1
|
Feng J, Zhu F, Ye D, Zhang Q, Guo X, Du C, Kang J. Sin3a drives mesenchymal-to-epithelial transition through cooperating with Tet1 in somatic cell reprogramming. Stem Cell Res Ther 2022; 13:29. [PMID: 35073971 PMCID: PMC8785580 DOI: 10.1186/s13287-022-02707-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/28/2021] [Indexed: 12/16/2022] Open
Abstract
Background Identifying novel regulatory factors and uncovered mechanisms of somatic cell reprogramming will be helpful for basic research and clinical application of induced pluripotent stem cells (iPSCs). Sin3a, a multifunctional transcription regulator, has been proven to be involved in the maintenance of pluripotency in embryonic stem cells (ESCs), but the role of Sin3a in somatic cell reprogramming remains unclear. Methods RNA interference of Sin3a during somatic cell reprogramming was realized by short hairpin RNAs. Reprogramming efficiency was evaluated by the number of alkaline phosphatase (AP)-positive colonies and Oct4-GFP-positive colonies. RNA sequencing was performed to identify the influenced biological processes after Sin3a knockdown and further confirmed by quantitative RT-PCR (qRT-PCR), western blotting and flow cytometry. The interaction between Sin3a and Tet1 was detected by coimmunoprecipitation. The enrichment of Sin3a and Tet1 at the epithelial gene promoters was measured by chromatin immunoprecipitation. Furthermore, DNA methylation patterns at the gene loci were investigated by hydroxymethylated DNA immunoprecipitation. Finally, Sin3a mutants that disrupt the interaction of Sin3a and Tet1 were also introduced to assess the importance of the Sin3a–Tet1 interaction during the mesenchymal-to-epithelial transition (MET) process. Results We found that Sin3a was gradually increased during OSKM-induced reprogramming and that knockdown of Sin3a significantly impaired MET at the early stage of reprogramming and iPSC generation. Mechanistic studies showed that Sin3a recruited Tet1 to facilitate the hydroxymethylation of epithelial gene promoters. Moreover, disrupting the interaction of Sin3a and Tet1 significantly blocked MET and iPSC generation. Conclusions Our studies revealed that Sin3a was a novel mediator of MET during early reprogramming, where Sin3a functioned as an epigenetic coactivator, cooperating with Tet1 to activate the epithelial program and promote the initiation of somatic cell reprogramming. These findings highlight the importance of Sin3a in the MET process and deepen our understanding of the epigenetic regulatory network of early reprogramming. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02707-4.
Collapse
Affiliation(s)
- Jiabao Feng
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Fugui Zhu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Dan Ye
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Qingquan Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Xudong Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China. .,Institute for Advanced Study, Tongji University, Shanghai, 200092, People's Republic of China.
| | - Changsheng Du
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China.
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
2
|
Cell Type of Origin Dictates the Route to Pluripotency. Cell Rep 2017; 21:2649-2660. [DOI: 10.1016/j.celrep.2017.11.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/02/2017] [Accepted: 11/08/2017] [Indexed: 11/23/2022] Open
|
3
|
Saunders A, Huang X, Fidalgo M, Reimer MH, Faiola F, Ding J, Sánchez-Priego C, Guallar D, Sáenz C, Li D, Wang J. The SIN3A/HDAC Corepressor Complex Functionally Cooperates with NANOG to Promote Pluripotency. Cell Rep 2017; 18:1713-1726. [PMID: 28199843 DOI: 10.1016/j.celrep.2017.01.055] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 05/24/2016] [Accepted: 01/22/2017] [Indexed: 12/31/2022] Open
Abstract
Although SIN3A is required for the survival of early embryos and embryonic stem cells (ESCs), the role of SIN3A in the maintenance and establishment of pluripotency remains unclear. Here, we find that the SIN3A/HDAC corepressor complex maintains ESC pluripotency and promotes the generation of induced pluripotent stem cells (iPSCs). Members of the SIN3A/HDAC corepressor complex are enriched in an extended NANOG interactome and function in transcriptional coactivation in ESCs. We also identified a critical role for SIN3A and HDAC2 in efficient reprogramming of somatic cells. Mechanistically, NANOG and SIN3A co-occupy transcriptionally active pluripotency genes in ESCs and also co-localize extensively at their genome-wide targets in pre-iPSCs. Additionally, both factors are required to directly induce a synergistic transcriptional program wherein pluripotency genes are activated and reprogramming barrier genes are repressed. Our findings indicate a transcriptional regulatory role for a major HDAC-containing complex in promoting pluripotency.
