1
|
Carney TD, Shcherbata HR. Tumor suppressor miR-317 and lncRNA Peony are expressed from a polycistronic non-coding RNA locus that regulates germline differentiation and testis morphology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617551. [PMID: 39416153 PMCID: PMC11482908 DOI: 10.1101/2024.10.10.617551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
This research focuses on investigating the impact of non-coding RNAs on stem cell biology and differentiation processes. We found that miR-317 plays a role in germline stem cell progeny differentiation. miR-317 and its neighbor, the lncRNA Peony, originate and are co-expressed from a singular polycistronic non-coding RNA locus. Alternative polyadenylation is implicated in regulation of their differential expression. While the increased expression of the lncRNA Peony results in the disruption of the muscle sheath covering the testis, the absence of miR-317 leads to the emergence of germline tumors in young flies. The deficiency of miR-317 increases Notch signaling activity in the somatic cyst cells, which drives germline tumorigenesis. Germline tumors also arise from upregulation of several predicted targets of miR-317, among which are regulators of the Notch pathway. This implicates miR-317 as a novel tumor suppressor that modulates Notch signaling strength.
Collapse
Affiliation(s)
- Travis D Carney
- Institute of Cell Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
- Mount Desert Island Biological Laboratory, Bar Harbor, ME 04609, USA
| | - Halyna R Shcherbata
- Institute of Cell Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
- Mount Desert Island Biological Laboratory, Bar Harbor, ME 04609, USA
| |
Collapse
|
2
|
Jans K, Lüersen K, von Frieling J, Roeder T, Rimbach G. Dietary sucrose determines the regulatory activity of lithium on gene expression and lifespan in Drosophila melanogaster. Aging (Albany NY) 2024; 16:9309-9333. [PMID: 38862239 PMCID: PMC11210232 DOI: 10.18632/aging.205933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/10/2024] [Indexed: 06/13/2024]
Abstract
The amount of dietary sugars and the administration of lithium both impact the lifespan of the fruit fly Drosophila melanogaster. It is noteworthy that lithium is attributed with insulin-like activity as it stimulates protein kinase B/Akt and suppresses the activity of glycogen synthase kinase-3 (GSK-3). However, its interaction with dietary sugar has largely remained unexplored. Therefore, we investigated the effects of lithium supplementation on known lithium-sensitive parameters in fruit flies, such as lifespan, body composition, GSK-3 phosphorylation, and the transcriptome, while varying the dietary sugar concentration. For all these parameters, we observed that the efficacy of lithium was significantly influenced by the sucrose content in the diet. Overall, we found that lithium was most effective in enhancing longevity and altering body composition when added to a low-sucrose diet. Whole-body RNA sequencing revealed a remarkably similar transcriptional response when either increasing dietary sucrose from 1% to 10% or adding 1 mM LiCl to a 1% sucrose diet, characterized by a substantial overlap of nearly 500 differentially expressed genes. Hence, dietary sugar supply is suggested as a key factor in understanding lithium bioactivity, which could hold relevance for its therapeutic applications.
Collapse
Affiliation(s)
- Katharina Jans
- Division of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Kiel D-24118, Germany
| | - Kai Lüersen
- Division of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Kiel D-24118, Germany
| | - Jakob von Frieling
- Division of Molecular Physiology, Institute of Zoology, University of Kiel, Kiel D-24118, Germany
| | - Thomas Roeder
- Division of Molecular Physiology, Institute of Zoology, University of Kiel, Kiel D-24118, Germany
| | - Gerald Rimbach
- Division of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Kiel D-24118, Germany
| |
Collapse
|
3
|
Schwartz MB, Prudnikova MM, Andreenkov OV, Volkova EI, Zhimulev IF, Antonenko OV, Demakov SA. Transcription factor DREF regulates expression of the microRNA gene bantam in Drosophila melanogaster. Vavilovskii Zhurnal Genet Selektsii 2024; 28:131-137. [PMID: 38680180 PMCID: PMC11043500 DOI: 10.18699/vjgb-24-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 05/01/2024] Open
Abstract
The bantam gene encodes a vital microRNA and has a complex expression pattern in various tissues at different stages of Drosophila development. This microRNA is involved in the control of normal development of the ocular and wing imaginal discs, the central nervous system, and also in maintaining the undifferentiated state of stem cells in the ovaries of adult females. At the cellular level, bantam stimulates cell proliferation and prevents apoptosis. The bantam gene is a target of several conserved signaling cascades, in particular, Hippo. At the moment, at least ten proteins are known to directly regulate the expression of this gene in different tissues of Drosophila. In this study, we found that the bantam regulatory region contains motifs characteristic of binding sites for DREF, a transcription factor that regulates the expression of Hippo cascade genes. Using transgenic lines containing a full-length bantam lethality-rescuing deletion fragment and a fragment with a disrupted DREF binding site, we show that these motifs are functionally significant because their disruption at the bantam locus reduces expression levels in the larvae and ovaries of homozygous flies, which correlates with reduced vitality and fertility. The effect of DREF binding to the promoter region of the bantam gene on its expression level suggests an additional level of complexity in the regulation of expression of this microRNA. A decrease in the number of eggs laid and a shortening of the reproductive period in females when the DREF binding site in the regulatory region of the bantam gene is disrupted suggests that, through bantam, DREF is also involved in the regulation of Drosophila oogenesis.
Collapse
Affiliation(s)
- M B Schwartz
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - M M Prudnikova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - O V Andreenkov
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E I Volkova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - I F Zhimulev
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - O V Antonenko
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - S A Demakov
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
4
|
Noncoding RNA Regulation of Hormonal and Metabolic Systems in the Fruit Fly Drosophila. Metabolites 2023; 13:metabo13020152. [PMID: 36837772 PMCID: PMC9967906 DOI: 10.3390/metabo13020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
The importance of RNAs is commonly recognised thanks to protein-coding RNAs, whereas non-coding RNAs (ncRNAs) were conventionally regarded as 'junk'. In the last decade, ncRNAs' significance and roles are becoming noticeable in various biological activities, including those in hormonal and metabolic regulation. Among the ncRNAs: microRNA (miRNA) is a small RNA transcript with ~20 nucleotides in length; long non-coding RNA (lncRNA) is an RNA transcript with >200 nucleotides; and circular RNA (circRNA) is derived from back-splicing of pre-mRNA. These ncRNAs can regulate gene expression levels at epigenetic, transcriptional, and post-transcriptional levels through various mechanisms in insects. A better understanding of these crucial regulators is essential to both basic and applied entomology. In this review, we intend to summarise and discuss the current understanding and knowledge of miRNA, lncRNA, and circRNA in the best-studied insect model, the fruit fly Drosophila.
Collapse
|
5
|
Hobin M, Dorfman K, Adel M, Rivera-Rodriguez EJ, Kuklin EA, Ma D, Griffith LC. The Drosophila microRNA bantam regulates excitability in adult mushroom body output neurons to promote early night sleep. iScience 2022; 25:104874. [PMID: 36034229 PMCID: PMC9400086 DOI: 10.1016/j.isci.2022.104874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 07/07/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022] Open
Abstract
Sleep circuitry evolved to have both dedicated and context-dependent modulatory elements. Identifying modulatory subcircuits and understanding their molecular machinery is a major challenge for the sleep field. Previously, we identified 25 sleep-regulating microRNAs in Drosophila melanogaster, including the developmentally important microRNA bantam. Here we show that bantam acts in the adult to promote early nighttime sleep through a population of glutamatergic neurons that is intimately involved in applying contextual information to behaviors, the γ5β'2a/β'2mp/β'2mp_bilateral Mushroom Body Output Neurons (MBONs). Calcium imaging revealed that bantam inhibits the activity of these cells during the early night, but not the day. Blocking synaptic transmission in these MBONs rescued the effect of bantam knockdown. This suggests bantam promotes early night sleep via inhibition of the γ5β'2a/β'2mp/β'2mp_bilateral MBONs. RNAseq identifies Kelch and CCHamide-2 receptor as possible mediators, establishing a new role for bantam as an active regulator of sleep and neural activity in the adult fly.
