1
|
Srivastava DJ, Baltisberger JH, Grandinetti PJ. Rapid simulation of two-dimensional spectra with correlated anisotropic dimensions. J Chem Phys 2024; 160:134104. [PMID: 38557839 DOI: 10.1063/5.0200042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
A new algorithm has been developed to simulate two-dimensional (2D) spectra with correlated anisotropic frequencies faster and more accurately than previous methods. The technique uses finite-element numerical integration on the sphere and an interpolation scheme based on the Alderman-Solum-Grant algorithm. This method is particularly useful for numerical calculations of joint probability distribution functions involving quantities with a parametric orientation dependence. The technique's efficiency also allows for practical least-squares fitting of experimental 2D solid-state nuclear magnetic resonance (NMR) datasets. The simulation method is illustrated for select 2D NMR methods, and a least-squares analysis is demonstrated in the extraction of paramagnetic shift and quadrupolar coupling tensors and their relative orientation from the experimental shifting-d echo 2H NMR spectrum of a NiCl2 · 2D2O salt.
Collapse
Affiliation(s)
| | | | - Philip J Grandinetti
- Department of Chemistry, Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| |
Collapse
|
2
|
Koppe J, Pell AJ. Structure Determination and Refinement of Paramagnetic Materials by Solid-State NMR. ACS PHYSICAL CHEMISTRY AU 2023; 3:419-433. [PMID: 37780542 PMCID: PMC10540298 DOI: 10.1021/acsphyschemau.3c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 10/03/2023]
Abstract
Paramagnetism in solid-state materials has long been considered an additional challenge for structural investigations by using solid-state nuclear magnetic resonance spectroscopy (ssNMR). The strong interactions between unpaired electrons and the surrounding atomic nuclei, on the one hand, are complex to describe, and on the other hand can cause fast decaying signals and extremely broad resonances. However, significant progress has been made over the recent years in developing both theoretical models to understand and calculate the frequency shifts due to paramagnetism and also more sophisticated experimental protocols for obtaining high-resolution ssNMR spectra. While the field is continuously moving forward, to date, the combination of state-of-the-art numerical and experimental techniques enables us to obtain high-quality data for a variety of systems. This involves the determination of several ssNMR parameters that represent different contributions to the frequency shift in paramagnetic solids. These contributions encode structural information on the studied material on various length scales, ranging from crystal morphologies, to the mid- and long-range order, down to the local atomic bonding environment. In this perspective, the different ssNMR parameters characteristic for paramagnetic materials are discussed with a focus on their interpretation in terms of structure. This includes a summary of studies that have explored the information content of these ssNMR parameters, mostly to complement experimental data from other methods, e.g., X-ray diffraction. The presented overview aims to demonstrate how far ssNMR has hitherto been able to determine and refine the structures of materials and to discuss where it currently falls short of its full potential. We attempt to highlight how much further ssNMR can be pushed to determine and refine structure to deliver a comprehensive structural characterization of paramagnetic materials comparable to what is to date achieved by the combined effort of electron microscopy, diffraction, and spectroscopy.
Collapse
Affiliation(s)
- Jonas Koppe
- Centre
de RMN à Très Hauts Champs de Lyon (UMR 5082 −
CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Andrew J. Pell
- Centre
de RMN à Très Hauts Champs de Lyon (UMR 5082 −
CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France
| |
Collapse
|
3
|
Carvalho JP, Papawassiliou W, Pell AJ. Half-integer-spin quadrupolar nuclei in magic-angle spinning paramagnetic NMR: The case of NaMnO 2. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 340:107235. [PMID: 35644097 DOI: 10.1016/j.jmr.2022.107235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/02/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
A combination of solid-state NMR methods for the extraction of 23Na shift and quadrupolar parameters in the as-synthesized, structurally complex NaMnO2 Na-ion cathode material, under magic-angle spinning (MAS) is presented. We show that the integration of the Magic-Angle Turning experiment with Rotor-Assisted Population transfer (RAPT) can be used both to identify shifts and to extract a range of magnitudes for their quadrupolar couplings. We also demonstrate the applicability of the two-dimensional one pulse (TOP) based double-sheared Satellite Transition Magic-Angle Spinning (TOP-STMAS) showing how it can yield a spectrum with separated shift and second-order quadrupolar anisotropies, which in turn can be used to analyze a quadrupolar lineshape free of anisotropic bulk magnetic susceptibility (ABMS) induced shift dispersion and determine both isotropic shift and quadrupolar products. Combining all these experiments, the shift and quadrupolar parameters for all observed Na environments were extracted and yielded excellent agreement with the density functional theory (DFT) based models that were reported in previous literature. We expect these methods to open the door for new possibilities for solid-state NMR to probe half-integer quadrupolar nuclei in paramagnetic materials and other systems exhibiting large shift dispersion.