Collapse
Affiliation(s)
- Arven Saunders
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xin Huang
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Miguel Fidalgo
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael H Reimer
- Department of Cell Biology, Neurobiology, and Anatomy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI 53233, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Francesco Faiola
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Junjun Ding
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carlos Sánchez-Priego
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Diana Guallar
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carmen Sáenz
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dan Li
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jianlong Wang
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
4
|
Del Valle I, Buonocore F, Duncan AJ, Lin L, Barenco M, Parnaik R, Shah S, Hubank M, Gerrelli D, Achermann JC. A genomic atlas of human adrenal and gonad development. Wellcome Open Res 2017. [PMID: 28459107 DOI: 10.12688/wellcomeopenres.11253.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND In humans, the adrenal glands and gonads undergo distinct biological events between 6-10 weeks post conception (wpc), such as testis determination, the onset of steroidogenesis and primordial germ cell development. However, relatively little is currently known about the genetic mechanisms underlying these processes. We therefore aimed to generate a detailed genomic atlas of adrenal and gonad development across these critical stages of human embryonic and fetal development. METHODS RNA was extracted from 53 tissue samples between 6-10 wpc (adrenal, testis, ovary and control). Affymetrix array analysis was performed and differential gene expression was analysed using Bioconductor. A mathematical model was constructed to investigate time-series changes across the dataset. Pathway analysis was performed using ClueGo and cellular localisation of novel factors confirmed using immunohistochemistry. RESULTS Using this approach, we have identified novel components of adrenal development (e.g. ASB4, NPR3) and confirmed the role of SRY as the main human testis-determining gene. By mathematical modelling time-series data we have found new genes up-regulated with SOX9 in the testis (e.g. CITED1), which may represent components of the testis development pathway. We have shown that testicular steroidogenesis has a distinct onset at around 8 wpc and identified potential novel components in adrenal and testicular steroidogenesis (e.g. MGARP, FOXO4, MAP3K15, GRAMD1B, RMND2), as well as testis biomarkers (e.g. SCUBE1). We have also shown that the developing human ovary expresses distinct subsets of genes (e.g. OR10G9, OR4D5), but enrichment for established biological pathways is limited. CONCLUSION This genomic atlas is revealing important novel aspects of human development and new candidate genes for adrenal and reproductive disorders.
Collapse
Affiliation(s)
- Ignacio Del Valle
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Federica Buonocore
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Andrew J Duncan
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Lin Lin
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Martino Barenco
- Developmental Biology and Cancer, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Rahul Parnaik
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Sonia Shah
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia.,Institute of Cardiovascular Science, University College London, London, UK
| | - Mike Hubank
- The Centre for Molecular Pathology, Royal Marsden Hospital, Sutton, UK
| | - Dianne Gerrelli
- Developmental Biology and Cancer, UCL Great Ormond Street Institute of Child Health, London, UK
| | - John C Achermann
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
5
|
Del Valle I, Buonocore F, Duncan AJ, Lin L, Barenco M, Parnaik R, Shah S, Hubank M, Gerrelli D, Achermann JC. A genomic atlas of human adrenal and gonad development. Wellcome Open Res 2017; 2:25. [PMID: 28459107 PMCID: PMC5407452 DOI: 10.12688/wellcomeopenres.11253.2] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background: In humans, the adrenal glands and gonads undergo distinct biological events between 6-10 weeks post conception (wpc), such as testis determination, the onset of steroidogenesis and primordial germ cell development. However, relatively little is currently known about the genetic mechanisms underlying these processes. We therefore aimed to generate a detailed genomic atlas of adrenal and gonad development across these critical stages of human embryonic and fetal development. Methods: RNA was extracted from 53 tissue samples between 6-10 wpc (adrenal, testis, ovary and control). Affymetrix array analysis was performed and differential gene expression was analysed using Bioconductor. A mathematical model was constructed to investigate time-series changes across the dataset. Pathway analysis was performed using ClueGo and cellular localisation of novel factors confirmed using immunohistochemistry. Results: Using this approach, we have identified novel components of adrenal development (e.g.
