1
|
Hareendran C, Ajithkumar TG. Probing the Effect of Fluorine on Hydrogen Bonding Interactions in a Pharmaceutical Hydrate Using Advanced Solid-State NMR. Mol Pharm 2025; 22:1869-1880. [PMID: 40043100 DOI: 10.1021/acs.molpharmaceut.4c01055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2025]
Abstract
Structural studies of pharmaceutical hydrates are essential to understanding stability-related issues, especially during the heating process of formulation. A thorough understanding of the hydration and dehydration behavior of active pharmaceutical ingredient (API) hydrate is also important since phase transitions can occur during the formulation process. This is because dehydration could result in a considerable rearrangement in the structure if water-API hydrogen bonding is present. We perform advanced solid-state NMR experiments on regorafenib monohydrate to investigate the role of fluorine in hydrogen bonding interaction, and the results are compared to its anhydrous form and its structural analogue, namely, sorafenib. Our results show that significant structural changes could not be observed on dehydration. Based on our study, it can be concluded that the introduction of fluorine restricts the intramolecular hydrogen bonding and the asymmetry in the structure of regorafenib monohydrate is absent, in comparison to sorafenib.
Collapse
Affiliation(s)
- Chaithanya Hareendran
- Central NMR Facility and Physical/Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - T G Ajithkumar
- Central NMR Facility and Physical/Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Guest JL, Bourne EAE, Screen MA, Wilson MR, Pham TN, Hodgkinson P. The essential synergy of MD simulation and NMR in understanding amorphous drug forms. Faraday Discuss 2025; 255:325-341. [PMID: 39331359 DOI: 10.1039/d4fd00097h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Molecular dynamics (MD) simulations and chemical shifts from machine learning are used to predict 15N, 13C and 1H chemical shifts for the amorphous form of the drug irbesartan. The local environments are observed to be highly dynamic well below the glass transition, and averaging over the dynamics is essential to understanding the observed NMR shifts. Predicted linewidths are about 2 ppm narrower than observed experimentally, which is hypothesised to largely result from susceptibility effects. Previously observed differences in the 13C shifts associated with the two tetrazole tautomers can be rationalised in terms of differing conformational dynamics associated with the presence of an intramolecular interaction in one tautomer. 1H shifts associated with hydrogen bonding can also be rationalised in terms of differing average frequencies of transient hydrogen bonding interactions.
Collapse
Affiliation(s)
- Jamie L Guest
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham, UK.
| | - Esther A E Bourne
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham, UK.
| | - Martin A Screen
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham, UK.
| | - Mark R Wilson
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham, UK.
| | | | - Paul Hodgkinson
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham, UK.
| |
Collapse
|
3
|
Torodii D, Holmes JB, Moutzouri P, Nilsson Lill SO, Cordova M, Pinon AC, Grohe K, Wegner S, Putra OD, Norberg S, Welinder A, Schantz S, Emsley L. Crystal structure validation of verinurad via proton-detected ultra-fast MAS NMR and machine learning. Faraday Discuss 2025; 255:143-158. [PMID: 39297322 PMCID: PMC11411500 DOI: 10.1039/d4fd00076e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/07/2024] [Indexed: 09/25/2024]
Abstract
The recent development of ultra-fast magic-angle spinning (MAS) (>100 kHz) provides new opportunities for structural characterization in solids. Here, we use NMR crystallography to validate the structure of verinurad, a microcrystalline active pharmaceutical ingredient. To do this, we take advantage of 1H resolution improvement at ultra-fast MAS and use solely 1H-detected experiments and machine learning methods to assign all the experimental proton and carbon chemical shifts. This framework provides a new tool for elucidating chemical information from crystalline samples with limited sample volume and yields remarkably faster acquisition times compared to 13C-detected experiments, without the need to employ dynamic nuclear polarization.
