1
|
Abstract
The mechanisms that regulate the balance between stem cell duplication and differentiation in adult tissues remain in debate. Using a combination of genetic lineage tracing and marker-based assays, the quantitative statistical analysis of clone size and cell composition has provided insights into the patterns of stem cell fate across a variety of tissue types and organisms. These studies have emphasized the role of niche factors and environmental cues in promoting stem cell competence, fate priming, and stochastic renewal programs. At the same time, evidence for injury-induced "cellular reprogramming" has revealed the remarkable flexibility of cell states, allowing progenitors to reacquire self-renewal potential during regeneration. Together, these findings have questioned the nature of stem cell identity and function. Here, focusing on a range of canonical tissue types, we review how quantitative modeling-based approaches have uncovered conserved patterns of stem cell fate and provided new insights into the mechanisms that regulate self-renewal.
Collapse
Affiliation(s)
- Lemonia Chatzeli
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
- Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, United Kingdom
| | - Benjamin D Simons
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
- Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, United Kingdom
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, United Kingdom
| |
Collapse
|
2
|
Baker AM, Gabbutt C, Williams MJ, Cereser B, Jawad N, Rodriguez-Justo M, Jansen M, Barnes CP, Simons BD, McDonald SA, Graham TA, Wright NA. Crypt fusion as a homeostatic mechanism in the human colon. Gut 2019; 68:1986-1993. [PMID: 30872394 PMCID: PMC6839731 DOI: 10.1136/gutjnl-2018-317540] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/24/2019] [Accepted: 02/22/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The crypt population in the human intestine is dynamic: crypts can divide to produce two new daughter crypts through a process termed crypt fission, but whether this is balanced by a second process to remove crypts, as recently shown in mouse models, is uncertain. We examined whether crypt fusion (the process of two neighbouring crypts fusing into a single daughter crypt) occurs in the human colon. DESIGN We used somatic alterations in the gene cytochrome c oxidase (CCO) as lineage tracing markers to assess the clonality of bifurcating colon crypts (n=309 bifurcating crypts from 13 patients). Mathematical modelling was used to determine whether the existence of crypt fusion can explain the experimental data, and how the process of fusion influences the rate of crypt fission. RESULTS In 55% (21/38) of bifurcating crypts in which clonality could be assessed, we observed perfect segregation of clonal lineages to the respective crypt arms. Mathematical modelling showed that this frequency of perfect segregation could not be explained by fission alone (p<10-20). With the rates of fission and fusion taken to be approximately equal, we then used the distribution of CCO-deficient patch size to estimate the rate of crypt fission, finding a value of around 0.011 divisions/crypt/year. CONCLUSIONS We have provided the evidence that human colonic crypts undergo fusion, a potential homeostatic process to regulate total crypt number. The existence of crypt fusion in the human colon adds a new facet to our understanding of the highly dynamic and plastic phenotype of the colonic epithelium.