ASB4,
NPR3) and confirmed the role of
SRY as the main human testis-determining gene. By mathematical modelling time-series data we have found new genes up-regulated with
SOX9 in the testis (e.g.
CITED1), which may represent components of the testis development pathway. We have shown that testicular steroidogenesis has a distinct onset at around 8 wpc and identified potential novel components in adrenal and testicular steroidogenesis (e.g.
MGARP,
FOXO4,
MAP3K15,
GRAMD1B,
RMND2), as well as testis biomarkers (e.g.
SCUBE1). We have also shown that the developing human ovary expresses distinct subsets of genes (e.g.
OR10G9,
OR4D5), but enrichment for established biological pathways is limited. Conclusion: This genomic atlas is revealing important novel aspects of human development and new candidate genes for adrenal and reproductive disorders.
Collapse
Affiliation(s)
- Ignacio Del Valle
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Federica Buonocore
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Andrew J Duncan
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Lin Lin
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Martino Barenco
- Developmental Biology and Cancer, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Rahul Parnaik
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Sonia Shah
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia.,Institute of Cardiovascular Science, University College London, London, UK
| | - Mike Hubank
- The Centre for Molecular Pathology, Royal Marsden Hospital, Sutton, UK
| | - Dianne Gerrelli
- Developmental Biology and Cancer, UCL Great Ormond Street Institute of Child Health, London, UK
| | - John C Achermann
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
6
|
Spitalieri P, Talarico RV, Botta A, Murdocca M, D'Apice MR, Orlandi A, Giardina E, Santoro M, Brancati F, Novelli G, Sangiuolo F. Generation of Human Induced Pluripotent Stem Cells from Extraembryonic Tissues of Fetuses Affected by Monogenic Diseases. Cell Reprogram 2016; 17:275-87. [PMID: 26474030 DOI: 10.1089/cell.2015.0003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The generation of human induced pluripotent stem cells (hiPSCs) derived from an autologous extraembryonic fetal source is an innovative personalized regenerative technology that can transform own-self cells into embryonic stem-like ones. These cells are regarded as a promising candidate for cell-based therapy, as well as an ideal target for disease modeling and drug discovery. Thus, hiPSCs enable researchers to undertake studies for treating diseases or for future applications of in utero therapy. We used a polycistronic lentiviral vector (hSTEMCCA-loxP) encoding OCT4, SOX2, KLF4, and cMYC genes and containing loxP sites, excisible by Cre recombinase, to reprogram patient-specific fetal cells derived from prenatal diagnosis for several genetic disorders, such as myotonic dystrophy type 1 (DM1), β-thalassemia (β-Thal), lymphedema-distichiasis syndrome (LDS), spinal muscular atrophy (SMA), cystic fibrosis (CF), as well as from wild-type (WT) fetal cells. Because cell types tested to create hiPSCs influence both the reprogramming process efficiency and the kinetics, we used chorionic villus (CV) and amniotic fluid (AF) cells, demonstrating how they represent an ideal cell resource for a more efficient generation of hiPSCs. The successful reprogramming of both CV and AF cells into hiPSCs was confirmed by specific morphological, molecular, and immunocytochemical markers and also by their teratogenic potential when inoculated in vivo. We further demonstrated the stability of reprogrammed cells over 10 and more passages and their capability to differentiate into the three embryonic germ layers, as well as into neural cells. These data suggest that hiPSCs-CV/AF can be considered a valid cellular model to accomplish pathogenesis studies and therapeutic applications.