Collapse
Affiliation(s)
- Daria Torodii
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Jacob B Holmes
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
- National Centre for Computational Design and Discovery of Novel Materials MARVEL, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Pinelopi Moutzouri
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Sten O Nilsson Lill
- Data Science & Modelling, Pharmaceutical Sciences, R&D, AstraZeneca, 43183 Gothenburg, Sweden
| | - Manuel Cordova
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
- National Centre for Computational Design and Discovery of Novel Materials MARVEL, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Arthur C Pinon
- Swedish NMR Center, Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Kristof Grohe
- Bruker BioSpin GmbH & Co KG, 76275 Ettlingen, Germany
| | | | - Okky Dwichandra Putra
- Early Product Development and Manufacturing, Pharmaceutical Sciences, R&D, AstraZeneca, 43183 Gothenburg, Sweden
| | - Stefan Norberg
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, 43183 Gothenburg, Sweden
| | - Anette Welinder
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, 43183 Gothenburg, Sweden
| | - Staffan Schantz
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, 43183 Gothenburg, Sweden
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
- National Centre for Computational Design and Discovery of Novel Materials MARVEL, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
4
|
Wang X, Xu Y, Xiang S, Tao S, Liu W. Hydrogel-Assisted Robust Supraparticles Evolved from Droplet Evaporation. ACS NANO 2024; 18:35684-35695. [PMID: 39699271 DOI: 10.1021/acsnano.4c15025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Supraparticles, formed through the self-assembly of nanoparticles, are promising contenders in catalysis, sensing, and drug delivery due to their exceptional specific surface area and porosity. However, their mechanical resilience, especially in dimensions spanning micrometers and beyond, is challenged by the inherently weak interactions among their constituent building blocks, significantly constraining their broad applicability. Here, we have exploited a robust supraparticle fabrication strategy by integrating hydrogel components into the assembly system and evaporating on the superamphiphobic surface. The resultant SiO2/SA (sodium alginate) supraparticles, achieved by evaporating a 15% volume fraction dispersion of SiO2 nanoparticles containing 18.46 mg/mL of sodium alginate and subsequently cross-linking with Ca2+, demonstrate mechanical robustness with a fracture force of 6.04 N, representing a mechanical strength enhancement of 60 times higher than that prior to the incorporation of the hydrogel component. The supraparticles maintain their original morphology after 30 min of ultrasonic treatment (200 W), demonstrating mechanical stability. This method exhibits generalizability, enabling the customization of supraparticles with various building blocks and hydrogel backbone materials. Based on such a methodology, we have synthesized enzyme-carrying supraparticles, further expanding the potential applications in intricate cascade reactions. The encapsulated glucose oxidase and horseradish peroxidase maintained their inherent reactivity, and such hydrogel-assisted robust supraparticles exhibited exceptional performance in accurate glucose assays, indicating great practical application in biocatalysis.
Collapse
Affiliation(s)
- Xiaojing Wang
- Dalian Key Laboratory of Intelligent Chemistry, School of Chemistry, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Yiming Xu
- Dalian Key Laboratory of Intelligent Chemistry, School of Chemistry, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Siyuan Xiang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Dalian 116034, China
| | - Shengyang Tao
- Dalian Key Laboratory of Intelligent Chemistry, School of Chemistry, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Wendong Liu
- Dalian Key Laboratory of Intelligent Chemistry, School of Chemistry, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| |
Collapse
|
5
|
Kumar M, Jha A, Bharti K, Manjit M, Kumbhar P, Dhapte-Pawar V, Mishra B. Lipid-coated nanocrystals of paclitaxel as dry powder for inhalation: Characterization, in-vitro performance, and pharmacokinetic assessment. Colloids Surf B Biointerfaces 2024; 237:113865. [PMID: 38520950 DOI: 10.1016/j.colsurfb.2024.113865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/07/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Nanocrystals can be produced as a dry powder for inhalation (DPIs) to deliver high doses of drug to the lungs, owing to their high payload and stability to the shear stress of aerosolization force. Furthermore, lipid-coated nanocrystals can be formulated to improve the drug accumulation and retention in lung. OBJECTIVE The present work involved the fabrication of paclitaxel nanocrystals using hydrophilic marine biopolymer fucoidan as a stabilizer. Thereafter, fabricated nanocrystals (FPNC) were surface-modified with phospholipid to give lipid-coated nanocrystals (Lipo-NCs). METHODS The nanocrystals were fabricated by antisolvent crystallization followed by the probe sonication. The lipid coating