Collapse
Affiliation(s)
- Ann-Marie Baker
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Calum Gabbutt
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Marc J Williams
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Biancastella Cereser
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Noor Jawad
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Marnix Jansen
- Histopathology, University College London, London, UK
| | - Chris P Barnes
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Benjamin D Simons
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Stuart Ac McDonald
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Trevor A Graham
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Nicholas A Wright
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
3
|
Coordinate Regulation of TET2 and EBNA2 Controls the DNA Methylation State of Latent Epstein-Barr Virus. J Virol 2017; 91:JVI.00804-17. [PMID: 28794029 DOI: 10.1128/jvi.00804-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/24/2017] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) latency and its associated carcinogenesis are regulated by dynamic changes in DNA methylation of both virus and host genomes. We show here that the ten-eleven translocation 2 (TET2) gene, implicated in hydroxymethylation and active DNA demethylation, is a key regulator of EBV latency type DNA methylation patterning. EBV latency types are defined by DNA methylation patterns that restrict expression of viral latency genes. We show that TET2 mRNA and protein expression correlate with the highly demethylated EBV type III latency program permissive for expression of EBNA2, EBNA3s, and LMP transcripts. We show that short hairpin RNA (shRNA) depletion of TET2 results in a decrease in latency gene expression but can also trigger a switch to lytic gene expression. TET2 depletion results in the loss of hydroxymethylated cytosine and a corresponding increase in cytosine methylation at key regulatory regions on the viral and host genomes. This also corresponded to a loss of RBP-jκ binding and decreased histone H3K4 trimethylation at these sites. Furthermore, we show that the TET2 gene itself is regulated in a fashion similar to that of the EBV genome. Chromatin immunoprecipitation high-throughput sequencing (ChIP-seq) revealed that the TET2 gene contains EBNA2-dependent RBP-jκ and EBF1 binding sites and is subject to DNA methylation-associated transcriptional silencing similar to what is seen in EBV latency type III genomes. Finally, we provide evidence that TET2 colocalizes with EBNA2-EBF1-RBP-jκ binding sites and can interact with EBNA2 by coimmunoprecipitation. Taken together, these findings indicate that TET2 gene transcripts are regulated similarly to EBV type III latency genes and that TET2 protein is a cofactor of EBNA2 and coregulator of the EBV type III latency program and DNA methylation state.IMPORTANCE Epstein-Barr virus (EBV) latency and carcinogenesis involve the selective epigenetic modification of viral and cellular genes. Here, we show that TET2, a cellular tumor suppressor involved in active DNA demethylation, plays a central role in regulating the DNA methylation state during EBV latency. TET2 is coordinately regulated and functionally interacts with the viral oncogene EBNA2. TET2 and EBNA2 function cooperatively to demethylate genes important for EBV-driven B-cell growth transformation.
Collapse
|
4
|
Gong C, Tan W, Chen K, You N, Zhu S, Liang G, Xie X, Li Q, Zeng Y, Ouyang N, Li Z, Zeng M, Zhuang S, Lau WY, Liu Q, Yin D, Wang X, Su F, Song E. Prognostic Value of a BCSC-associated MicroRNA Signature in Hormone Receptor-Positive HER2-Negative Breast Cancer. EBioMedicine 2016; 11:199-209. [PMID: 27566954 PMCID: PMC5049991 DOI: 10.1016/j.ebiom.2016.08.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/10/2016] [Accepted: 08/10/2016] [Indexed: 01/16/2023] Open
Abstract
PURPOSE Breast cancer patients with high proportion of cancer stem cells (BCSCs) have unfavorable clinical outcomes. MicroRNAs (miRNAs) regulate key features of BCSCs. We hypothesized that a biology-driven model based on BCSC-associated miRNAs could predict prognosis for the most common subtype, hormone receptor (HR)-positive, HER2-negative breast cancer patients. PATIENTS AND METHODS After screening candidate miRNAs based on literature review and a pilot study, we built a miRNA-based classifier using LASSO Cox regression method in the training group (n=202) and validated its prognostic accuracy in an internal (n=101) and two external validation groups (n=308). RESULTS In this multicenter study, a 10-miRNA classifier incorporating miR-21, miR-30c, miR-181a, miR-181c, miR-125b, miR-7, miR-200a, miR-135b, miR-22 and miR-200c was developed to predict distant relapse free survival (DRFS). With this classifier, HR+HER2- patients were scored and classified into high-risk and low-risk disease recurrence, which was significantly associated with 5-year DRFS of the patients. Moreover, this classifier outperformed traditional clinicopathological risk factors, IHC4 scoring and 21-gene Recurrence Score (RS). The patients with high-risk recurrence determined by this classifier benefit more from chemotherapy. CONCLUSIONS Our 10-miRNA-based classifier provides a reliable prognostic model for disease recurrence in HR+HER2- breast cancer patients. This model may facilitate personalized therapy-decision making for HR+HER2- individuals.