Collapse
Affiliation(s)
- Paola Spitalieri
- 1 Department of Biomedicine and Prevention, Tor Vergata University of Rome , Rome, 00133, Italy
| | - Rosa V Talarico
- 1 Department of Biomedicine and Prevention, Tor Vergata University of Rome , Rome, 00133, Italy
| | - Annalisa Botta
- 1 Department of Biomedicine and Prevention, Tor Vergata University of Rome , Rome, 00133, Italy
| | - Michela Murdocca
- 1 Department of Biomedicine and Prevention, Tor Vergata University of Rome , Rome, 00133, Italy
| | | | - Augusto Orlandi
- 1 Department of Biomedicine and Prevention, Tor Vergata University of Rome , Rome, 00133, Italy
| | - Emiliano Giardina
- 1 Department of Biomedicine and Prevention, Tor Vergata University of Rome , Rome, 00133, Italy .,3 Molecular Genetics Laboratory UILDM , Santa Lucia Foundation, Rome, 00142, Italy
| | | | - Francesco Brancati
- 2 Department of Laboratory Medicine, Policlinic of Tor Vergata , Rome, 00133, Italy
| | - Giuseppe Novelli
- 1 Department of Biomedicine and Prevention, Tor Vergata University of Rome , Rome, 00133, Italy .,2 Department of Laboratory Medicine, Policlinic of Tor Vergata , Rome, 00133, Italy
| | - Federica Sangiuolo
- 1 Department of Biomedicine and Prevention, Tor Vergata University of Rome , Rome, 00133, Italy .,2 Department of Laboratory Medicine, Policlinic of Tor Vergata , Rome, 00133, Italy
| |
Collapse
|
7
|
Abstract
The ability to reprogram somatic cells into induced pluripotent stem cells (iPSCs) using defined factors provides new tools for biomedical research. However, some iPSC clones display tumorigenic and immunogenic potential, thus raising concerns about their utility and safety in the clinical setting. Furthermore, variability in iPSC differentiation potential has also been described. Here we discuss whether these therapeutic obstacles are specific to transcription-factor-mediated reprogramming or inherent to every cellular reprogramming method. Finally, we address whether a better understanding of the mechanism underlying the reprogramming process might improve the fidelity of reprogramming and, therefore, the iPSC quality.
Collapse
Affiliation(s)
- Natalia Tapia
- Institute of Biomedicine of Valencia, Spanish National Research Council, Jaime Roig 11, 46010 Valencia, Spain.
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany; Medical Faculty, University of Münster, Domagkstraße 3, 48149 Münster, Germany.
| |
Collapse
|
8
|
Marthaler AG, Adachi K, Tiemann U, Wu G, Sabour D, Velychko S, Kleiter I, Schöler HR, Tapia N. Enhanced OCT4 transcriptional activity substitutes for exogenous SOX2 in cellular reprogramming. Sci Rep 2016; 6:19415. [PMID: 26762895 PMCID: PMC4725906 DOI: 10.1038/srep19415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/11/2015] [Indexed: 01/12/2023] Open
Abstract
Adenoviral early region 1A (E1A) is a viral gene that can promote cellular proliferation and de-differentiation in mammalian cells, features required for the reprogramming of somatic cells to a pluripotent state. E1A has been shown to interact with OCT4, and as a consequence, to increase OCT4 transcriptional activity. Indeed, E1A and OCT4 are sufficient to revert neuroepithelial hybrids to pluripotency, as demonstrated in previous cell fusion experiments. However, the role that E1A might play in the generation of induced pluripotent stem cells (iPSCs) has not been investigated yet. In this report, we show that E1A can generate iPSCs in combination with OCT4 and KLF4, thus replacing exogenous SOX2. The generated iPSCs are bona fide pluripotent cells as shown by in vitro and in vivo tests. Overall, our study suggests that E1A might replace SOX2 through enhancing OCT4 transcriptional activity at the early stages of reprogramming.