Collapse
Affiliation(s)
- Michael Hobin
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
| | - Katherine Dorfman
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
| | - Mohamed Adel
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
| | - Emmanuel J. Rivera-Rodriguez
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
| | - Elena A. Kuklin
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
| | - Dingbang Ma
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
- Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454-9110, USA
| | - Leslie C. Griffith
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
| |
Collapse
|
6
|
Baonza A, Tur-Gracia S, Pérez-Aguilera M, Estella C. Regulation and coordination of the different DNA damage responses in Drosophila. Front Cell Dev Biol 2022; 10:993257. [PMID: 36147740 PMCID: PMC9486394 DOI: 10.3389/fcell.2022.993257] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Cells have evolved mechanisms that allow them to respond to DNA damage to preserve genomic integrity and maintain tissue homeostasis. These responses include the activation of the cell cycle checkpoints and the repair mechanisms or the induction of apoptosis that eventually will eliminate damaged cells. These “life” vs. “death” decisions differ depending on the cell type, stages of development, and the proliferation status of the cell. The apoptotic response after DNA damage is of special interest as defects in its induction could contribute to tumorigenesis or the resistance of cancer cells to therapeutic agents such as radiotherapy. Multiples studies have elucidated the molecular mechanisms that mediate the activation of the DNA damage response pathway (DDR) and specifically the role of p53. However, much less is known about how the different cellular responses such as cell proliferation control and apoptosis are coordinated to maintain tissue homeostasis. Another interesting question is how the differential apoptotic response to DNA damage is regulated in distinct cell types. The use of Drosophila melanogaster as a model organism has been fundamental to understand the molecular and cellular mechanisms triggered by genotoxic stress. Here, we review the current knowledge regarding the cellular responses to ionizing radiation as the cause of DNA damage with special attention to apoptosis in Drosophila: how these responses are regulated and coordinated in different cellular contexts and in different tissues. The existence of intrinsic mechanisms that might attenuate the apoptotic pathway in response to this sort of DNA damage may well be informative for the differences in the clinical responsiveness of tumor cells after radiation therapy.
Collapse
|
7
|
Van den Brande S, Gijbels M, Wynant N, Peeters P, Gansemans Y, Van Nieuwerburgh F, Santos D, Vanden Broeck J. Identification and profiling of stable microRNAs in hemolymph of young and old Locusta migratoria fifth instars. CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100041. [PMID: 36003267 PMCID: PMC9387440 DOI: 10.1016/j.cris.2022.100041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Since the discovery of the first microRNA (miRNA) in the nematode Caenorhabditis elegans, numerous novel miRNAs have been identified which can regulate presumably every biological process in a wide range of metazoan species. In accordance, several insect miRNAs have been identified and functionally characterized. While regulatory RNA pathways are traditionally described at an intracellular level, studies reporting on the presence and potential role of extracellular (small) sRNAs have been emerging in the last decade, mainly in mammalian systems. Interestingly, evidence in several species indicates the functional transfer of extracellular RNAs between donor and recipient cells, illustrating RNA-based intercellular communication. In insects, however, reports on extracellular small RNAs are emerging but the number of detailed studies is still very limited. Here, we demonstrate the presence of stable sRNAs in the hemolymph of the migratory locust, Locusta migratoria. Moreover, the levels of several extracellular miRNAs (ex-miRNAs) present in locust hemolymph differed significantly between young and old fifth nymphal instars. In addition, we performed a 'proof of principle' experiment which suggested that extracellularly delivered miRNA molecules are capable of affecting the locusts' development.
Collapse
Affiliation(s)
- Stijn Van den Brande
- Research group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Zoological Institute, Naamsestraat 59 box 2465, 3000 Leuven, Belgium
| | - Marijke Gijbels
- Research group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Zoological Institute, Naamsestraat 59 box 2465, 3000 Leuven, Belgium
| | - Niels Wynant
- Research group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Zoological Institute, Naamsestraat 59 box 2465, 3000 Leuven, Belgium
| | - Paulien Peeters
- Research group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Zoological Institute, Naamsestraat 59 box 2465, 3000 Leuven, Belgium
| | - Yannick Gansemans
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Dulce Santos
- Research group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Zoological Institute, Naamsestraat 59 box 2465, 3000 Leuven, Belgium
| | - Jozef Vanden Broeck
- Research group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Zoological Institute, Naamsestraat 59 box 2465, 3000 Leuven, Belgium
| |
Collapse
|
8
|
Deng Z, Zhang Y, Li L, Xie X, Huang J, Zhang M, Ni X, Li X. A dual-luciferase reporter system for characterization of small RNA target genes in both mammalian and insect cells. INSECT SCIENCE 2022; 29:631-644. [PMID: 34232550 DOI: 10.1111/1744-7917.12945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/04/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
MicroRNAs (miRNAs) are regulatory RNA molecules that bind to target messenger RNAs (mRNAs) and affect the stability or translational efficiency of the bound mRNAs. Single or dual-luciferase reporter systems have been successfully used to identify miRNA target genes in mammalian cells. These reporter systems, however, are not sensitive enough to verify miRNA-target gene relationships in insect cell lines because the promoters of the target luciferase (usually Renilla) used in these reporter systems are too weak to drive sufficient expression of the target luciferase in insect cells. In this study, we replaced the SV40 promoter in the psiCHECK-2 reporter vector, which is widely used with mammalian cell lines, with the HSV-TK or AC5.1 promoter to yield two new dual-luciferase reporter vectors, designated psiCHECK-2-TK and psiCHECK-2-AC5.1, respectively. Only psiCHECK-2 and psiCHECK-2-AC5.1 had suitable target (Renilla)/reference (firefly) luciferase activity ratios in mammalian (HeLa and HEK293) and insect (Sf9, S2, Helicoverpa zea fat body and ovary) cell lines, while psiCHECK-2-TK had suitable Renilla/firefly luciferase activity ratios regardless of the cell line. Moreover, psiCHECK-2-TK successfully detected the interaction between Helicoverpa armigera miRNA9a and its target, the 3'-untranslated region of heat shock protein 90, in both mammalian and H. zea cell lines, but psiCHECK-2 failed to do so in H. zea cell lines. Furthermore, psiCHECK-2-TK with the target sequence, HzMasc (H. zea Masculinizer), accurately differentiated between H. zea cell lines with or without the negative regulation factor (miRNA or piRNA) of HzMasc. These data demonstrate that psiCHECK-2-TK can be used to functionally characterize small RNA target genes in both mammalian and insect cells.
Collapse
Affiliation(s)
- Zhongyuan Deng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuting Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Leyao Li
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xingcheng Xie
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinyong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Min Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xinzhi Ni
- USDA-ARS, Crop Genetics and Breeding Research Unit, University of Georgia-Tifton Campus, Tifton, Georgia, USA
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
9
|
Ding S, Liu G, Jiang H, Fang J. MicroRNA Determines the Fate of Intestinal Epithelial Cell Differentiation and Regulates Intestinal Diseases. Curr Protein Pept Sci 2019; 20:666-673. [PMID: 30678626 DOI: 10.2174/1389203720666190125110626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/30/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022]
Abstract
The rapid self-renewal of intestinal epithelial cells enhances intestinal function, promotes the nutritional needs of animals and strengthens intestinal barrier function to resist the invasion of foreign pathogens. MicroRNAs (miRNAs) are a class of short-chain, non-coding RNAs that regulate stem cell proliferation and differentiation by down-regulating hundreds of conserved target genes after transcription via seed pairing to the 3' untranslated regions. Numerous studies have shown that miRNAs can improve intestinal function by participating in the proliferation and differentiation of different cell populations in the intestine. In addition, miRNAs also contribute to disease regulation and therefore not only play a vital role in the gastrointestinal disease management but also act as blood or tissue biomarkers of disease. As changes to the levels of miRNAs can change cell fates, miRNA-mediated gene regulation can be used to update therapeutic strategies and approaches to disease treatment.
Collapse
Affiliation(s)
- Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China.,Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan, China.,Academician Workstation of Hunan Baodong Farming Co., Ltd., Hunan 422001, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China.,Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan, China
| | - Hongmei Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
10
|
Sander M, Herranz H. MicroRNAs in Drosophila Cancer Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1167:157-173. [PMID: 31520354 DOI: 10.1007/978-3-030-23629-8_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
MiRNAs are post-transcriptional regulators of gene expression which have been implicated in virtually all biological processes. MiRNAs are frequently dysregulated in human cancers. However, the functional consequences of aberrant miRNA levels are not well understood. Drosophila is emerging as an important in vivo tumor model, especially in the identification of novel cancer genes. Here, we review Drosophila studies which functionally dissect the roles of miRNAs in tumorigenesis. Ultimately, these advances help to understand the implications of miRNA dysregulation in human cancers.
Collapse
Affiliation(s)
- Moritz Sander
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Héctor Herranz
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Shcherbata HR. miRNA functions in stem cells and their niches: lessons from the Drosophila ovary. CURRENT OPINION IN INSECT SCIENCE 2019; 31:29-36. [PMID: 31109670 DOI: 10.1016/j.cois.2018.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/09/2018] [Accepted: 07/16/2018] [Indexed: 06/09/2023]
Abstract
From the very beginning of the miRNA era, Drosophila has served as an excellent model for explanation of miRNA biogenesis. Now Drosophila continues to be used in numerous studies aiming to decipher biological roles of individual miRNAs in a living organism. MiRNAs have emerged as an important regulatory class that adjusts gene expression in response to stress; therefore, it is particularly important to elucidate miRNA-based regulatory networks that appear in response to fluctuations in intrinsic and extrinsic environments. This review explores the major advances in understanding condition-dependent roles of miRNAs in adult stem cell biology using the Drosophila ovarian germline stem cell niche community as a model system.