Collapse
Affiliation(s)
- Chang Gong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Weige Tan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Kai Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Na You
- Department of Statistical Science, School of Mathematics and Computational Science & Southern China Research Center of Statistical Science, Sun Yat-sen University, Guangzhou 510275 China
| | - Shan Zhu
- Department of Statistical Science, School of Mathematics and Computational Science & Southern China Research Center of Statistical Science, Sun Yat-sen University, Guangzhou 510275 China
| | - Gehao Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xinhua Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 510060, China
| | - Qian Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yunjie Zeng
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Nengtai Ouyang
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Zhihua Li
- Prevention and Cure Center of Breast Disease, Key Laboratory of Breast Disease, the Third Hospital of Nanchang City, Nanchang, Jiangxi 330009, China
| | - Musheng Zeng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 510060, China
| | - ShiMei Zhuang
- Key Laboratory of Gene Engineering of Ministry of Education, Collaborative Innovation Center for Cancer Medicine, School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| | - Wan-Yee Lau
- Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China; Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Qiang Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xueqin Wang
- Department of Statistical Science, School of Mathematics and Computational Science & Southern China Research Center of Statistical Science, Sun Yat-sen University, Guangzhou 510275 China
| | - Fengxi Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Collaborative Innovation Center for Cancer Medicine, China.
| |
Collapse
|
5
|
Barazzuol L, Jeggo PA. In vivo sensitivity of the embryonic and adult neural stem cell compartments to low-dose radiation. JOURNAL OF RADIATION RESEARCH 2016; 57 Suppl 1:i2-i10. [PMID: 27125639 PMCID: PMC4990107 DOI: 10.1093/jrr/rrw013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/12/2016] [Accepted: 01/17/2016] [Indexed: 05/26/2023]
Abstract
The embryonic brain is radiation-sensitive, with cognitive deficits being observed after exposure to low radiation doses. Exposure of neonates to radiation can cause intracranial carcinogenesis. To gain insight into the basis underlying these outcomes, we examined the response of the embryonic, neonatal and adult brain to low-dose radiation, focusing on the neural stem cell compartments. This review summarizes our recent findings. At E13.5-14.5 the embryonic neocortex encompasses rapidly proliferating stem and progenitor cells. Exploiting mice with a hypomorphic mutation in DNA ligase IV (Lig4(Y288C) ), we found a high level of DNA double-strand breaks (DSBs) at E14.5, which we attribute to the rapid proliferation. We observed endogenous apoptosis in Lig4(Y288C) embryos and in WT embryos following exposure to low radiation doses. An examination of DSB levels and apoptosis in adult neural stem cell compartments, the subventricular zone (SVZ) and the subgranular zone (SGZ) revealed low DSB levels in Lig4(Y288C) mice, comparable with the levels in differentiated neuronal tissues. We conclude that the adult SVZ does not incur high levels of DNA breakage, but sensitively activates apoptosis; apoptosis was less sensitively activated in the SGZ, and differentiated neuronal tissues did not activate apoptosis. P5/P15 mice showed intermediate DSB levels, suggesting that DSBs generated in the embryo can be transmitted to neonates and undergo slow repair. Interestingly, this analysis revealed a stage of high endogenous apoptosis in the neonatal SVZ. Collectively, these studies reveal that the adult neural stem cell compartment, like the embryonic counterpart, can sensitively activate apoptosis.
Collapse
Affiliation(s)
- Lara Barazzuol
- Genome Damage and Stability Centre, Life Sciences, University of Sussex, Brighton, East Sussex BN19RQ, UK
| | - Penny A Jeggo
- Genome Damage and Stability Centre, Life Sciences, University of Sussex, Brighton, East Sussex BN19RQ, UK
| |
Collapse
|
6
|
Abstract
Based on transplantation and lineage tracing studies, a hierarchy of stem and progenitor cells has been shown to exist among the mammary epithelium. In this review, Visvader and Stingl integrate recent data on the mammary stem cell differentiation hierarchy and its control at the transcriptional and epigenetic levels. They also discuss the relevance of the evolving hierarchy to the identification of “cells of origin” of breast cancer. The mammary epithelium is highly responsive to local and systemic signals, which orchestrate morphogenesis of the ductal tree during puberty and pregnancy. Based on transplantation and lineage tracing studies, a hierarchy of stem and progenitor cells has been shown to exist among the mammary epithelium. Lineage tracing has highlighted the existence of bipotent mammary stem cells (MaSCs) in situ as well as long-lived unipotent cells that drive morphogenesis and homeostasis of the ductal tree. Moreover, there is accumulating evidence for a heterogeneous MaSC compartment comprising fetal MaSCs, slow-cycling cells, and both long-term and short-term repopulating cells. In parallel, diverse luminal progenitor subtypes have been identified in mouse and human mammary tissue. Elucidation of the normal cellular hierarchy is an important step toward understanding the “cells of origin” and molecular perturbations that drive breast cancer.
