1
|
Du J, Li Y, Su Y, Zhi W, Zhang J, Zhang C, Wang J, Deng W, Zhao S. LncRNA Pnky Positively Regulates Neural Stem Cell Migration by Modulating mRNA Splicing and Export of Target Genes. Cell Mol Neurobiol 2023; 43:1199-1218. [PMID: 35748966 PMCID: PMC11414454 DOI: 10.1007/s10571-022-01241-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 06/06/2022] [Indexed: 11/28/2022]
Abstract
Directed migration of neural stem cells (NSCs) is critical for embryonic neurogenesis and the healing of neurological injuries. The long noncoding RNA (lncRNA) Pnky has been reported to regulate neuronal differentiation of NSCs by interacting with PTBP1. However, its regulatory effect on NSC migration remains to be determined. Herein, we identified that Pnky is also a key regulator of NSC migration in mice, as underscored by the finding that Pnky silencing suppressed but Pnky overexpression promoted the in vitro migration of both C17.2 and NE4C murine NSCs. Additionally, in vivo cell tracking demonstrated that Pnky depletion attenuated but Pnky overexpression facilitated the migration of NE4C cells in the spinal canal after transplantation via injection into the spinal canal. Mechanistically, Pnky regulated the expression of a core set of critical regulators that direct NSC migration, including MMP2, MMP9, Connexin43, Paxillin, AKT, ERK, and P38MAPK. Using catRAPID, a web server for large-scale prediction of protein-RNA interactions, the splicing factors U2AF1 and U2AF1L4, as well as the mRNA export adaptors SARNP, Aly/Ref, and THOC7, were predicted to interact strongly with Pnky. Further investigations using colocalization and RNA immunoprecipitation (RIP) assays confirmed the direct binding of Pnky to U2AF1, SARNP, Aly/Ref, and THOC7. Transcriptomic profiling revealed that as many as 5319 differential splicing events of 3848 genes, which were highly enriched in focal adhesion, PI3K-Akt and MAPK signaling pathways, were affected by Pnky depletion. The predominant subtype of differential splicing by Pnky depletion is intron retention, followed by alternative 5' and 3' splice sites and mutually exclusive exons. Moreover, Pnky knockdown substantially blocked but Pnky overexpression facilitated the export of MMP2, Paxillin, AKT, p38MAPK, and other mRNAs to the cytosol. Collectively, our data showed that through interacting with U2AF1, SARNP, Aly/Ref, and THOC7, Pnky couples and modulates the splicing and export of target mRNAs, which consequently controlling NSC migration. These findings provide a possible theoretical basis of NSC migration regulation.
Collapse
Affiliation(s)
- Jiannan Du
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China
| | - Yuan Li
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China
| | - Yuting Su
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China
| | - Wenqian Zhi
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China
| | - Jiale Zhang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China
| | - Cheng Zhang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China
| | - Juan Wang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China
| | - Wensheng Deng
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China.
| | - Shasha Zhao
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China.
| |
Collapse
|
2
|
Studies on the Regulatory Roles and Related Mechanisms of lncRNAs in the Nervous System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6657944. [PMID: 33791072 PMCID: PMC7984887 DOI: 10.1155/2021/6657944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/19/2020] [Accepted: 02/15/2021] [Indexed: 11/25/2022]
Abstract
Long noncoding RNAs (lncRNAs) have attracted extensive attention due to their regulatory role in various cellular processes. Emerging studies have indicated that lncRNAs are expressed to varying degrees after the growth and development of the nervous system as well as injury and degeneration, thus affecting various physiological processes of the nervous system. In this review, we have compiled various reported lncRNAs related to the growth and development of central and peripheral nerves and pathophysiology (including advanced nerve centers, spinal cord, and peripheral nervous system) and explained how these lncRNAs play regulatory roles through their interactions with target-coding genes. We believe that a full understanding of the regulatory function of lncRNAs in the nervous system will contribute to understand the molecular mechanism of changes after nerve injury and will contribute to discover new diagnostic markers and therapeutic targets for nerve injury diseases.