Collapse
Affiliation(s)
- Halyna R Shcherbata
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany; Institute of Cell Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| |
Collapse
|
12
|
Dietrich C, Singh M, Kumar N, Singh SR. The Emerging Roles of microRNAs in Stem Cell Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1056:11-26. [PMID: 29754172 DOI: 10.1007/978-3-319-74470-4_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aging is the continuous loss of tissue and organ function over time. MicroRNAs (miRNAs) are thought to play a vital role in this process. miRNAs are endogenous small noncoding RNAs that control the expression of target mRNA. They are involved in many biological processes such as developmental timing, differentiation, cell death, stem cell proliferation and differentiation, immune response, aging and cancer. Accumulating studies in recent years suggest that miRNAs play crucial roles in stem cell division and differentiation. In the present chapter, we present a brief overview of these studies and discuss their contributions toward our understanding of the importance of miRNAs in normal and aged stem cell function in various model systems.
Collapse
Affiliation(s)
- Catharine Dietrich
- Stem Cell Regulation and Animal Aging Section, Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Manish Singh
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA
| | - Nishant Kumar
- Hospitalist Division, Department of Medicine, Inova Fairfax Medical Campus, Falls Church, VA, USA
| | - Shree Ram Singh
- Stem Cell Regulation and Animal Aging Section, Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
13
|
Kane NS, Vora M, Padgett RW, Li Y. bantam microRNA is a negative regulator of the Drosophila decapentaplegic pathway. Fly (Austin) 2018; 12:105-117. [PMID: 30015555 PMCID: PMC6150632 DOI: 10.1080/19336934.2018.1499370] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Decapentaplegic (Dpp), the Drosophila homolog of the vertebrate bone morphogenetic protein (BMP2/4), is crucial for patterning and growth in many developmental contexts. The Dpp pathway is regulated at many different levels to exquisitely control its activity. We show that bantam (ban), a microRNA, modulates Dpp signaling activity. Over expression of ban decreases phosphorylated Mothers against decapentaplegic (Mad) levels and negatively affects Dpp pathway transcriptional target genes, while null mutant clones of ban upregulate the pathway. We provide evidence that dpp upregulates ban in the wing imaginal disc, and attenuation of Dpp signaling results in a reduction of ban expression, showing that they function in a feedback loop. Furthermore, we show that this feedback loop is important for maintaining anterior-posterior compartment boundary stability in the wing disc through regulation of optomotor blind (omb), a known target of the pathway. Our results support a model that ban functions with dpp in a negative feedback loop.
Collapse
Affiliation(s)
- Nanci S Kane
- a Waksman Institute, Department of Molecular Biology and Biochemistry , Cancer Institute of New Jersey, Rutgers University , Piscataway , NJ , USA
| | - Mehul Vora
- a Waksman Institute, Department of Molecular Biology and Biochemistry , Cancer Institute of New Jersey, Rutgers University , Piscataway , NJ , USA
| | - Richard W Padgett
- a Waksman Institute, Department of Molecular Biology and Biochemistry , Cancer Institute of New Jersey, Rutgers University , Piscataway , NJ , USA
| | - Ying Li
- b Life Science Institute , Chongqing Medical University , Chongqing , China
| |
Collapse
|
14
|
Osman I, Pek JW. A sisRNA/miRNA Axis Prevents Loss of Germline Stem Cells during Starvation in Drosophila. Stem Cell Reports 2018; 11:4-12. [PMID: 30008327 PMCID: PMC6067505 DOI: 10.1016/j.stemcr.2018.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 12/19/2022] Open
Abstract
Animal reproduction responds to nutritional status. During starvation, Drosophila and Caenorhabditis elegans enter a period of reproductive diapause with increase apoptosis, while maintaining a stable pool of germline stem cells (GSCs). How GSCs are protected is not understood. Here, we show that a sisRNA/miRNA axis maintains ovarian GSCs during starvation in Drosophila. Starvation induces the expression of an ovary-enriched sisRNA sisR-2, which negatively regulates GSC maintenance via a fatty acid metabolism gene dFAR1. sisR-2 promotes the expression of bantam, which in turn inhibits the activity of sisR-2, forming a negative feedback loop. Therefore, bantam acts as a buffer to counteract sisR-2 activity to prevent GSC loss during starvation. We propose that the sisR-2/bantam axis confers robustness to GSCs in Drosophila. sisR-2 regulates the number of GSCs sisR-2 regulates GSC maintenance by repressing dFAR1 bantam regulates GSC maintenance by repressing sisR-2 activity sisR-2/bantam axis protects GSCs from starvation
Collapse
Affiliation(s)
- Ismail Osman
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Jun Wei Pek
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore.
| |
Collapse
|
15
|
Yatsenko AS, Shcherbata HR. Stereotypical architecture of the stem cell niche is spatiotemporally established by miR-125-dependent coordination of Notch and steroid signaling. Development 2018; 145:dev.159178. [PMID: 29361571 PMCID: PMC5818007 DOI: 10.1242/dev.159178] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/15/2018] [Indexed: 12/15/2022]
Abstract
Stem cell niches act as signaling platforms that regulate stem cell self-renewal and sustain stem cells throughout life; however, the specific developmental events controlling their assembly are not well understood. Here, we show that during Drosophila ovarian germline stem cell niche formation, the status of Notch signaling in the cell can be reprogrammed. This is controlled via steroid-induced miR-125, which targets a negative regulator of Notch signaling, Tom. Thus, miR-125 acts as a spatiotemporal coordinator between paracrine Notch and endocrine steroid signaling. Moreover, a dual security mechanism for Notch signaling activation exists to ensure the robustness of niche assembly. Particularly, stem cell niche cells can be specified either via lateral inhibition, in which a niche cell precursor acquires Notch signal-sending status randomly, or via peripheral induction, whereby Delta is produced by a specific cell. When one mechanism is perturbed due to mutations, developmental defects or environmental stress, the remaining mechanism ensures that the niche is formed, perhaps abnormally, but still functional. This guarantees that the germline stem cells will have their residence, thereby securing progressive oogenesis and, thus, organism reproduction. Highlighted Article: In Drosophila, the robustness of stem cell niche assembly is safeguarded via a dual mechanism of Notch activation. Cellular Notch status can be reprogrammed by miR-125, which spatiotemporally coordinates paracrine and endocrine signaling.
Collapse
Affiliation(s)
- Andriy S Yatsenko
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Halyna R Shcherbata
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
16
|
Xue Y, Zhang Y. Emerging roles for microRNA in the regulation of Drosophila circadian clock. BMC Neurosci 2018; 19:1. [PMID: 29338692 PMCID: PMC5769547 DOI: 10.1186/s12868-018-0401-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 01/09/2018] [Indexed: 12/21/2022] Open
Abstract
Background The circadian clock, which operates within an approximately 24-h period, is closely linked to the survival and fitness of almost all living organisms. The circadian clock is generated through a negative transcription-translation feedback loop. microRNAs (miRNAs) are small non-coding RNAs comprised of approximately 22 nucleotides that post-transcriptionally regulate target mRNA by either inducing mRNA degradation or inhibiting translation. Results In recent years, miRNAs have been found to play important roles in the regulation of the circadian clock, especially in Drosophila. In this review, we will use fruit flies as an example, and summarize the progress achieved in the study of miRNA-mediated clock regulation. Three main aspects of the circadian clock, namely, the free-running period, locomotion phase, and circadian amplitude, are discussed in detail in the context of how miRNAs are involved in these regulations. In addition, approaches regarding the discovery of circadian-related miRNAs and their targets are also discussed. Conclusions Research in the last decade suggests that miRNA-mediated post-transcriptional regulation is crucial to the generation and maintenance of a robust circadian clock in animals. In flies, miRNAs are known to modulate circadian rhythmicity and the free-running period, as well as circadian outputs. Further characterization of miRNAs, especially in the circadian input, will be a vital step toward a more comprehensive understanding of the functions underlying miRNA-control of the circadian clock.
Collapse
Affiliation(s)
- Yongbo Xue
- Department of Biology, University of Nevada, Reno, 1664 North Virginia St., Reno, NV, 89557-0315, USA
| | - Yong Zhang
- Department of Biology, University of Nevada, Reno, 1664 North Virginia St., Reno, NV, 89557-0315, USA.
| |
Collapse
|
17
|
Banerjee A, Roy JK. Dicer-1 regulates proliferative potential of Drosophila larval neural stem cells through bantam miRNA based down-regulation of the G1/S inhibitor Dacapo. Dev Biol 2017; 423:57-65. [DOI: 10.1016/j.ydbio.2017.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/19/2016] [Accepted: 01/18/2017] [Indexed: 12/16/2022]
|
18
|
Paulo DF, Azeredo-Espin AML, Canesin LEC, Vicentini R, Junqueira ACM. Identification and characterization of microRNAs in the screwworm flies Cochliomyia hominivorax and Cochliomyia macellaria (Diptera: Calliphoridae). INSECT MOLECULAR BIOLOGY 2017; 26:46-57. [PMID: 27775856 DOI: 10.1111/imb.12270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that modulate gene expression through post-transcriptional regulation. Here, we report the identification and characterization of miRNAs in two closely related screwworm flies with different feeding habits: Cochliomyia hominivorax and Cochliomyia macellaria. The New World screwworm, C. hominivorax, is an obligatory parasite of warm-blooded vertebrates, whereas the secondary screwworm, C. macellaria, is a free-living organism that feeds on decaying organic matter. Here, the small RNA transcriptomes of adults and third-instar larvae of both species were sequenced. A total of 110 evolutionarily conserved miRNAs were identified, and 10 putative precursor miRNAs (pre-miRNAs) were predicted. The relative expression of six selected miRNAs was further investigated, including miRNAs that are related to reproduction and neural processes in other insects. Mature miRNAs were also characterized across an evolutionary time scale, suggesting that the majority of them have been conserved since the emergence of the Arthropoda [540 million years ago (Ma)], Hexapoda (488 Ma) and Brachycera (195 Ma) lineages. This study is the first report of miRNAs for screwworm flies. We also performed a comparative analysis with the hereby predicted miRNAs from the sheep blowfly, Lucilia cuprina. The results presented may advance our understanding of parasitic habits within Calliphoridae and assist further functional studies in blowflies.
