were included from three tertiary university hospitals. Patient demographic and surgical characteristics and follow-up outcomes were collected. Results During a mean follow-up of 53.77 months (range, 12 to 149 months), 22 of 145 patients (15.17%) developed IF. Patients undergoing thoracolumbar junctional region (T12/L1) resection were more likely to develop IF compared to those undergoing surgery at other vertebral levels (HR = 21.622, 95% CI = 3.567-131.084, P = 0.001). Patients undergoing titanium mesh cage reconstruction were more likely to develop IF compared to patients undergoing expandable titanium cage reconstruction (HR = 8.315, 95% CI = 1.482-46.645, P = 0.016). Patients with bone cement augmentation around the cage were less likely to develop IF compared to those not receiving bone cement augmentation (HR = 0.015, 95% CI = 0.002-0.107, P < 0.001). Of the 22 patients with IF, 14 (63.63%) accepted personalized revision surgery. Conclusion The use of an expandable cage and the use of bone cement augmentation around the anterior column support cage are protective measures against IF after total spondylectomy.
Collapse
Affiliation(s)
- Xianglin Hu
- Department of Musculoskeletal Oncology, Spinal Tumor Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Sean M Barber
- Department of Neurosurgery, Houston Methodist Neurological Institute, Houston Methodist Hospital, Houston, USA
| | - Yingzheng Ji
- Department of Orthopedic Surgery, Naval Medical Center of PLA, Naval Medical University, Shanghai, China
| | - Hongwei Kou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weiluo Cai
- Department of Musculoskeletal Oncology, Spinal Tumor Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mo Cheng
- Department of Musculoskeletal Oncology, Spinal Tumor Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongjian Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wending Huang
- Department of Musculoskeletal Oncology, Spinal Tumor Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wangjun Yan
- Department of Musculoskeletal Oncology, Spinal Tumor Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Georg Schmorl Prize of the German Spine Society (DWG) 2020: new biomechanical in vitro test method to determine subsidence risk of vertebral body replacements. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2021; 30:1117-1124. [PMID: 33730216 DOI: 10.1007/s00586-021-06764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/15/2021] [Accepted: 02/02/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Prevention of implant subsidence in osteoporotic (thoraco)lumbar spines is still a major challenge in spinal surgery. In this study, a new biomechanical in vitro test method was developed to simulate patient activities in order to determine the subsidence risk of vertebral body replacements during physiologic loading conditions. METHODS The study included 12 (thoraco)lumbar (T11-L1, L2-L4) human specimens. After dorsal stabilisation and corpectomy, vertebral body replacements (VBR) with (a) round centrally located and (b) lateral end pieces with apophyseal support were implanted, equally distributed regarding segment, sex, mean BMD ((a) 64.2 mgCaHA/cm3, (b) 66.7 mgCaHA/cm3) and age ((a) 78 years, (b) 73.5 years). The specimens were then subjected to everyday activities (climbing stairs, tying shoes, lifting 20 kg) simulated by a custom-made dynamic loading simulator combining corresponding axial loads with flexion-extension and lateral bending movements. They were applied in oscillating waves at 0.5 Hz and raised every 100 cycles phase-shifted to each other by 50 N or 0.25°, respectively. The range of motion (ROM) of the specimens was determined in all three motion planes under pure moments of 3.75 Nm prior to and after implantation as well as subsequently following activities. Simultaneously, subsidence depth was quantified from fluoroscope films. A mixed model (significance level: 0.05) was established to relate subsidence risk to implant geometries and patients' activities. RESULTS With this new test method, simulating everyday activities provoked clinically relevant subsidence schemes. Generally, severe everyday activities caused deeper subsidence which resulted in increased ROM. Subsidence of lateral end pieces was remarkably less pronounced which was accompanied by a smaller ROM in flexion-extension and higher motion possibilities in axial rotation (p = 0.05). CONCLUSION In this study, a new biomechanical test method was developed that simulates physiologic activities to examine implant subsidence. It appears that the highest risk of subsidence occurs most when lifting heavy weights, and into the ventral part of the caudal vertebra. The results indicate that lateral end pieces may better prevent from implant subsidence because of the additional cortical support. Generally, patients that are treated with a VBR should avoid activities that create high loading on the spine.