Collapse
|
3
|
Kesherwani V, Shukla M, Coulter DW, Sharp JG, Joshi SS, Chaturvedi NK. Long non-coding RNA profiling of pediatric Medulloblastoma. BMC Med Genomics 2020; 13:87. [PMID: 32591022 PMCID: PMC7318516 DOI: 10.1186/s12920-020-00744-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Background Medulloblastoma (MB) is one of the most common malignant cancers in children. MB is primarily classified into four subgroups based on molecular and clinical characteristics as (1) WNT (2) Sonic-hedgehog (SHH) (3) Group 3 (4) Group 4. Molecular characteristics used for MB classification are based on genomic and mRNAs profiles. MB subgroups share genomic and mRNA profiles and require multiple molecular markers for differentiation from each other. Long non-coding RNAs (lncRNAs) are more than 200 nucleotide long RNAs and primarily involve in gene regulation at epigenetic and post-transcriptional levels. LncRNAs have been recognized as diagnostic and prognostic markers in several cancers. However, the lncRNA expression profile of MB is unknown. Methods We used the publicly available gene expression datasets for the profiling of lncRNA expression across MB subgroups. Functional analysis of differentially expressed lncRNAs was accomplished by Ingenuity pathway analysis (IPA). Results In the current study, we have identified and validated the lncRNA expression profile across pediatric MB subgroups and associated molecular pathways. We have also identified the prognostic significance of lncRNAs and unique lncRNAs associated with each MB subgroup. Conclusions Identified lncRNAs can be used as single biomarkers for molecular identification of MB subgroups that warrant further investigation and functional validation.
Collapse
Affiliation(s)
- Varun Kesherwani
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, 69198, USA
| | - Mamta Shukla
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 69198, USA
| | - Don W Coulter
- Department of Pediatrics, Hematology and Oncology Division, University of Nebraska Medical Center, Omaha, NE, 986395, USA
| | - J Graham Sharp
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 69198, USA
| | - Shantaram S Joshi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 69198, USA
| | - Nagendra K Chaturvedi
- Department of Pediatrics, Hematology and Oncology Division, University of Nebraska Medical Center, Omaha, NE, 986395, USA. .,Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
4
|
Identification and characterization of mRNAs and lncRNAs of a barley shrunken endosperm mutant using RNA-seq. Genetica 2020; 148:55-68. [PMID: 32078720 DOI: 10.1007/s10709-020-00087-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/13/2020] [Indexed: 01/03/2023]
Abstract
Barley shrunken endosperm mutants have been extensively reported. However, knowledge of the underlying molecular mechanisms of these mutants remains limited. Here, a pair of near isogenic lines (normal endosperm: Bowman and shrunken endosperm: sex1) was subjected to transcriptome analysis to identify mRNAs and lncRNAs related to endosperm development to further dissect its mechanism of molecular regulation. A total of 2123 (1140 up- and 983 down-regulated) unique differentially expressed genes (DEGs) were detected. Functional analyses showed that these DEGs were mainly involved in starch and sucrose metabolism, biosynthesis of secondary metabolites, and plant hormone signal transduction. A total of 343 unique target genes were identified for 57 differentially expressed lncRNAs (DE lncRNAs). These DE lncRNAs were mainly involved in glycerophospholipid metabolism, starch and sucrose metabolism, hormone signal transduction, and stress response. In addition, key lncRNAs were identified by constructing a co-expression network of the target genes of DE lncRNAs. Transcriptome results suggested that mRNA and lncRNA played a critical role in endosperm development. The shrunken endosperm in barley seems to be closely related to plant hormone signal transduction, starch and sucrose metabolism, and cell apoptosis. This study provides a foundation for fine mapping, elucidates the molecular mechanism of shrunken endosperm mutants, and also provides a reference for further studies of lncRNAs during the grain development of plants.