Collapse
Affiliation(s)
- D F Paulo
- Centre for Molecular Biology and Genetic Engineering, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - A M L Azeredo-Espin
- Centre for Molecular Biology and Genetic Engineering, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - L E C Canesin
- Centre for Molecular Biology and Genetic Engineering, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - R Vicentini
- Centre for Molecular Biology and Genetic Engineering, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - A C M Junqueira
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
19
|
Lim MYT, Okamura K. Switches in Dicer Activity During Oogenesis and Early Development. Results Probl Cell Differ 2017; 63:325-351. [PMID: 28779324 DOI: 10.1007/978-3-319-60855-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Dicer is a versatile protein regulating diverse biological processes via the production of multiple classes of small regulatory RNAs, including microRNAs (miRNAs) and small interfering RNAs (siRNAs). In this chapter, we will discuss roles for Dicer in driving temporal changes in activity of individual small RNA classes to support oogenesis and early embryogenesis. Genetic strategies that perturb particular functions of Dicer family proteins, such as ablation of individual Dicer paralogs or their binding partners as well as introduction of point mutations to individual domains, allowed the dissection of Dicer functions in diverse small RNA pathways. Evolutionary conservation and divergence of the mechanisms highlight the importance of Dicer versatility in supporting rapid changes in gene expression during oogenesis and early development. Furthermore, we will discuss potential roles of Dicer in transgenerational inheritance of small RNA-mediated gene regulation.
Collapse
Affiliation(s)
- Mandy Yu Theng Lim
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 639798, Singapore
| | - Katsutomo Okamura
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore.
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 639798, Singapore.
| |
Collapse
|
20
|
Sanfilippo P, Smibert P, Duan H, Lai EC. Neural specificity of the RNA-binding protein Elav is achieved by post-transcriptional repression in non-neural tissues. Development 2016; 143:4474-4485. [PMID: 27802174 DOI: 10.1242/dev.141978] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/12/2016] [Indexed: 12/22/2022]
Abstract
Drosophila Elav is the founding member of the conserved family of Hu RNA-binding proteins (RBPs), which play crucial and diverse roles in post-transcriptional regulation. Elav has long served as the canonical neuronal marker. Surprisingly, although Elav has a well-characterized neural cis-regulatory module, we find endogenous Elav is also ubiquitously transcribed and post-transcriptionally repressed in non-neural settings. Mutant clones of multiple miRNA pathway components derepress ubiquitous Elav protein. Our re-annotation of the elav transcription unit shows not only that it generates extended 3' UTR isoforms, but also that its universal 3' UTR isoform is much longer than previously believed. This longer common 3' UTR includes multiple conserved, high-affinity sites for the miR-279/996 family. Of several miRNA mutants tested, endogenous Elav and a transgenic elav 3' UTR sensor are derepressed in mutant clones of mir-279/996 We also observe cross-repression of Elav by Mei-P26, another RBP derepressed in non-neural miRNA pathway clones. Ubiquitous Elav has regulatory capacity, since derepressed Elav can stabilize an Elav-responsive sensor. Repression of Elav in non-neural territories is crucial as misexpression here has profoundly adverse consequences. Altogether, we define unexpected post-transcriptional mechanisms that direct appropriate cell type-specific expression of a conserved neural RBP.
Collapse
Affiliation(s)
- Piero Sanfilippo
- Sloan-Kettering Institute, Department of Developmental Biology, 1275 York Ave, Box 252, New York, NY 10065, USA.,Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Peter Smibert
- Sloan-Kettering Institute, Department of Developmental Biology, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - Hong Duan
- Sloan-Kettering Institute, Department of Developmental Biology, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - Eric C Lai
- Sloan-Kettering Institute, Department of Developmental Biology, 1275 York Ave, Box 252, New York, NY 10065, USA .,Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
21
|
Yang H, Li M, Hu X, Xin T, Zhang S, Zhao G, Xuan T, Li M. MicroRNA-dependent roles of Drosha and Pasha in the Drosophila larval ovary morphogenesis. Dev Biol 2016; 416:312-23. [DOI: 10.1016/j.ydbio.2016.06.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/17/2016] [Accepted: 06/17/2016] [Indexed: 01/04/2023]
|
22
|
Dallaire A, Simard MJ. The implication of microRNAs and endo-siRNAs in animal germline and early development. Dev Biol 2016; 416:18-25. [PMID: 27287880 DOI: 10.1016/j.ydbio.2016.06.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/31/2016] [Accepted: 06/06/2016] [Indexed: 01/13/2023]
Abstract
Germ cells provide maternal mRNAs that are stored in the oocyte, and later translated at a specific time of development. In this context, gene regulation depends mainly on post-transcriptional mechanisms that contribute to keep maternal transcripts in a stable and translationally silent state. In recent years, small non-coding RNAs, such as microRNAs have emerged as key post-transcriptional regulators of gene expression. microRNAs control the translation efficiency and/or stability of targeted mRNAs. microRNAs are present in animal germ cells and maternally inherited microRNAs are abundant in early embryos. However, it is not known how microRNAs control the stability and translation of maternal transcripts. In this review, we will discuss the implication of germline microRNAs in regulating animal oogenesis and early embryogenesis as well as compare their roles with endo-siRNAs, small RNA species that share key molecular components with the microRNA pathway.
Collapse
Affiliation(s)
- Alexandra Dallaire
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Centre (Hôtel-Dieu de Québec), Quebec City, Québec, Canada G1R 2J6; Laval University Cancer Research Centre, Quebec City, Québec, Canada G1R 2J6
| | - Martin J Simard
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Centre (Hôtel-Dieu de Québec), Quebec City, Québec, Canada G1R 2J6; Laval University Cancer Research Centre, Quebec City, Québec, Canada G1R 2J6.
| |
Collapse
|
23
|
Steinkraus BR, Toegel M, Fulga TA. Tiny giants of gene regulation: experimental strategies for microRNA functional studies. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2016; 5:311-62. [PMID: 26950183 PMCID: PMC4949569 DOI: 10.1002/wdev.223] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/19/2015] [Accepted: 11/28/2015] [Indexed: 12/11/2022]
Abstract
The discovery over two decades ago of short regulatory microRNAs (miRNAs) has led to the inception of a vast biomedical research field dedicated to understanding these powerful orchestrators of gene expression. Here we aim to provide a comprehensive overview of the methods and techniques underpinning the experimental pipeline employed for exploratory miRNA studies in animals. Some of the greatest challenges in this field have been uncovering the identity of miRNA-target interactions and deciphering their significance with regard to particular physiological or pathological processes. These endeavors relied almost exclusively on the development of powerful research tools encompassing novel bioinformatics pipelines, high-throughput target identification platforms, and functional target validation methodologies. Thus, in an unparalleled manner, the biomedical technology revolution unceasingly enhanced and refined our ability to dissect miRNA regulatory networks and understand their roles in vivo in the context of cells and organisms. Recurring motifs of target recognition have led to the creation of a large number of multifactorial bioinformatics analysis platforms, which have proved instrumental in guiding experimental miRNA studies. Subsequently, the need for discovery of miRNA-target binding events in vivo drove the emergence of a slew of high-throughput multiplex strategies, which now provide a viable prospect for elucidating genome-wide miRNA-target binding maps in a variety of cell types and tissues. Finally, deciphering the functional relevance of miRNA post-transcriptional gene silencing under physiological conditions, prompted the evolution of a host of technologies enabling systemic manipulation of miRNA homeostasis as well as high-precision interference with their direct, endogenous targets. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Bruno R Steinkraus
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Markus Toegel
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Tudor A Fulga
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
24
|
Li C, Kan L, Chen Y, Zheng X, Li W, Zhang W, Cao L, Lin X, Ji S, Huang S, Zhang G, Liu X, Tao Y, Wu S, Chen D. Ci antagonizes Hippo signaling in the somatic cells of the ovary to drive germline stem cell differentiation. Cell Res 2015; 25:1152-70. [PMID: 26403189 DOI: 10.1038/cr.2015.114] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/02/2015] [Accepted: 08/06/2015] [Indexed: 12/17/2022] Open
Abstract
Many stem cell populations are tightly regulated by their local microenvironment (niche), which comprises distinct types of stromal cells. However, little is known about mechanisms by which niche subgroups coordinately determine the stem cell fate. Here we identify that Yki, the key Hippo pathway component, is essential for escort cell (EC) function in promoting germline differentiation in Drosophila ovary. We found that Hedgehog (Hh) signals emanating primarily from cap cells support the function of ECs, where Cubitus interruptus (Ci), the Hh signaling effector, acts to inhibit Hippo kinase cascade activity. Mechanistically, we found that Ci competitively interacts with Hpo and impairs the Hpo-Wts signaling complex formation, thereby promoting Yki nuclear localization. The actions of Ci ensure effective Yki signaling to antagonize Sd/Tgi/Vg-mediated default repression in ECs. This study uncovers a mechanism explaining how subgroups of niche cells coordinate to determine the stem cell fate via Hh-Hippo signaling crosstalk, and enhances our understanding of mechanistic regulations of the oncogenic Yki/YAP signaling.