Collapse
|
6
|
Liebsch C, Aleinikov V, Kerimbayev T, Akshulakov S, Kocak T, Vogt M, Jansen JU, Wilke HJ. In vitro comparison of personalized 3D printed versus standard expandable titanium vertebral body replacement implants in the mid-thoracic spine using entire rib cage specimens. Clin Biomech (Bristol, Avon) 2020; 78:105070. [PMID: 32531440 DOI: 10.1016/j.clinbiomech.2020.105070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Expandable titanium implants have proven their suitability as vertebral body replacement device in several clinical and biomechanical studies. Potential stabilizing features of personalized 3D printed titanium devices, however, have never been explored. This in vitro study aimed to prove their equivalence regarding primary stability and three-dimensional motion behavior in the mid-thoracic spine including the entire rib cage. METHODS Six fresh frozen human thoracic spine specimens with intact rib cages were loaded with pure moments of 5 Nm while performing optical motion tracking of all vertebrae. Following testing in intact condition (1), the specimens were tested after inserting personalized 3D printed titanium vertebral body replacement implants (2) and the two standard expandable titanium implants Obelisc™ (3) and Synex™ (4), each at T6 level combined with posterior pedicle screw-rod fixation from T4 to T8. FINDINGS No significant differences (P < .05) in primary and secondary T1-T12 ranges of motion were found between the three implant types. Compared to the intact condition, slight decreases of the range of motion were found, which were significant for Synex™ in primary flexion/extension (-17%), specifically at T3-T4 level (-46%), primary lateral bending (-18%), and secondary lateral bending during primary axial rotation (-53%). Range of motion solely increased at T8-T9 level, while being significant only for Obelisc™ (+35%). INTERPRETATION Personalized 3D printed vertebral body replacement implants provide a promising alternative to standard expandable devices regarding primary stability and three-dimensional motion behavior in the mid-thoracic spine due to the stabilizing effect of the rib cage.
Collapse
Affiliation(s)
- Christian Liebsch
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Centre Ulm, Ulm University, Ulm, Germany
| | | | | | | | - Tugrul Kocak
- Department of Orthopedics, Ulm University, Ulm, Germany
| | - Morten Vogt
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Centre Ulm, Ulm University, Ulm, Germany
| | - Jan Ulrich Jansen
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Centre Ulm, Ulm University, Ulm, Germany
| | - Hans-Joachim Wilke
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Centre Ulm, Ulm University, Ulm, Germany.
| |
Collapse
|
7
|
Tang YC, Guo HZ, Guo DQ, Luo PJ, Li YX, Mo GY, Ma YH, Peng JC, Liang D, Zhang SC. Effect and potential risks of using multilevel cement-augmented pedicle screw fixation in osteoporotic spine with lumbar degenerative disease. BMC Musculoskelet Disord 2020; 21:274. [PMID: 32345282 PMCID: PMC7189525 DOI: 10.1186/s12891-020-03309-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/22/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The increase of augmented level and bone cement dose are accompanied by the rising incidence of cement leakage (CL) of cement-augmented pedicle screw instrumentation (CAPSI). But the effect and potential risks of the application of CAPSI to osteoporotic lumbar degenerative disease (LDD) have not been studied in the case of multilevel fixation. This study aimed to investigate the effectiveness and potential complications of using multilevel CAPSI for patients with osteoporotic LDD. METHODS A total of 93 patients with multilevel LDD were divided into the CAPSI group (46 subjects) and the conventional pedicle screw (CPS) group (47 subjects), including 75 cases for three levels and 18 cases for four levels. Relevant data were compared between two groups, including baseline data, clinical results, and complications. RESULTS In the CAPSI group, a total of 336 augmented screws was placed bilaterally. The CL was observed in 116 screws (34.52%). Three cemented screws (0.89%) were found loosened during the follow-up and the overall fusion rate was 93.47%. For perioperative complications, two patients (4.35%) experienced pulmonary cement embolism (PCE), one patient augmented vertebral fracture, and three patients (6.52%) wound infection. And in the CPS group, thirty-three screws (8.46%) suffered loosening in cranial and caudal vertebra with a fusion rate of 91.49%. The operation time and hospital stay of CAPSI group were longer than the CPS group, but CAPSI group has a lower screw loosening percentage (P<0. 05). And in terms of blood loss, perioperative complications, fusion rate, and VAS and ODI scores at the follow-up times, there were no significant differences between the two groups. CONCLUSIONS Patients with osteoporotic LDD underwent multilevel CPS fixation have a higher rate of screw loosening in the cranial and caudal vertebra. The application of cemented pedicle screws for multilevel LDD can achieve better stability and less screw loosening, but it also accompanied by longer operating time, higher incidence of CL, PCE and wound infections. Selective cement augmentation of cranial and caudal pedicle screws may be a worthy strategy to decrease the complications.