Collapse
Affiliation(s)
- Adele G Marthaler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Kenjiro Adachi
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Ulf Tiemann
- Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Guangming Wu
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Davood Sabour
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Sergiy Velychko
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Ingo Kleiter
- Department of Neurology, St Josef Hospital, Ruhr University Bochum, Gudrunstraße 56, 44791 Bochum, Germany
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany.,Medical Faculty, University of Münster, Domagkstraße 3, 48149 Münster, Germany
| | - Natalia Tapia
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany.,Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany
| |
Collapse
|
9
|
Tiemann U, Wu G, Marthaler AG, Schöler HR, Tapia N. Epigenetic Aberrations Are Not Specific to Transcription Factor-Mediated Reprogramming. Stem Cell Reports 2015; 6:35-43. [PMID: 26711876 PMCID: PMC4720011 DOI: 10.1016/j.stemcr.2015.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 11/12/2015] [Accepted: 11/18/2015] [Indexed: 01/27/2023] Open
Abstract
Somatic cells can be reprogrammed to pluripotency using different methods. In comparison with pluripotent cells obtained through somatic nuclear transfer, induced pluripotent stem cells (iPSCs) exhibit a higher number of epigenetic errors. Furthermore, most of these abnormalities have been described to be intrinsic to the iPSC technology. Here, we investigate whether the aberrant epigenetic patterns detected in iPSCs are specific to transcription factor-mediated reprogramming. We used germline stem cells (GSCs), which are the only adult cell type that can be converted into pluripotent cells (gPSCs) under defined culture conditions, and compared GSC-derived iPSCs and gPSCs at the transcriptional and epigenetic level. Our results show that both reprogramming methods generate indistinguishable states of pluripotency. GSC-derived iPSCs and gPSCs retained similar levels of donor cell-type memory and exhibited comparable numbers of reprogramming errors. Therefore, our study demonstrates that the epigenetic abnormalities detected in iPSCs are not specific to transcription factor-mediated reprogramming. GSCs can be converted into iPSCs and into gPSCs under specific culture conditions iPSCs and gPSCs retain the same level of donor cell-type epigenetic memory Comparable numbers of reprogramming errors can be detected in iPSCs and gPSCs Epigenetic aberrations are not specific to transcription factor-mediated reprogramming
Collapse
Affiliation(s)
- Ulf Tiemann
- Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Guangming Wu
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Adele Gabriele Marthaler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Hans Robert Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany; Medical Faculty, University of Münster, Domagkstraße 3, 48149 Münster, Germany.
| | - Natalia Tapia
- Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
10
|
Tapia N, MacCarthy C, Esch D, Gabriele Marthaler A, Tiemann U, Araúzo-Bravo MJ, Jauch R, Cojocaru V, Schöler HR. Dissecting the role of distinct OCT4-SOX2 heterodimer configurations in pluripotency. Sci Rep 2015; 5:13533. [PMID: 26314899 PMCID: PMC4551974 DOI: 10.1038/srep13533] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 07/29/2015] [Indexed: 12/13/2022] Open
Abstract
The transcription factors OCT4 and SOX2 are required for generating induced pluripotent stem cells (iPSCs) and for maintaining embryonic stem cells (ESCs). OCT4 and SOX2 associate and bind to DNA in different configurations depending on the arrangement of their individual DNA binding elements. Here we have investigated the role of the different OCT4-SOX2-DNA assemblies in regulating and inducing pluripotency. To this end, we have generated SOX2 mutants that interfere with specific OCT4-SOX2 heterodimer configurations and assessed their ability to generate iPSCs and to rescue ESC self-renewal. Our results demonstrate that the OCT4-SOX2 configuration that dimerizes on a Hoxb1-like composite, a canonical element with juxtaposed individual binding sites, plays a more critical role in the induction and maintenance of pluripotency than any other OCT4-SOX2 configuration. Overall, the results of this study provide new insight into the protein interactions required to establish a de novo pluripotent network and to maintain a true pluripotent cell fate.
Collapse
Affiliation(s)
- Natalia Tapia
- Heinrich Heine University, Faculty of Medicine, Moorenstraße 5, 40225 Düsseldorf, Germany.,Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental Biology, Röntgentstraße, 20, Münster 48149, Germany
| | - Caitlin MacCarthy
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental Biology, Röntgentstraße, 20, Münster 48149, Germany
| | - Daniel Esch
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental Biology, Röntgentstraße, 20, Münster 48149, Germany
| | - Adele Gabriele Marthaler
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental Biology, Röntgentstraße, 20, Münster 48149, Germany
| | - Ulf Tiemann
- Heinrich Heine University, Faculty of Medicine, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Marcos J Araúzo-Bravo
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, Doctor Begiristain s/n, 20014 San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, Alameda Urquijo 36-5, 48011 Bilbao, Spain
| | - Ralf Jauch
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Vlad Cojocaru
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental Biology, Röntgentstraße, 20, Münster 48149, Germany
| | - Hans R Schöler
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental Biology, Röntgentstraße, 20, Münster 48149, Germany
| |
Collapse
|