Collapse
Affiliation(s)
- Chaoyi Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Chaoyang, Beijing 100101, China
| | - Lijuan Kan
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Chaoyang, Beijing 100101, China
| | - Yan Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiudeng Zheng
- Centre for Computational and Evolutionary Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weini Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Chaoyang, Beijing 100101, China
| | - Wenxin Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Chaoyang, Beijing 100101, China
| | - Lei Cao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaohui Lin
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shanming Ji
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Chaoyang, Beijing 100101, China
| | - Shoujun Huang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Chaoyang, Beijing 100101, China
| | - Guoqiang Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Chaoyang, Beijing 100101, China
| | - Xiaohui Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yi Tao
- Centre for Computational and Evolutionary Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shian Wu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dahua Chen
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Chaoyang, Beijing 100101, China
| |
Collapse
|
25
|
Weng R, Cohen SM. Control of Drosophila Type I and Type II central brain neuroblast proliferation by bantam microRNA. Development 2015; 142:3713-20. [PMID: 26395494 PMCID: PMC4647215 DOI: 10.1242/dev.127209] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/27/2015] [Indexed: 12/19/2022]
Abstract
Post-transcriptional regulation of stem cell self-renewal by microRNAs is emerging as an important mechanism controlling tissue homeostasis. Here, we provide evidence that bantam microRNA controls neuroblast number and proliferation in the Drosophila central brain. Bantam also supports proliferation of transit-amplifying intermediate neural progenitor cells in type II neuroblast lineages. The stem cell factors brat and prospero are identified as bantam targets acting on different aspects of these processes. Thus, bantam appears to act in multiple regulatory steps in the maintenance and proliferation of neuroblasts and their progeny to regulate growth of the central brain. Summary: The Drosophila miRNA bantam regulates the expression of Brat and Prospero – known inhibitors of brain neuroblast proliferation – to modulate growth of the central brain.
Collapse
Affiliation(s)
- Ruifen Weng
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Stephen M Cohen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200 N, Denmark
| |
Collapse
|
26
|
A transgenic resource for conditional competitive inhibition of conserved Drosophila microRNAs. Nat Commun 2015; 6:7279. [PMID: 26081261 PMCID: PMC4471878 DOI: 10.1038/ncomms8279] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/26/2015] [Indexed: 12/11/2022] Open
Abstract
Although the impact of microRNAs (miRNAs) in development and disease is well established, understanding the function of individual miRNAs remains challenging. Development of competitive inhibitor molecules such as miRNA sponges has allowed the community to address individual miRNA function in vivo. However, the application of these loss-of-function strategies has been limited. Here we offer a comprehensive library of 141 conditional miRNA sponges targeting well-conserved miRNAs in Drosophila. Ubiquitous miRNA sponge delivery and consequent systemic miRNA inhibition uncovers a relatively small number of miRNA families underlying viability and gross morphogenesis, with false discovery rates in the 4-8% range. In contrast, tissue-specific silencing of muscle-enriched miRNAs reveals a surprisingly large number of novel miRNA contributions to the maintenance of adult indirect flight muscle structure and function. A strong correlation between miRNA abundance and physiological relevance is not observed, underscoring the importance of unbiased screens when assessing the contributions of miRNAs to complex biological processes.
Collapse
|
27
|
Xing Y, Su TT, Ruohola-Baker H. Tie-mediated signal from apoptotic cells protects stem cells in Drosophila melanogaster. Nat Commun 2015; 6:7058. [PMID: 25959206 DOI: 10.1038/ncomms8058] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 03/26/2015] [Indexed: 12/19/2022] Open
Abstract
Many types of normal and cancer stem cells are resistant to killing by genotoxins, but the mechanism for this resistance is poorly understood. Here we show that adult stem cells in Drosophila melanogaster germline and midgut are resistant to ionizing radiation (IR) or chemically induced apoptosis and dissect the mechanism for this protection. We find that upon IR the receptor tyrosine kinase Tie/Tie-2 is activated, leading to the upregulation of microRNA bantam that represses FOXO-mediated transcription of pro-apoptotic Smac/DIABLO orthologue, Hid in germline stem cells. Knockdown of the IR-induced putative Tie ligand, Pvf1, a functional homologue of human Angiopoietin, in differentiating daughter cells renders germline stem cells sensitive to IR, suggesting that the dying daughters send a survival signal to protect their stem cells for future repopulation of the tissue. If conserved in cancer stem cells, this mechanism may provide therapeutic options for the eradication of cancer.
Collapse
Affiliation(s)
- Yalan Xing
- Department of Biochemistry, Institute for Stem Cell &Regenerative Medicine, University of Washington, Seattle Washington 98109, USA
| | - Tin Tin Su
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA
| | - Hannele Ruohola-Baker
- 1] Department of Biochemistry, Institute for Stem Cell &Regenerative Medicine, University of Washington, Seattle Washington 98109, USA [2] Departments of Biology, Genome Sciences and Bioengineering, University of Washington, Seattle Washington 98109, USA
| |
Collapse
|
28
|
König A, Shcherbata HR. Soma influences GSC progeny differentiation via the cell adhesion-mediated steroid-let-7-Wingless signaling cascade that regulates chromatin dynamics. Biol Open 2015; 4:285-300. [PMID: 25661868 PMCID: PMC4359735 DOI: 10.1242/bio.201410553] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It is known that signaling from the germline stem cell niche is required to maintain germline stem cell identity in Drosophila. However, it is not clear whether the germline stem-cell daughters differentiate by default (because they are physically distant from the niche) or whether additional signaling is necessary to initiate the differentiation program. Previously, we showed that ecdysteroid signaling cell non-autonomously regulates early germline differentiation via its soma-specific co-activator and co-repressor, Taiman and Abrupt. Now, we demonstrate that this regulation is modulated by the miRNA let-7, which acts in a positive feedback loop to confer ecdysone signaling robustness via targeting its repressor, the transcription factor Abrupt. This feedback loop adjusts ecdysteroid signaling in response to some stressful alterations in the external and internal conditions, which include temperature stress and aging, but not nutritional deprivation. Upon let-7 deficit, escort cells fail to properly differentiate: their shape, division, and cell adhesive characteristics are perturbed. These cells have confused cellular identity and form columnar-like rather than squamous epithelium and fail to send protrusions in between differentiating germline cysts, affecting soma-germline communication. Particularly, levels of the homophilic cell adhesion protein Cadherin, which recruits Wg signaling transducer β-catenin, are increased in mutant escort cells and, correspondingly, in the adjacent germline cells. Readjustment of heterotypic (soma-germline) cell adhesion modulates Wg signaling intensity in the germline, which in turn regulates histone modifications that promote expression of the genes necessary to trigger early germline differentiation. Thus, our data first show the intrinsic role for Wg signaling in the germline and support a model where the soma influences the tempo of germline differentiation in response to external conditions.
Collapse
Affiliation(s)
- Annekatrin König
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Halyna R Shcherbata
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| |
Collapse
|
29
|
Foronda D, Weng R, Verma P, Chen YW, Cohen SM. Coordination of insulin and Notch pathway activities by microRNA miR-305 mediates adaptive homeostasis in the intestinal stem cells of the Drosophila gut. Genes Dev 2014; 28:2421-31. [PMID: 25367037 PMCID: PMC4215186 DOI: 10.1101/gad.241588.114] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Homeostasis of the intestine is maintained by dynamic regulation of a pool of intestinal stem cells. The balance between stem cell self-renewal and differentiation is regulated by the Notch and insulin signaling pathways. Foronda et al. show that miR-305 regulates the Notch and insulin pathways in the intestinal stem cells. miR-305 expression in the stem cells is under nutritional control via the insulin pathway. Homeostasis of the intestine is maintained by dynamic regulation of a pool of intestinal stem cells. The balance between stem cell self-renewal and differentiation is regulated by the Notch and insulin signaling pathways. Dependence on the insulin pathway places the stem cell pool under nutritional control, allowing gut homeostasis to adapt to environmental conditions. Here we present evidence that miR-305 is required for adaptive homeostasis of the gut. miR-305 regulates the Notch and insulin pathways in the intestinal stem cells. Notably, miR-305 expression in the stem cells is itself under nutritional control via the insulin pathway. This link places regulation of Notch pathway activity under nutritional control. These findings provide a mechanism through which the insulin pathway controls the balance between stem cell self-renewal and differentiation that is required for adaptive homeostasis in the gut in response to changing environmental conditions.