Collapse
Affiliation(s)
- José P Carvalho
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, 106 91 Stockholm, Sweden
| | - Wassilios Papawassiliou
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, 106 91 Stockholm, Sweden
| | - Andrew J Pell
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, 106 91 Stockholm, Sweden; Centre de RMN Très Hauts Champs de Lyon (UMR5082 - CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France.
| |
Collapse
|
4
|
Aleksis R, Pell AJ. Separation of quadrupolar and paramagnetic shift interactions in high-resolution nuclear magnetic resonance of spinning powders. J Chem Phys 2021; 155:094202. [PMID: 34496580 DOI: 10.1063/5.0061611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Separation and correlation of the shift anisotropy and the first-order quadrupolar interaction of spin I = 1 nuclei under magic-angle spinning (MAS) are achieved by the phase-adjusted spinning sideband (PASS) nuclear magnetic resonance (NMR) experiment. Compared to methods for static samples, this approach has the benefit of higher sensitivity and resolution. Moreover, the PASS experiment has the advantage over previous MAS sequences in the ability to completely separate the shift anisotropy and first-order quadrupolar interactions. However, the main drawback of the pulse sequence is the lower excitation bandwidth. The sequence is comprehensively evaluated using theoretical calculations and numerical simulations and applied experimentally to the 2H NMR of a range of paramagnetic systems: deuterated nickel(II) acetate tetrahydrate, deuterated copper(II) chloride dihydrate, and two forms of deuterated oxyhydride ion conductor BaTiO3-xHy. Our results show that despite the issue with broadband excitation, the extracted shift and quadrupolar interaction tensors and the Euler angles relating the two tensors match well with the NMR parameters obtained with static NMR methods. Therefore, the new application of the PASS experiment is an excellent addition to the arsenal of NMR experiments for 2H and potentially 14N in paramagnetic solids.
Collapse
Affiliation(s)
- Rihards Aleksis
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Andrew J Pell
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
5
|
Iijima T, Ohki S, Tansho M. Separated quadrupole and shift interactions of 2H NMR spectra in paramagnetic solids by asymmetric pulse sequences. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2021; 112:101709. [PMID: 33494022 DOI: 10.1016/j.ssnmr.2020.101709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Separated pure-quadrupole (PQ) and -shift (PS) spectra of 2H nuclear magnetic resonance (NMR) of paramagnetic solids are obtained and correlated by simple pulse sequences that can acquire the full magnetization under ideal conditions. Two-dimensional NMR signals obtained using an asymmetric π-pulse-inserted quadrupole-echo (APIQE) sequence yielded separated spectra through the skew operation of an affine transform (AT) before a Fourier transform. Modified APIQE sequences that acquire whole echo signals were fabricated, and separated PQ and PS spectra were obtained by applying a combination of AT, such as rotation and skew operations, to the signal data. These methods were demonstrated for diamagnetic Zn(CD3CO2)2⋅2H2O and paramagnetic Nd(CD3CO2)3⋅1.5H2O. Further, the dynamics of the D2O molecule and [Co(D2O)6]2+ ion in paramagnetic CoSiF6⋅6D2O was analyzed based on the temperature dependence of the separated spectra.
