2
|
Knutson KA, Deng Y, Pan W. Implicating causal brain imaging endophenotypes in Alzheimer's disease using multivariable IWAS and GWAS summary data. Neuroimage 2020; 223:117347. [PMID: 32898681 PMCID: PMC7778364 DOI: 10.1016/j.neuroimage.2020.117347] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
Recent evidence suggests the existence of many undiscovered heritable brain phenotypes involved in Alzheimer's Disease (AD) pathogenesis. This finding necessitates methods for the discovery of causal brain changes in AD that integrate Magnetic Resonance Imaging measures and genotypic data. However, existing approaches for causal inference in this setting, such as the univariate Imaging Wide Association Study (UV-IWAS), suffer from inconsistent effect estimation and inflated Type I errors in the presence of genetic pleiotropy, the phenomenon in which a variant affects multiple causal intermediate risk phenotypes. In this study, we implement a multivariate extension to the IWAS model, namely MV-IWAS, to consistently estimate and test for the causal effects of multiple brain imaging endophenotypes from the Alzheimer's Disease Neuroimaging Initiative (ADNI) in the presence of pleiotropic and possibly correlated SNPs. We further extend MV-IWAS to incorporate variant-specific direct effects on AD, analogous to the existing Egger regression Mendelian Randomization approach, which allows for testing of remaining pleiotropy after adjusting for multiple intermediate pathways. We propose a convenient approach for implementing MV-IWAS that solely relies on publicly available GWAS summary data and a reference panel. Through simulations with either individual-level or summary data, we demonstrate the well controlled Type I errors and superior power of MV-IWAS over UV-IWAS in the presence of pleiotropic SNPs. We apply the summary statistic based tests to 1578 heritable imaging derived phenotypes (IDPs) from the UK Biobank. MV-IWAS detected numerous IDPs as possible false positives by UV-IWAS while uncovering many additional causal neuroimaging phenotypes in AD which are strongly supported by the existing literature.
Collapse
Affiliation(s)
- Katherine A Knutson
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota United States
| | - Yangqing Deng
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota United States
| | - Wei Pan
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota United States.
| |
Collapse
|
3
|
Kamarajan C, Ardekani BA, Pandey AK, Chorlian DB, Kinreich S, Pandey G, Meyers JL, Zhang J, Kuang W, Stimus AT, Porjesz B. Random Forest Classification of Alcohol Use Disorder Using EEG Source Functional Connectivity, Neuropsychological Functioning, and Impulsivity Measures. Behav Sci (Basel) 2020; 10:bs10030062. [PMID: 32121585 PMCID: PMC7139327 DOI: 10.3390/bs10030062] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/16/2022] Open
Abstract
: Individuals with alcohol use disorder (AUD) manifest a variety of impairments that can be attributed to alterations in specific brain networks. The current study aims to identify features of EEG-based functional connectivity, neuropsychological performance, and impulsivity that can classify individuals with AUD (N = 30) from unaffected controls (CTL, N = 30) using random forest classification. The features included were: (i) EEG source functional connectivity (FC) of the default mode network (DMN) derived using eLORETA algorithm, (ii) neuropsychological scores from the Tower of London test (TOLT) and the visual span test (VST), and (iii) impulsivity factors from the Barratt impulsiveness scale (BIS). The random forest model achieved a classification accuracy of 80% and identified 29 FC connections (among 66 connections per frequency band), 3 neuropsychological variables from VST (total number of correctly performed trials in forward and backward sequences and average time for correct trials in forward sequence) and all four impulsivity scores (motor, non-planning, attentional, and total) as significantly contributing to classifying individuals as either AUD or CTL. Although there was a significant age difference between the groups, most of the top variables that contributed to the classification were not significantly correlated with age. The AUD group showed a predominant pattern of hyperconnectivity among 25 of 29 significant connections, indicating aberrant network functioning during resting state suggestive of neural hyperexcitability and impulsivity. Further, parahippocampal hyperconnectivity with other DMN regions was identified as a major hub region dysregulated in AUD (13 connections overall), possibly due to neural damage from chronic drinking, which may give rise to cognitive impairments, including memory deficits and blackouts. Furthermore, hypoconnectivity observed in four connections (prefrontal nodes connecting posterior right-hemispheric regions) may indicate a weaker or fractured prefrontal connectivity with other regions, which may be related to impaired higher cognitive functions. The AUD group also showed poorer memory performance on the VST task and increased impulsivity in all factors compared to controls. Features from all three domains had significant associations with one another. These results indicate that dysregulated neural connectivity across the DMN regions, especially relating to hyperconnected parahippocampal hub as well as hypoconnected prefrontal hub, may potentially represent neurophysiological biomarkers of AUD, while poor visual memory performance and heightened impulsivity may serve as cognitive-behavioral indices of AUD.
Collapse
Affiliation(s)
- Chella Kamarajan
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.K.P.); (D.B.C.); (S.K.); (G.P.); (J.L.M.); (J.Z.); (W.K.); (A.T.S.); (B.P.)
- Correspondence: ; Tel.: +1-718-270-2913
| | - Babak A. Ardekani
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA;
- Department of Psychiatry, NYU School of Medicine, New York, NY 10016, USA
| | - Ashwini K. Pandey
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.K.P.); (D.B.C.); (S.K.); (G.P.); (J.L.M.); (J.Z.); (W.K.); (A.T.S.); (B.P.)
| | - David B. Chorlian
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.K.P.); (D.B.C.); (S.K.); (G.P.); (J.L.M.); (J.Z.); (W.K.); (A.T.S.); (B.P.)
| | - Sivan Kinreich
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.K.P.); (D.B.C.); (S.K.); (G.P.); (J.L.M.); (J.Z.); (W.K.); (A.T.S.); (B.P.)
| | - Gayathri Pandey
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.K.P.); (D.B.C.); (S.K.); (G.P.); (J.L.M.); (J.Z.); (W.K.); (A.T.S.); (B.P.)
| | - Jacquelyn L. Meyers
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.K.P.); (D.B.C.); (S.K.); (G.P.); (J.L.M.); (J.Z.); (W.K.); (A.T.S.); (B.P.)
| | - Jian Zhang
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.K.P.); (D.B.C.); (S.K.); (G.P.); (J.L.M.); (J.Z.); (W.K.); (A.T.S.); (B.P.)
| | - Weipeng Kuang
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.K.P.); (D.B.C.); (S.K.); (G.P.); (J.L.M.); (J.Z.); (W.K.); (A.T.S.); (B.P.)
| | - Arthur T. Stimus
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.K.P.); (D.B.C.); (S.K.); (G.P.); (J.L.M.); (J.Z.); (W.K.); (A.T.S.); (B.P.)
| | - Bernice Porjesz
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.K.P.); (D.B.C.); (S.K.); (G.P.); (J.L.M.); (J.Z.); (W.K.); (A.T.S.); (B.P.)
| |
Collapse
|