Collapse
Affiliation(s)
- Yong-chao Tang
- Spine Surgery Department, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510407 China
| | - Hui-zhi Guo
- The 1st Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Airport Road, Baiyun District, Guangzhou, 510405 Guangdong People’s Republic of China
| | - Dan-qing Guo
- The 1st Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Airport Road, Baiyun District, Guangzhou, 510405 Guangdong People’s Republic of China
| | - Pei-jie Luo
- Spine Surgery Department, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510407 China
- The 1st Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Airport Road, Baiyun District, Guangzhou, 510405 Guangdong People’s Republic of China
| | - Yong-xian Li
- Spine Surgery Department, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510407 China
- The 1st Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Airport Road, Baiyun District, Guangzhou, 510405 Guangdong People’s Republic of China
| | - Guo-ye Mo
- Spine Surgery Department, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510407 China
- The 1st Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Airport Road, Baiyun District, Guangzhou, 510405 Guangdong People’s Republic of China
| | - Yan-huai Ma
- Spine Surgery Department, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510407 China
- The 1st Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Airport Road, Baiyun District, Guangzhou, 510405 Guangdong People’s Republic of China
| | - Jian-cheng Peng
- Spine Surgery Department, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510407 China
- The 1st Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Airport Road, Baiyun District, Guangzhou, 510405 Guangdong People’s Republic of China
| | - De Liang
- Spine Surgery Department, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510407 China
| | - Shun-cong Zhang
- Spine Surgery Department, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510407 China
- The 1st Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Airport Road, Baiyun District, Guangzhou, 510405 Guangdong People’s Republic of China
| |
Collapse
|
8
|
Herren C, Quast K, Prescher A, Fischer H, Thüring J, Siewe J, Hildebrand F, Greven J, Kobbe P, Pishnamaz M. Influence of additional cement augmentation on endplate stability in circumferential stabilisation of osteoporotic spine fractures. Clin Biomech (Bristol, Avon) 2019; 68:163-168. [PMID: 31212212 DOI: 10.1016/j.clinbiomech.2019.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Anterior stabilisation of osteoporotic spine fractures is uncommon but necessary in the case of complex vertebral body comminution. The purpose of this study was to investigate the effect of additional cement-augmentation on the endplate stability. METHODS Twelve human cadaveric lumbar spines were divided in two groups: (A) posterior cement-augmented pedicle screw/rod-based instrumentation of L3 to L5, posterior decompression of L4/5 and partial corpectomy of L4 and (B) same experimental setup with additional cement-augmentation of the adjacent endplates. A cyclic loading test was performed at a frequency of 3 Hz, starting with a peak of 500 N for the first 2.000 cycles, up to 950 N for 100.000 cycles under a general preload with 50 N. All specimens were evaluated with regard to a potential collapse of the adjacent endplates. Subsequently, the maximum zero-time failure load of all specimens was determined using a universal testing machine. FINDINGS The median T-score of bone density was -4.32 (range -2.97 to -5.59), distributed equally in the two groups (average age 83 years). The specimen of the endplate-augmented group showed a significant higher failure load compared to non-endplate-augmented cadavers (group A: 2038 N, group B: 2990 N, p = 0.03). All specimens passed the full cyclic loading protocol with 100.000 cycles. No significant difference was observable regarding the adjacent endplate subsidence. INTERPRETATION Additional cement augmentation in circumferential stabilisation resulted in a significant enhancement of the endplate stability regarding the maximum axial load, while the cyclic loading did not significantly enhance the fatigue endurance of the vertebral endplates over the 100,000 cycles tested.
Collapse
Affiliation(s)
- Christian Herren
- Department for Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany.
| | - Kathrin Quast
- Department for Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Andreas Prescher
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University Hospital, Wendlingweg 2, 52070 Aachen, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Johannes Thüring
- Department of Diagnostic and Interventional Radiology, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Jan Siewe
- Faculty of Medicine, University of Cologne, Joseph-Stelzmann-Str. 20, 50931 Cologne, Germany; Spine Department, Clinical Centre Leverkusen gGmbH, Am Gesundheitspark 11, Leverkusen, Germany
| | - Frank Hildebrand
- Department for Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Johannes Greven
- Department for Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Philipp Kobbe
- Department for Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Miguel Pishnamaz
- Department for Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| |
Collapse
|