Collapse
Affiliation(s)
- Takahiro Iijima
- Institute of Arts and Sciences, Yamagata University, Yamagata, 990-8560, Japan.
| | - Shinobu Ohki
- NMR Station, National Institute for Materials Science, Tsukuba, 305-0003, Japan
| | - Masataka Tansho
- NMR Station, National Institute for Materials Science, Tsukuba, 305-0003, Japan
| |
Collapse
|
6
|
Carvalho JP, Pell AJ. Frequency-swept adiabatic pulses for broadband solid-state MAS NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 324:106911. [PMID: 33482528 DOI: 10.1016/j.jmr.2020.106911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/17/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
We present a complete description of frequency-swept adiabatic pulses applied to isolated spin-1/2 nuclei with a shift anisotropy in solid materials under magic-angle spinning. Our theoretical framework unifies the existing descriptions of adiabatic pulses in the high-power regime, where the radiofrequency (RF) amplitude is greater than twice the spinning frequency, and the low-power regime, where the RF power is less than the spinning frequency, and so links the short high-powered adiabatic pulse (SHAP) and single-sideband-selective adiabatic pulses (S3AP) schemes used in paramagnetic solid-state NMR. We also identify a hitherto unidentified third regime intermediate between the low- and high-power regimes, and separated from them by rotary resonance conditions. We show that the prevailing benchmark of inversion performance based on (super) adiabatic factors is only applicable in the high- and intermediate-power regimes, but fails to account both for the poor performance at rotary resonance, and the impressive inversion seen in the low-power regime. For low-power pulses, which are non-adiabatic according to this definition of (super) adiabaticity, the effective Floquet Hamiltonian in the jolting frame reveals "hidden" (super) adiabaticity. The theory is demonstrated using a combination of simulation and experiment, and is used to refine the practical recommendations for the experimentalist who wishes to use these pulses.
Collapse
Affiliation(s)
- José P Carvalho
- Materials and Environmental Chemistry, Stockholm University, Svänte Arrhenius väg 16 C 106 91, Stockholm, Sweden
| | - Andrew J Pell
- Materials and Environmental Chemistry, Stockholm University, Svänte Arrhenius väg 16 C 106 91, Stockholm, Sweden; Centre de RMN Trés Hauts Champs de Lyon (FRE 2034 - CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France.
| |
Collapse
|
7
|
Carvalho JP, Jaworski A, Brady MJ, Pell AJ. Separation of quadrupolar and paramagnetic shift interactions with TOP-STMAS/MQMAS in solid-state lighting phosphors. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:1055-1070. [PMID: 31997384 DOI: 10.1002/mrc.5004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
A new approach for processing satellite-transition magic-angle spinning (STMAS) and multiple-quantum magic-angle spinning (MQMAS) data, based on the two-dimensional one-pulse (TOP) method, which separates the second-rank quadrupolar anisotropy and paramagnetic shift interactions via a double shearing transformation, is described. This method is particularly relevant in paramagnetic systems, where substantial inhomogeneous broadening may broaden the lineshapes. Furthermore, it possesses an advantage over the conventional processing of MQMAS and STMAS spectra because it overcomes the limitation on the spectral width in the indirect dimension imposed by rotor synchronization of the sampling interval. This method was applied experimentally to the 27 Al solid-state nuclear magnetic resonance of a series of yttrium aluminum garnets (YAGs) doped with different lanthanide ions, from which the quadrupolar parameters of paramagnetically shifted and bulk unshifted sites were extracted. These parameters were then compared with density functional theory calculations, which permitted a better understanding of the local structure of Ln substituent ions in the YAG lattice.
Collapse
Affiliation(s)
- José P Carvalho
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Aleksander Jaworski
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Michael J Brady
- Materials Department, Department of Chemistry and Biochemistry, Materials Research Laboratory, UC Santa Barbara, Santa Barbara, California, USA
| | - Andrew J Pell
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| |
Collapse
|