Collapse
|
5
|
Kazimierczyk M, Kasprowicz MK, Kasprzyk ME, Wrzesinski J. Human Long Noncoding RNA Interactome: Detection, Characterization and Function. Int J Mol Sci 2020; 21:E1027. [PMID: 32033158 PMCID: PMC7037361 DOI: 10.3390/ijms21031027] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 01/17/2023] Open
Abstract
The application of a new generation of sequencing techniques has revealed that most of the genome has already been transcribed. However, only a small part of the genome codes proteins. The rest of the genome "dark matter" belongs to divergent groups of non-coding RNA (ncRNA), that is not translated into proteins. There are two groups of ncRNAs, which include small and long non-coding RNAs (sncRNA and lncRNA respectively). Over the last decade, there has been an increased interest in lncRNAs and their interaction with cellular components. In this review, we presented the newest information about the human lncRNA interactome. The term lncRNA interactome refers to cellular biomolecules, such as nucleic acids, proteins, and peptides that interact with lncRNA. The lncRNA interactome was characterized in the last decade, however, understanding what role the biomolecules associated with lncRNA play and the nature of these interactions will allow us to better understand lncRNA's biological functions in the cell. We also describe a set of methods currently used for the detection of lncRNA interactome components and the analysis of their interactions. We think that such a holistic and integrated analysis of the lncRNA interactome will help to better understand its potential role in the development of organisms and cancers.
Collapse
Affiliation(s)
| | | | | | - Jan Wrzesinski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland (M.K.K.); (M.E.K.)
| |
Collapse
|
6
|
LncRNAs with miRNAs in regulation of gastric, liver, and colorectal cancers: updates in recent years. Appl Microbiol Biotechnol 2019; 103:4649-4677. [PMID: 31062053 DOI: 10.1007/s00253-019-09837-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 04/07/2019] [Accepted: 04/08/2019] [Indexed: 12/15/2022]
Abstract
Long noncoding RNA (lncRNA) is a kind of RNAi molecule composed of hundreds to thousands of nucleotides. There are several major types of functional lncRNAs which participate in some important cellular pathways. LncRNA-RNA interaction controls mRNA translation and degradation or serves as a microRNA (miRNA) sponge for silencing. LncRNA-protein interaction regulates protein activity in transcriptional activation and silencing. LncRNA guide, decoy, and scaffold regulate transcription regulators of enhancer or repressor region of the coding genes for alteration of expression. LncRNA plays a role in cellular responses including the following activities: regulation of chromatin structural modification and gene expression for epigenetic and cell function control, promotion of hematopoiesis and maturation of immunity, cell programming in stem cell and somatic cell development, modulation of pathogen infection, switching glycolysis and lipid metabolism, and initiation of autoimmune diseases. LncRNA, together with miRNA, are considered the critical elements in cancer development. It has been demonstrated that tumorigenesis could be driven by homeostatic imbalance of lncRNA/miRNA/cancer regulatory factors resulting in biochemical and physiological alterations inside the cells. Cancer-driven lncRNAs with other cellular RNAs, epigenetic modulators, or protein effectors may change gene expression level and affect the viability, immortality, and motility of the cells that facilitate cancer cell cycle rearrangement, angiogenesis, proliferation, and metastasis. Molecular medicine will be the future trend for development. LncRNA/miRNA could be one of the potential candidates in this category. Continuous studies in lncRNA functional discrepancy between cancer cells and normal cells and regional and rational genetic differences of lncRNA profiles are critical for clinical research which is beneficial for clinical practice.
Collapse
|
7
|
An N, Fan S, Wang Y, Zhang L, Gao C, Zhang D, Han M. Genome-wide identification, characterization and expression analysis of long non-coding RNAs in different tissues of apple. Gene 2018; 666:44-57. [PMID: 29733967 DOI: 10.1016/j.gene.2018.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 04/11/2018] [Accepted: 05/02/2018] [Indexed: 10/17/2022]
Abstract
Recently, the long non-coding RNAs (lncRNAs), which play important roles in various complex biological processes, have received more attention in plants. However, little information is available on lncRNAs in woody fruit trees and their potential regulatory roles remain poorly understood, especially in apple. Here, a total of 1726 high-confidence lncRNAs (hc-lncRNAs) were identified in different tissues including young fruits, shoot tips, stem phloem and root tips using high-throughput sequencing. These lncRNAs are distributed across all 17 apple chromosomes, and >85% come from intergenic regions. The apple lncRNAs have longer transcript lengths and greater exon numbers than protein-coding genes. Additionally, among the 1726 hc-lncRNA, 850 are predicted to have target genes. These target genes are involved in many processes including hormone signaling, sugar metabolism, and the cell cycle and stress responses. Furthermore, 57, 74, 168 and 78 lncRNAs specifically expressed in root tips, shoot tips, young fruits and stem phloem were analyzed using the COG (cluster of orthologous group)and GO (gene ontology) databases. Young fruits contain the most unique lncRNAs, which are involved in biological processes such as energy production and conversion, carbohydrate transport and metabolism, posttranslational modification and protein turnover. Quantitative real-time PCR (qRT-PCR) is employed to confirm the different expression levels among the four tissues. Moreover, the expression levels of eight fruit-related lncRNAs are investigated during different fruit development stages, which indicates they have important roles in fruit ripening and sugar metabolism. Overall, our genome-wide research on lncRNAs in different apple tissues provides valuable clues and information that can help elucidate the potential roles of lncRNAs in the growth and development of apple, as well as in other fruit trees.