Collapse
Affiliation(s)
- David Foronda
- Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - Ruifen Weng
- Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - Pushpa Verma
- Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - Ya-Wen Chen
- Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - Stephen M Cohen
- Institute of Molecular and Cell Biology, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
30
|
Systematic Study of Drosophila MicroRNA Functions Using a Collection of Targeted Knockout Mutations. Dev Cell 2014; 31:784-800. [DOI: 10.1016/j.devcel.2014.11.029] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 08/30/2014] [Accepted: 11/19/2014] [Indexed: 12/21/2022]
|
31
|
Fagegaltier D, König A, Gordon A, Lai EC, Gingeras TR, Hannon GJ, Shcherbata HR. A genome-wide survey of sexually dimorphic expression of Drosophila miRNAs identifies the steroid hormone-induced miRNA let-7 as a regulator of sexual identity. Genetics 2014; 198:647-68. [PMID: 25081570 PMCID: PMC4196619 DOI: 10.1534/genetics.114.169268] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/14/2014] [Indexed: 12/23/2022] Open
Abstract
MiRNAs bear an increasing number of functions throughout development and in the aging adult. Here we address their role in establishing sexually dimorphic traits and sexual identity in male and female Drosophila. Our survey of miRNA populations in each sex identifies sets of miRNAs differentially expressed in male and female tissues across various stages of development. The pervasive sex-biased expression of miRNAs generally increases with the complexity and sexual dimorphism of tissues, gonads revealing the most striking biases. We find that the male-specific regulation of the X chromosome is relevant to miRNA expression on two levels. First, in the male gonad, testis-biased miRNAs tend to reside on the X chromosome. Second, in the soma, X-linked miRNAs do not systematically rely on dosage compensation. We set out to address the importance of a sex-biased expression of miRNAs in establishing sexually dimorphic traits. Our study of the conserved let-7-C miRNA cluster controlled by the sex-biased hormone ecdysone places let-7 as a primary modulator of the sex-determination hierarchy. Flies with modified let-7 levels present doublesex-related phenotypes and express sex-determination genes normally restricted to the opposite sex. In testes and ovaries, alterations of the ecdysone-induced let-7 result in aberrant gonadal somatic cell behavior and non-cell-autonomous defects in early germline differentiation. Gonadal defects as well as aberrant expression of sex-determination genes persist in aging adults under hormonal control. Together, our findings place ecdysone and let-7 as modulators of a somatic systemic signal that helps establish and sustain sexual identity in males and females and differentiation in gonads. This work establishes the foundation for a role of miRNAs in sexual dimorphism and demonstrates that similar to vertebrate hormonal control of cellular sexual identity exists in Drosophila.
Collapse
Affiliation(s)
- Delphine Fagegaltier
- Howard Hughes Medical Institute, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Annekatrin König
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Assaf Gordon
- Howard Hughes Medical Institute, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Eric C Lai
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065
| | - Thomas R Gingeras
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Gregory J Hannon
- Howard Hughes Medical Institute, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Halyna R Shcherbata
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| |
Collapse
|
32
|
Dying cells protect survivors from radiation-induced cell death in Drosophila. PLoS Genet 2014; 10:e1004220. [PMID: 24675716 PMCID: PMC3967929 DOI: 10.1371/journal.pgen.1004220] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 01/20/2014] [Indexed: 12/19/2022] Open
Abstract
We report a phenomenon wherein induction of cell death by a variety of means in wing imaginal discs of Drosophila larvae resulted in the activation of an anti-apoptotic microRNA, bantam. Cells in the vicinity of dying cells also become harder to kill by ionizing radiation (IR)-induced apoptosis. Both ban activation and increased protection from IR required receptor tyrosine kinase Tie, which we identified in a genetic screen for modifiers of ban. tie mutants were hypersensitive to radiation, and radiation sensitivity of tie mutants was rescued by increased ban gene dosage. We propose that dying cells activate ban in surviving cells through Tie to make the latter cells harder to kill, thereby preserving tissues and ensuring organism survival. The protective effect we report differs from classical radiation bystander effect in which neighbors of irradiated cells become more prone to death. The protective effect also differs from the previously described effect of dying cells that results in proliferation of nearby cells in Drosophila larval discs. If conserved in mammals, a phenomenon in which dying cells make the rest harder to kill by IR could have implications for treatments that involve the sequential use of cytotoxic agents and radiation therapy. In multicellular organisms where cells exist in the context of other cells, the behavior of one affects the others. The consequences of such interactions include not just cell fate choices but also life and death decisions. In the wing primordia of Drosophila melanogaster larvae, dying cells release mitogenic signals that stimulate the neighbors to proliferate. Such an effect is proposed to compensate for cell loss and help regenerate the tissue. We report here that, in the same experimental system, dying cells activate a pro-survival microRNA, bantam, in surviving cells. This results in increased protection from the killing effect of ionizing radiation (IR). Activation of ban requires tie, which encodes a receptor tyrosine kinase. tie and ban mutant larvae are hypersensitive to killing by IR, suggesting that the responses described here are important for organismal survival following radiation exposure.
Collapse
|
33
|
Zhang X, Lu K, Zhou Q. Dicer1 is crucial for the oocyte maturation of telotrophic ovary in Nilaparvata lugens (STÅL) (Hemiptera: Geometroidea). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2013; 84:194-208. [PMID: 24132808 DOI: 10.1002/arch.21136] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
As a member of the RNase III nucleases family, Dicer1 (Dcr1) protein plays an essential role in the production of microRNAs (miRNAs) and oocyte development. Here, the full-length cDNA of Nilaparvata lugens Dcr1 (NlDcr1) was firstly cloned and analyzed, and then the function of NlDcr1 gene was investigated by RNAi. The open reading frame of NlDcr1 cDNA was 6,720 bp in length (GenBank Accession no. JX644040), which encoded for a protein of 2,239 amino acids. The NlDcr1 transcripts were present in all developmental stages and tissues investigated. The lowest levels of NlDcr1 expression were found in the first and second instar stage, while the highest in 7- and 9 -day-old female adults. The expression levels were relatively higher in fat body, ovary, and midgut. After injecting 100 ng dsRNA of NlDcr1 into female adult, mRNA level of NlDcr1 gene was depleted significantly, and 10 kinds of tested miRNAs levels were downregulated in both whole body and ovary. The oocytes of females treated with dsNlDcr1 were smaller and badly malformed, among which the follicular cell did not develop normally, with unclear boundary between cells. These results suggest that NlDcr1 was crucial for the regulation of oogenesis in telotrophic ovary.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- State Key Laboratory of Biological Control and Institute of Entomology, Sun Yat-sen University, Guangzhou, China
| | | | | |
Collapse
|
34
|
Visualization of adult stem cells within their niches using the Drosophila germline as a model system. Methods Mol Biol 2013; 1035:25-33. [PMID: 23959979 DOI: 10.1007/978-1-62703-508-8_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The germaria of the fruit fly Drosophila melanogaster present an excellent model to study germline stem cell-niche interactions. Two to three adult stem cells are surrounded by a number of somatic cells that form the niche. Here we describe how Drosophilae germaria can be dissected and specifically immuno-stained to allow for identification and analysis of both the adult stem cells and their somatic niche cells.
Collapse
|
35
|
Regulation of stem cell populations by microRNAs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:329-51. [PMID: 23696365 DOI: 10.1007/978-94-007-6621-1_18] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
miRNAs are small non-coding RNAs that have emerged as crucial post-transcriptional regulators of gene expression. They are key players in various critical cellular processes such as proliferation, cell cycle progression, apoptosis and differentiation. Self-renewal capacity and differentiation potential are hallmarks of stem cells. The switch between self-renewal and differentiation requires rapid widespread changes in gene expression. Since miRNAs can repress the translation of many mRNA targets, they are good candidates to regulate cell fates. In the past few years, miRNAs have appeared as important new actors in stem cell development by regulating differentiation and maintenance of stem cells. In this chapter we will focus on the role of miRNAs in various stem cell populations. After an introduction on microRNA biogenesis, we will review the recent knowledge on miRNA expression and function in pluripotent cells and during the acquisition of stem cell fate. We will then briefly examine the role of miRNAs in adult and cancer stem cells.