was achieved by thin film hydration followed ultrasonic dispersion technique. Prepared nanocrystals were lyophilized to obtain a dry powder of FPNC and Lipo-NCs, used later for physicochemical, microscopic, and spectroscopic characterization to confirm the successful formation of desired nanocrystals. In-vitro and in-vivo investigations were also conducted to determine the role of nanocrystal powder in pulmonary drug delivery. RESULTS Lipo-NCs exhibited slower drug release, excellent flow properties, good aerosolization performance, higher drug distribution, and prolonged retention in the lungs compared to FPNC and pure PTX. CONCLUSION Lipid-coated nanocrystals can be a novel formulation for the maximum localization of drugs in the lungs, thereby enhancing therapeutic effects and avoiding systemic side effects in lung cancer therapy.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
| | - Abhishek Jha
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
| | - Kanchan Bharti
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
| | - Manjit Manjit
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
| | - Pradnya Kumbhar
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra 411038, India
| | - Vividha Dhapte-Pawar
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra 411038, India
| | - Brahmeshwar Mishra
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
6
|
Mathew R, Mazumder A, Kumar P, Matula J, Mohamed S, Brazda P, Hariharan M, Thomas B. Unveiling the topology of partially disordered micro-crystalline nitro-perylenediimide with X-aggregate stacking: an integrated approach. Chem Sci 2024; 15:490-499. [PMID: 38179523 PMCID: PMC10762722 DOI: 10.1039/d3sc05514k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/23/2023] [Indexed: 01/06/2024] Open
Abstract
Profound knowledge of the molecular structure and supramolecular organization of organic molecules is essential to understand their structure-property relationships. Herein we demonstrate the packing arrangement of partially disordered nitro-perylenediimide (NO2-PDI), revealing that the perylenediimide units exhibit an X-shaped packing pattern. The packing of NO2-PDI is derived using a complementary approach that utilises solid-state NMR (ssNMR) and 3D electron diffraction (3D ED) techniques. Perylenediimide (PDI) molecules are captivating due to their high luminescence efficiency and optoelectronic properties, which are related to supramolecular self-assembly. Increasing the alkyl chain length on the imide substituent poses a more significant challenge in crystallizing the resulting molecule. In addition to the alkyl tails, other functional groups, like the nitro group attached as a bay substituent, can also cause disorder. Such heterogeneity could lead to diffuse scattering, which then complicates the interpretation of diffraction experiment data, where perfect periodicity is expected. As a result, there is an unmet need to develop a methodology for solving the structures of difficult-to-crystallize materials. A synergistic approach is utilised in this manuscript to understand the packing arrangement of the disordered material NO2-PDI by making use of 3D ED, ssNMR and density functional theory calculations (DFT). The combination of these experimental and theoretical approaches provides great promise in enabling the structural investigation of novel materials with customized properties across various applications, which are, due to the internal disorder, very difficult to study by diffraction techniques. By effectively addressing these challenges, our methodology opens up new avenues for material characterization, thereby driving exciting advancements in the field.
Collapse
Affiliation(s)
- Renny Mathew
- Science Division, New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| | - Aniruddha Mazumder
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM) Maruthamala P.O., Vithura Thiruvananthapuram 695551 Kerala India
| | - Praveen Kumar
- Science Division, New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| | - Julie Matula
- Science Division, New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| | - Sharmarke Mohamed
- Department of Chemistry, Green Chemistry & Materials Modelling Laboratory, Khalifa University of Science and Technology P.O. Box 127788 Abu Dhabi United Arab Emirates
- Advanced Materials Chemistry Center (AMCC), Khalifa University of Science and Technology P.O. Box 127788 Abu Dhabi United Arab Emirates
| | - Petr Brazda
- Institute of Physics of the Czech Academy of Sciences Na Slovance 2/1999 18200 Prague 8 Czech Republic
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM) Maruthamala P.O., Vithura Thiruvananthapuram 695551 Kerala India
| | - Brijith Thomas
- Science Division, New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| |
Collapse
|
7
|
Chen Q, Ji Y. Thermodynamic Mechanism of Physical Stability of Amorphous Pharmaceutical Formulations. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c02953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Qiao Chen
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing211189, People’s Republic of China
| | - Yuanhui Ji
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing211189, People’s Republic of China
| |
Collapse
|