Collapse
Affiliation(s)
- Na An
- College of Horticulture, Northwest A&F University, Yangling 712100, Shannxi, China; College of Life Science, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Sheng Fan
- College of Horticulture, Northwest A&F University, Yangling 712100, Shannxi, China
| | - Yibin Wang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shannxi, China
| | - Lizhi Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shannxi, China
| | - Cai Gao
- College of Horticulture, Northwest A&F University, Yangling 712100, Shannxi, China
| | - Dong Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shannxi, China.
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, Yangling 712100, Shannxi, China.
| |
Collapse
|
8
|
Wang J, Geng Z, Weng J, Shen L, Li M, Cai X, Sun C, Chu M. Microarray analysis reveals a potential role of LncRNAs expression in cardiac cell proliferation. BMC DEVELOPMENTAL BIOLOGY 2016; 16:41. [PMID: 27863467 PMCID: PMC5116129 DOI: 10.1186/s12861-016-0139-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/12/2016] [Indexed: 11/15/2022]
Abstract
Background Long non-coding RNAs (LncRNAs) have been identified to play important roles in epigenetic processes that underpin organogenesis. However, the role of LncRNAs in the regulation of transition from fetal to adult life of human heart has not been evaluated. Methods Immunofiuorescent staining was used to determine the extent of cardiac cell proliferation. Human LncRNA microarrays were applied to define gene expression signatures of the fetal (13–17 weeks of gestation, n = 4) and adult hearts (30–40 years old, n = 4). Pathway analysis was performed to predict the function of differentially expressed mRNAs (DEM). DEM related to cell proliferation were selected to construct a lncRNA-mRNA co-expression network. Eight lncRNAs were confirmed by quantificational real-time polymerase chain reaction (n = 6). Results Cardiac cell proliferation was significant in the fetal heart. Two thousand six hundred six lncRNAs and 3079 mRNAs were found to be differentially expressed. Cell cycle was the most enriched pathway in down-regulated genes in the adult heart. Eight lncRNAs (RP11-119 F7.5, AX747860, HBBP1, LINC00304, TPTE2P6, AC034193.5, XLOC_006934 and AL833346) were predicted to play a central role in cardiac cell proliferation. Conclusions We discovered a profile of lncRNAs differentially expressed between the human fetal and adult heart. Several meaningful lncRNAs involved in cardiac cell proliferation were disclosed. Electronic supplementary material The online version of this article (doi:10.1186/s12861-016-0139-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jue Wang
- Department of Cardiac Surgery, the First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Shangcaicun, Wenzhou, 325000, Zhejiang Province, People's Republic of China
| | - Zhimin Geng
- Children's Heart Center, the Second Affiliated Hospital & Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, No. 109, Xueyuan Road, Wenzhou, 325000, Zhejiang Province, People's Republic of China.,Tianjin Childrens' Hospital, Tianjin, People's Republic of China
| | - Jiakan Weng
- Department of Cardiac Surgery, the First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Shangcaicun, Wenzhou, 325000, Zhejiang Province, People's Republic of China
| | - Longjie Shen
- Department of Transplantation, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Ming Li
- Cardiac Regeneration Research Institute, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Xueli Cai
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Chengchao Sun
- Department of Cardiac Surgery, the First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Shangcaicun, Wenzhou, 325000, Zhejiang Province, People's Republic of China.
| | - Maoping Chu
- Children's Heart Center, the Second Affiliated Hospital & Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, No. 109, Xueyuan Road, Wenzhou, 325000, Zhejiang Province, People's Republic of China.