Collapse
|
36
|
Kucherenko MM, Barth J, Fiala A, Shcherbata HR. Steroid-induced microRNA let-7 acts as a spatio-temporal code for neuronal cell fate in the developing Drosophila brain. EMBO J 2012; 31:4511-23. [PMID: 23160410 PMCID: PMC3545287 DOI: 10.1038/emboj.2012.298] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 10/17/2012] [Indexed: 01/12/2023] Open
Abstract
Mammalian neuronal stem cells produce multiple neuron types in the course of an individual's development. Similarly, neuronal progenitors in the Drosophila brain generate different types of closely related neurons that are born at specific time points during development. We found that in the post-embryonic Drosophila brain, steroid hormones act as temporal cues that specify the cell fate of mushroom body (MB) neuroblast progeny. Chronological regulation of neurogenesis is subsequently mediated by the microRNA (miRNA) let-7, absence of which causes learning impairment due to morphological MB defects. The miRNA let-7 is required to regulate the timing of α'/β' to α/β neuronal identity transition by targeting the transcription factor Abrupt. At a cellular level, the ecdysone-let-7-Ab signalling pathway controls the expression levels of the cell adhesion molecule Fasciclin II in developing neurons that ultimately influences their differentiation. Our data propose a novel role for miRNAs as transducers between chronologically regulated developmental signalling and physical cell adhesion.
Collapse
Affiliation(s)
- Mariya M Kucherenko
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | | | | | | |
Collapse
|
37
|
Tanaka ED, Piulachs MD. Dicer-1 is a key enzyme in the regulation of oogenesis in panoistic ovaries. Biol Cell 2012; 104:452-61. [PMID: 22462497 DOI: 10.1111/boc.201100044] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 03/26/2012] [Indexed: 11/26/2022]
Abstract
BACKGROUND INFORMATION In insects, the action of microRNAs (miRNAs) on oogenesis has been explored only in dipterans, which possess meroistic ovaries, a highly modified ovarian type. Here we study miRNA function in the most primitive, panoistic type of ovaries using the phylogenetically basal insect Blattella germanica (Dictyoptera, Blattellidae) as model. RESULTS Dicer-1 (Dcr1), a key enzyme in miRNA biogenesis, was depleted using RNAi. Females treated with double-stranded RNA targeting Dicer-1, exhibited deep alterations in oocyte development; among them, the follicular epithelia of the basal oocytes did not develop, thus resulting in sterile females. CONCLUSIONS These effects derived from the absence of Dicer-1 suggest that miRNAs are crucial for the regulation of oogenesis in panoistic ovaries, the most primitive insect ovarian type.
Collapse
Affiliation(s)
- Erica Donato Tanaka
- Institut de Biologia Evolutiva (Universitat Pompeu Fabra-Consejo Superior de Investigaciones Cientificas), 08003 Barcelona, Spain
| | | |
Collapse
|
38
|
Xie T. Control of germline stem cell self-renewal and differentiation in the Drosophila ovary: concerted actions of niche signals and intrinsic factors. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:261-73. [PMID: 24009036 DOI: 10.1002/wdev.60] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the Drosophila ovary, germline stem cells (GSCs) physically interact with their niche composed of terminal filament cells, cap cells, and possibly GSC-contacting escort cells (ECs). A GSC divides to generate a self-renewing stem cell that remains in the niche and a differentiating daughter that moves away from the niche. The GSC niche provides a bone morphogenetic protein (BMP) signal that maintains GSC self-renewal by preventing stem cell differentiation via repression of the differentiation-promoting gene bag of marbles (bam). In addition, it expresses E-cadherin, which mediates cell adhesion for anchoring GSCs in the niche, enabling continuous self-renewal. GSCs themselves also express different classes of intrinsic factors, including signal transducers, transcription factors, chromatin remodeling factors, translation regulators, and miRNAs, which control self-renewal by strengthening interactions with the niche and repressing various differentiation pathways. Differentiated GSC daughters, known as cystoblasts (CBs), also express distinct classes of intrinsic factors to inhibit self-renewal and promote germ cell differentiation. Surprisingly, GSC progeny are also dependent on their surrounding ECs for proper differentiation at least partly by preventing BMP from diffusing to the differentiated germ cell zone and by repressing ectopic BMP expression. Therefore, both GSC self-renewal and CB differentiation are controlled by collaborative actions of extrinsic signals and intrinsic factors.
Collapse
Affiliation(s)
- Ting Xie
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, USA.
| |
Collapse
|
39
|
Azzam G, Smibert P, Lai EC, Liu JL. Drosophila Argonaute 1 and its miRNA biogenesis partners are required for oocyte formation and germline cell division. Dev Biol 2012; 365:384-94. [PMID: 22445511 DOI: 10.1016/j.ydbio.2012.03.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 03/05/2012] [Accepted: 03/07/2012] [Indexed: 11/16/2022]
Abstract
Argonaute 1 (Ago1) is a member of the Argonaute/PIWI protein family involved in small RNA-mediated gene regulation. In Drosophila, Ago1 plays a specific role in microRNA (miRNA) biogenesis and function. Previous studies have demonstrated that Ago1 regulates the fate of germline stem cells. However, the function of Ago1 in other aspects of oogenesis is still elusive. Here we report the function of Ago1 in developing egg chambers. We find that Ago1 protein is enriched in the oocytes and is also highly expressed in the cytoplasm of follicle cells. Clonal analysis of multiple ago1 mutant alleles shows that many mutant egg chambers contain only 8 nurse cells without an oocyte which is phenocopied in dicer-1, pasha and drosha mutants. Our results suggest that Ago1 and its miRNA biogenesis partners play a role in oocyte determination and germline cell division in Drosophila.
Collapse
Affiliation(s)
- Ghows Azzam
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, South Parks Road, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
40
|
Li Y, Padgett RW. bantam is required for optic lobe development and glial cell proliferation. PLoS One 2012; 7:e32910. [PMID: 22412948 PMCID: PMC3297604 DOI: 10.1371/journal.pone.0032910] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 02/06/2012] [Indexed: 12/19/2022] Open
Abstract
microRNAs (miRNAs) are small, conserved, non-coding RNAs that contribute to the control of many different cellular processes, including cell fate specification and growth control. Drosophila bantam, a conserved miRNA, is involved in several functions, such as stimulating proliferation and inhibiting apoptosis in the wing disc. Here, we reported the detailed expression pattern of bantam in the developing optic lobe, and demonstrated a new, essential role in promoting proliferation of mitotic cells in the optic lobe, including stem cells and differentiated glial cells. Changes in bantam levels autonomously affected glial cell number and distribution, and non-autonomously affected photoreceptor neuron axon projection patterns. Furthermore, we showed that bantam promotes the proliferation of mitotically active glial cells and affects their distribution, largely through down regulation of the T-box transcription factor, optomotor-blind (omb, Flybase, bifid). Expression of omb can rescue the bantam phenotype, and restore the normal glial cell number and proper glial cell positioning in most Drosophila brains. These results suggest that bantam is critical for maintaining the stem cell pools in the outer proliferation center and glial precursor cell regions of the optic lobe, and that its expression in glial cells is crucial for their proliferation and distribution.
Collapse
Affiliation(s)
- Ying Li
- Department of Molecular Biology and Biochemistry, Waksman Institute, Cancer Institute of New Jersey, Rutgers University, Piscataway, New Jersey, United States of America
| | - Richard W. Padgett
- Department of Molecular Biology and Biochemistry, Waksman Institute, Cancer Institute of New Jersey, Rutgers University, Piscataway, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
41
|
Loss-of-Function Screen Reveals Novel Regulators Required for Drosophila Germline Stem Cell Self-Renewal. G3-GENES GENOMES GENETICS 2012; 2:343-51. [PMID: 22413088 PMCID: PMC3291504 DOI: 10.1534/g3.111.001651] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 01/09/2012] [Indexed: 01/30/2023]
Abstract
The germline stem cells (GSCs) of Drosophila melanogaster ovary provide an excellent model system to study the molecular mechanisms of stem cell self-renewal. To reveal novel factors required for Drosophila female GSC maintenance and/or division, we performed a loss-of-function screen in GSCs by using a collection of P-element–induced alleles of essential genes. Mutations in genes of various functional groups were identified to cause defects in GSC self-renewal. Here we report that a group of mutations affecting various ubiquitin-conjugating enzymes cause significant GSCs loss, including Plenty of SH3s (POSH), Ubiquitin-conjugating enzyme 10 (UbcD10), and pineapple eye (pie). Ubiquitin-mediated protein degradation plays a variety of roles in the regulation of many developmental processes, including mediating stem cell division through degradation of cell cycle regulators. We demonstrated that pie, sharing highly conserved RING domains with human E3 ubiquitin ligase G2E3 that are critical for early embryonic development, is specifically required for GSC maintenance, possibly through regulation of bone morphogenetic protein signaling pathway. Despite the previously reported role in imaginal disc cell survival, pie loss-of-function induced GSC loss is not to the result of caspase-involved cell death. Further efforts are needed to elucidate the functions of ubiquitin ligases in GSC maintenance, which will ultimately contribute to a better understanding of how the ubiquitin-conjugating enzymes regulate stem cell biology in mammalian systems.