Collapse
Affiliation(s)
- Jane E Visvader
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville VIC 3010, Australia
| | - John Stingl
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| |
Collapse
|
7
|
Tung PY, Knoepfler PS. Epigenetic mechanisms of tumorigenicity manifesting in stem cells. Oncogene 2014; 34:2288-96. [PMID: 24931168 PMCID: PMC4268091 DOI: 10.1038/onc.2014.172] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/08/2014] [Accepted: 05/09/2014] [Indexed: 01/04/2023]
Abstract
One of the biggest roadblocks to using stem cells as the basis for regenerative medicine therapies is the tumorigenicity of stem cells. Unfortunately, the unique abilities of stem cells to self-renew and differentiate into a variety of cell types are also mechanistically linked to their tumorigenic behaviors. Understanding the mechanisms underlying the close relationship between stem cells and cancer cells has therefore become a primary goal in the field. In addition, knowledge gained from investigating the striking parallels between mechanisms orchestrating normal embryogenesis and those that invoke tumorigenesis may well serve as the foundation for developing novel cancer treatments. Emerging discoveries have demonstrated that epigenetic regulatory machinery plays important roles in normal stem cell functions, cancer development, and cancer stem cell identity. These studies provide valuable insights into both the shared and distinct mechanisms by which pluripotency and oncogenicity are established and regulated. In this review, the cancer-related epigenetic mechanisms found in pluripotent stem cells and cancer stem cells will be discussed, focusing on both the similarities and the differences.
Collapse
Affiliation(s)
- P-Y Tung
- 1] Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, CA, USA [2] UC Davis Genome Center, University of California Davis, Davis, CA, USA [3] UC Davis Comprehensive Cancer Center, Sacramento, CA, USA [4] Institute of Pediatric Regenerative Medicine, Shriners Hospital For Children Northern California, Sacramento, CA, USA
| | - P S Knoepfler
- 1] Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, CA, USA [2] UC Davis Genome Center, University of California Davis, Davis, CA, USA [3] UC Davis Comprehensive Cancer Center, Sacramento, CA, USA [4] Institute of Pediatric Regenerative Medicine, Shriners Hospital For Children Northern California, Sacramento, CA, USA
| |
Collapse
|
8
|
Vermeulen L, Morrissey E, van der Heijden M, Nicholson AM, Sottoriva A, Buczacki S, Kemp R, Tavaré S, Winton DJ. Defining stem cell dynamics in models of intestinal tumor initiation. Science 2013; 342:995-8. [PMID: 24264992 DOI: 10.1126/science.1243148] [Citation(s) in RCA: 310] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cancer is a disease in which cells accumulate genetic aberrations that are believed to confer a clonal advantage over cells in the surrounding tissue. However, the quantitative benefit of frequently occurring mutations during tumor development remains unknown. We quantified the competitive advantage of Apc loss, Kras activation, and P53 mutations in the mouse intestine. Our findings indicate that the fate conferred by these mutations is not deterministic, and many mutated stem cells are replaced by wild-type stem cells after biased, but still stochastic events. Furthermore, P53 mutations display a condition-dependent advantage, and especially in colitis-affected intestines, clones harboring mutations in this gene are favored. Our work confirms the previously theoretical notion that the tissue architecture of the intestine suppresses the accumulation of mutated lineages.
Collapse
Affiliation(s)
- Louis Vermeulen
- Cancer Research UK, Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | | | | | | | | | | | | | | | | |
Collapse
|