| |
Collapse
|
9
|
Ruiz Esparza-Garrido R, Rodríguez-Corona JM, López-Aguilar JE, Rodríguez-Florido MA, Velázquez-Wong AC, Viedma-Rodríguez R, Salamanca-Gómez F, Velázquez-Flores MÁ. Differentially Expressed Long Non-Coding RNAs Were Predicted to Be Involved in the Control of Signaling Pathways in Pediatric Astrocytoma. Mol Neurobiol 2016; 54:6598-6608. [PMID: 27738870 DOI: 10.1007/s12035-016-0123-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/12/2016] [Indexed: 12/17/2022]
Abstract
Expression changes for long non-coding RNAs (lncRNAs) have been identified in adult glioblastoma multiforme (GBM) and in a mixture of adult and pediatric astrocytoma. Since adult and pediatric astrocytomas are molecularly different, the mixture of both could mask specific features in each. We determined the global expression patterns of lncRNAs and messenger RNA (mRNAs) in pediatric astrocytoma of different histological grades. Transcript expression changes were determined with an HTA 2.0 array. lncRNA interactions with microRNAs and mRNAs were predicted by using an algorithm and the LncTar tool, respectively. Interactomes were constructed with the HIPPIE database and visualized with the Cytoscape platform. The array showed expression changes in 156 and 207 lncRNAs in tumors (versus the control) and in pediatric GBM (versus low-grade astrocytoma), respectively. Predictions identified lncRNAs that have putative microRNA binding sites, which might suggest that they function as sponges in these tumors. Also, lncRNAs were shown to interact with many mRNAs, such as Pleckstrin homology-like domain, family A, member 1 (PHLDA1) and sulfatase 2 (SULF2). For example, qPCR found long intergenic non-coding RNA regulator of reprogramming (linc-RoR) expression levels upregulated in pediatric GBM when they were compared with control tissues or with low-grade tumors. Meanwhile, PHLDA1 and ELAV-like RNA binding protein 1 (ELAV1) showed expression changes in tumors relative to the control. Our data showed many lncRNAs with expression changes in pediatric astrocytoma, which might be involved in the regulation of different signaling pathways.
Collapse
Affiliation(s)
- Ruth Ruiz Esparza-Garrido
- Functional Genomics Laboratory, Unit of Human Genetics Research, Children's Hospital, "Dr. Silvestre Frenk Freund," National Medical Center Century XXI, Mexican Institute of Social Security (IMSS), 06720, Mexico City, Mexico
| | - Juan Manuel Rodríguez-Corona
- Functional Genomics Laboratory, Unit of Human Genetics Research, Children's Hospital, "Dr. Silvestre Frenk Freund," National Medical Center Century XXI, Mexican Institute of Social Security (IMSS), 06720, Mexico City, Mexico
| | - Javier Enrique López-Aguilar
- Oncology Department, Children's Hospital, "Dr. Silvestre Frenk Freund," National Medical Center Century XXI, Mexican Institute of Social Security (IMSS), 06720, Mexico City, Mexico
| | - Marco Antonio Rodríguez-Florido
- Oncology Department, Children's Hospital, "Dr. Silvestre Frenk Freund," National Medical Center Century XXI, Mexican Institute of Social Security (IMSS), 06720, Mexico City, Mexico
| | - Ana Claudia Velázquez-Wong
- Functional Genomics Laboratory, Unit of Human Genetics Research, Children's Hospital, "Dr. Silvestre Frenk Freund," National Medical Center Century XXI, Mexican Institute of Social Security (IMSS), 06720, Mexico City, Mexico
| | - Rubí Viedma-Rodríguez
- Developmental Biology Laboratory, Unit of Morphology and Cellular Function, Faculty of Higher Education Iztacala, National Autonomous University of Mexico, 54090, Tlalnepantla, State of Mexico, Mexico
| | - Fabio Salamanca-Gómez
- Health Research Coordination, National Medical Center Century XXI, Mexican Institute of Social Security (IMSS), 06720, Mexico City, Mexico
| | - Miguel Ángel Velázquez-Flores
- Functional Genomics Laboratory, Unit of Human Genetics Research, Children's Hospital, "Dr. Silvestre Frenk Freund," National Medical Center Century XXI, Mexican Institute of Social Security (IMSS), 06720, Mexico City, Mexico.
| |
Collapse
|