Collapse
|
42
|
Huang XA, Lin H. The microRNA regulation of stem cells. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2011; 1:83-95. [PMID: 23801669 DOI: 10.1002/wdev.5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The microRNA (miRNA) pathway, as a fundamental mechanism of gene regulation, plays a key role in controlling the establishment, self-renewal, and differentiation of stem cells. Such regulation is manifested as fine tuning the temporal- and tissue-specificity of gene expression. This fine-tuning function is achieved by (1) miRNAs form positive and negative feedback loops with transcription factors and epigenetic factors to exert concerted control of given biological processes and/or (2) different miRNAs converge to control one or more mRNA targets in a signaling pathway. These regulatory mechanisms are found in embryonic stem cells, iPS cells, and adult tissue stem cells. The distinct expression profiles of miRNAs and their regulatory roles in various types of stem cells render these RNAs potentially effective tools for clinical diagnosis and therapy.
Collapse
Affiliation(s)
- Xiao Albert Huang
- Yale Stem Cell Center, Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
43
|
Chen HJ, Wang CM, Wang TW, Liaw GJ, Hsu TH, Lin TH, Yu JY. The Hippo pathway controls polar cell fate through Notch signaling during Drosophila oogenesis. Dev Biol 2011; 357:370-9. [PMID: 21781961 DOI: 10.1016/j.ydbio.2011.07.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 06/28/2011] [Accepted: 07/06/2011] [Indexed: 12/24/2022]
Abstract
During Drosophila oogenesis, the somatic follicle cells form an epithelial layer surrounding the germline cells to form egg chambers. In this process, follicle cell precursors are specified into polar cells, stalk cells, and main-body follicle cells. Proper specification of these three cell types ensures correct egg chamber formation and polarization of the anterior-posterior axis of the germline cells. Multiple signaling cascades coordinate to control the follicle cell fate determination, including Notch, JAK/STAT, and Hedgehog signaling pathways. Here, we show that the Hippo pathway also participates in polar cell specification. Over-activation of yorkie (yki) leads to egg chamber fusion, possibly through attenuation of polar cell specification. Loss-of-function experiments using RNAi knockdown or generation of mutant clones by mitotic recombination demonstrates that reduction of yki expression promotes polar cell formation in a cell-autonomous manner. Consistently, polar cells mutant for hippo (hpo) or warts (wts) are not properly specified, leading to egg chamber fusion. Furthermore, Notch activity is increased in yki mutant cells and reduction of Notch activity suppresses polar cell formation in yki mutant clones. These results demonstrate that yki represses polar cell fate through Notch signaling. Collectively, our data reveal that the Hippo pathway controls polar cell specification. Through repressing Notch activity, Yki serves as a key repressor in specifying polar cells during Drosophila oogenesis.
Collapse
Affiliation(s)
- Hsi-Ju Chen
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | | | | | | | | | | | | |
Collapse
|
44
|
Kaczmarczyk AN, Kopp A. Germline stem cell maintenance as a proximate mechanism of life-history trade-offs? Drosophila selected for prolonged fecundity have a slower rate of germline stem cell loss. Bioessays 2011; 33:5-12. [PMID: 21120852 DOI: 10.1002/bies.201000085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We suggest that the commonly observed trade-offs between early- and late-life reproduction may be mediated by genetic variation in germline stem cell maintenance. Stem cell biology provides a natural framework and experimental methods for understanding the mechanistic basis of life-history evolution. At the same time, natural variation in life-history strategies can serve as a powerful tool for identifying the genes and molecular pathways involved in the maintenance of stem cells in aging adults. We illustrate the connections between life-history and stem cells with examples drawn primarily from Drosophila melanogaster and Caenorhabditis elegans, and suggest a number of testable hypotheses and avenues for future investigation that can be addressed with existing models and tools.
Collapse
|
45
|
König A, Yatsenko AS, Weiss M, Shcherbata HR. Ecdysteroids affect Drosophila ovarian stem cell niche formation and early germline differentiation. EMBO J 2011; 30:1549-62. [PMID: 21423150 PMCID: PMC3102283 DOI: 10.1038/emboj.2011.73] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 02/22/2011] [Indexed: 01/13/2023] Open
Abstract
Previously, it has been shown that in Drosophila steroid hormones are required for progression of oogenesis during late stages of egg maturation. Here, we show that ecdysteroids regulate progression through the early steps of germ cell lineage. Upon ecdysone signalling deficit germline stem cell progeny delay to switch on a differentiation programme. This differentiation impediment is associated with reduced TGF-β signalling in the germline and increased levels of cell adhesion complexes and cytoskeletal proteins in somatic escort cells. A co-activator of the ecdysone receptor, Taiman is the spatially restricted regulator of the ecdysone signalling pathway in soma. Additionally, when ecdysone signalling is perturbed during the process of somatic stem cell niche establishment enlarged functional niches able to host additional stem cells are formed.
Collapse
Affiliation(s)
- Annekatrin König
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | | |
Collapse
|
46
|
Thompson BJ. Developmental control of cell growth and division in Drosophila. Curr Opin Cell Biol 2010; 22:788-94. [DOI: 10.1016/j.ceb.2010.08.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 08/10/2010] [Accepted: 08/15/2010] [Indexed: 01/21/2023]
|
47
|
Abstract
We review the application of Caenorhabditis elegans as a model system to understand key aspects of stem cell biology. The only bona fide stem cells in C. elegans are those of the germline, which serves as a valuable paradigm for understanding how stem-cell niches influence maintenance and differentiation of stem cells and how somatic differentiation is repressed during germline development. Somatic cells that share stem cell-like characteristics also provide insights into principles in stem-cell biology. The epidermal seam cell lineages lend clues to conserved mechanisms of self-renewal and expansion divisions. Principles of developmental plasticity and reprogramming relevant to stem-cell biology arise from studies of natural transdifferentiation and from analysis of early embryonic progenitors, which undergo a dramatic transition from a pluripotent, reprogrammable condition to a state of committed differentiation. The relevance of these developmental processes to our understanding of stem-cell biology in other organisms is discussed.
Collapse
Affiliation(s)
- Pradeep M. Joshi
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Misty R. Riddle
- Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Nareg J.V. Djabrayan
- Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Joel H. Rothman
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
48
|
Chan K, Ruohola-Baker H. Assessing in vivo microRNA function in the germline stem cells of the Drosophila ovary. Methods Mol Biol 2010; 650:201-212. [PMID: 20686953 DOI: 10.1007/978-1-60761-769-3_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A more complete understanding of the biology of adult stem cells could yield important insights toward devising effective cell-based regenerative therapies to treat disease. The germline stem cells (GSCs) in the fruit fly Drosophila melanogaster are an excellent in vivo model for the study of adult stem cell biology. There is increasing evidence from a growing field that microRNAs (miRNAs) play important roles in controlling many aspects of stem-cell biology. Using straightforward genetic manipulations combined with well-established cell biological analysis techniques, we and others have found that the miRNA pathway regulates the cell division rate of Drosophila GSCs as well as the maintenance of the GSCs in their niche. In this chapter, we offer a detailed, self-contained description of a general method to assess the in vivo functions of miRNAs in the GSCs of the Drosophila ovary.
Collapse
Affiliation(s)
- Kin Chan
- Department of Biochemistry, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
49
|
Transgenic microRNA inhibition with spatiotemporal specificity in intact organisms. Nat Methods 2009; 6:897-903. [PMID: 19915559 PMCID: PMC3183579 DOI: 10.1038/nmeth.1402] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 10/22/2009] [Indexed: 12/29/2022]
|
50
|
Qi J, Yu JY, Shcherbata HR, Mathieu J, Wang AJ, Seal S, Zhou W, Stadler BM, Bourgin D, Wang L, Nelson A, Ware C, Raymond C, Lim LP, Magnus J, Ivanovska I, Diaz R, Ball A, Cleary MA, Ruohola-Baker H. microRNAs regulate human embryonic stem cell division. Cell Cycle 2009; 8:3729-41. [PMID: 19823043 DOI: 10.4161/cc.8.22.10033] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
microRNAs (miRNAs) regulate numerous physiological processes such as cell division and differentiation in many tissue types including stem cells. To probe the role that miRNAs play in regulating processes relevant to embryonic stem cell biology, we used RNA interference to silence DICER and DROSHA, the two main miRNA processing enzymes. Consistent with a role for miRNAs in maintaining normal stem cell division and renewal, we found that perturbation of miRNA pathway function in human embryonic stem cells (hESCs) attenuates cell proliferation. Normal cell growth can be partially restored by introduction of the mature miRNAs miR-195 and miR-372. These miRNAs regulate two tumor suppressor genes, respectively: WEE1, which encodes a negative G2/M kinase modulator of the CycB/CDK complex and CDKN1A, which encodes p21, a CycE/CDK cyclin dependent kinase inhibitor that regulates the G1/S transition. We show that in wild-type hESCs, WEE 1 levels control the rate of hESC division, whereas p21 levels must be maintained at a low level for hESC division to proceed. These data support a model for hESC cell cycle control in which miRNAs regulate negative cell cycle modulators at two phases of the cell cycle to ensure proper replenishment of the stem cell population.
Collapse
Affiliation(s)
- Junlin Qi
- Department of Biochemistry and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|