1
|
Wei Y, Zhou YF, Xiao L, Qin J, Cheng H, Cai H, Chen X, Zou Y, Yang L, Zhang H, Zhang Z, Yang X. Associations of Heavy Metals with Cognitive Function: An Epigenome-Wide View of DNA Methylation and Mediation Analysis. Ann Neurol 2024; 96:87-98. [PMID: 38661228 DOI: 10.1002/ana.26942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
OBJECTIVE Exposure to heavy metals has been reported to be associated with impaired cognitive function, but the underlying mechanisms remain unclear. This pilot study aimed to identify key heavy metal elements associated with cognitive function and further explore the potential mediating role of metal-related DNA methylation. METHODS Blood levels of arsenic, cadmium, lead, copper, manganese, and zinc and genome-wide DNA methylations were separately detected in peripheral blood in 155 older adults. Cognitive function was evaluated using the Mini-Mental State Examination (MMSE). Least absolute shrinkage and selection operator penalized regression and Bayesian kernel machine regression were used to identify metals associated with cognitive function. An epigenome-wide association study examined the DNA methylation profile of the identified metal, and mediation analysis investigated its mediating role. RESULTS The MMSE scores showed a significant decrease of 1.61 (95% confidence interval [CI]: -2.64, -0.59) with each 1 standard deviation increase in ln-transformed arsenic level; this association was significant in multiple-metal models and dominated the overall negative effect of 6 heavy metal mixture on cognitive function. Seventy-three differentially methylated positions were associated with blood arsenic (p < 1.0 × 10-5). The methylation levels at cg05226051 (annotated to TDRD3) and cg18886932 (annotated to GAL3ST3) mediated 24.8% and 25.5% of the association between blood arsenic and cognitive function, respectively (all p < 0.05). INTERPRETATION Blood arsenic levels displayed a negative association with the cognitive function of older adults. This finding shows that arsenic-related DNA methylation alterations are critical partial mediators that may serve as potential biomarkers for further mechanism-related studies. ANN NEUROL 2024;96:87-98.
Collapse
Affiliation(s)
- Yue Wei
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yan-Feng Zhou
- Department of Social Medicine, School of Public Health, Guangxi Medical University, Nanning, China
| | - Lili Xiao
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Jian Qin
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Hong Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Haiqing Cai
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Xing Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
| | - Li Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Haiying Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Zhiyong Zhang
- Department of Environmental Health and Occupational Medicine, Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath Research, Guilin Medical University, Guilin, China
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| |
Collapse
|
2
|
Zhong S, Chen C, Yang L, Jin M, Zeng Y, Zou GM, Zhang Q, Wang Y. Identification of circRNA-associated ceRNA networks in peripheral blood mononuclear cells as potential biomarkers for chronic obstructive pulmonary disease. Biosci Rep 2023; 43:BSR20230005. [PMID: 37650285 PMCID: PMC10619198 DOI: 10.1042/bsr20230005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD), which is a common respiratory disorder with high morbidity and mortality globally, has a complex pathogenesis that is not fully understood. Some circular RNAs (circRNAs) have been recognized to serve as miRNA sponges for regulating target RNA transcripts during the processes of human diseases. In the present study, we aimed to investigate novel circRNA-associated biomarkers for COPD, 245 differentially expressed circRNAs were identified, including 111 up-regulated and 134 down-regulated circRNAs. These candidate circRNAs were enriched in inflammation-associated pathways (such as mTOR, B-cell receptor, and NF-κB signaling pathways) via Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. A combination of two circRNAs (up-regulated hsa_circ_0067209 and down-regulated hsa_circ_0000673) demonstrated good diagnostic value (area under the receiver operating characteristic curve [AUC] = 0.866) for COPD by receiver operating characteristic curve (ROC) analysis and qRT-PCR validation. Subsequently, hsa-miR-8082 and hsa-miR-1248 were identified as targets for hsa_circ_0067209 and hsa_circ_0000673, respectively, via bioinformatics analysis and a dual-luciferase reporter assay, and the combination of these two miRNAs displayed better diagnosis potential for COPD (AUC = 0.967) than each other. Evaluation of COPD-related mRNA profiles revealed that the up-regulated genes ABR and TRPM6 were predicted downstream targets for hsa_circ_0067209/hsa-miR-8082, whereas the down-regulated gene RORC was a predicted downstream target for hsa_circ_0000673/hsa-miR-1248. In summary, hsa_circ_0067209 and hsa_circ_0000673 have potential as novel diagnostic biomarkers of COPD. In addition, competing endogenous RNA networks of hsa_circ_0067209/hsa-miR-8082/ABR/TRPM6 and hsa_circ_0000673/hsa-miR-1248/RORC may play critical regulation roles for COPD pathogenesis.
Collapse
Affiliation(s)
- Shan Zhong
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, PR China
- Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong 515041, PR China
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China
| | - Chengshui Chen
- Department of Respiratory Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Li Yang
- Department of Respiratory Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Meiling Jin
- Department of Respiratory Medicine, Zhongshan Affiliated Hospital of Fudan University, Shanghai 200030, PR China
| | - Yiming Zeng
- Department of Respiratory Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, PR China
| | - Gang-Ming Zou
- School of Nursing and Dental Health. University of Hawaii at Manoa, 2528 McCarthy Mall, Webster Hall. Honolulu, HI 96822, USA
| | - Qingying Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong 515041, PR China
| | - Yun Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, PR China
| |
Collapse
|
3
|
Ramachandran RP, Nandi I, Haritan N, Zlotkin-Rivkin E, Keren Y, Danieli T, Lebendiker M, Melamed-Book N, Breuer W, Reichmann D, Aroeti B. EspH interacts with the host active Bcr related (ABR) protein to suppress RhoGTPases. Gut Microbes 2022; 14:2130657. [PMID: 36219160 PMCID: PMC9559323 DOI: 10.1080/19490976.2022.2130657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Enteropathogenic Escherichia coli are bacterial pathogens that colonize the gut and cause severe diarrhea in humans. Upon intimate attachment to the intestinal epithelium, these pathogens translocate via a type III secretion system virulent proteins, termed effectors, into the host cells. These effectors manipulate diverse host cell organelles and functions for the pathogen's benefit. However, the precise mechanisms underlying their activities are not fully understood despite intensive research. EspH, a critical effector protein, has been previously reported to disrupt the host cell actin cytoskeleton by suppressing RhoGTPase guanine exchange factors. However, native host proteins targeted by EspH to mediate these activities remained unknown. Here, we identified the active Bcr related (ABR), a protein previously characterized to possess dual Rho guanine nucleotide exchange factor and GTPase activating protein (GAP) domains, as a native EspH interacting partner. These interactions are mediated by the effector protein's C-terminal 38 amino acid segment. The effector primarily targets the GAP domain of ABR to suppress Rac1 and Cdc42, host cell cytotoxicity, bacterial invasion, and filopodium formation at infection sites. Knockdown of ABR expression abolished the ability of EspH to suppress Rac1, Cdc42. Our studies unravel a novel mechanism by which host RhoGTPases are hijacked by bacterial effectors.
Collapse
Affiliation(s)
- Rachana Pattani Ramachandran
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ipsita Nandi
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nir Haritan
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Efrat Zlotkin-Rivkin
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yael Keren
- The Protein Production Facility, Wolfson Centre for Applied Structural Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tsafi Danieli
- The Protein Production Facility, Wolfson Centre for Applied Structural Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mario Lebendiker
- The Protein Production Facility, Wolfson Centre for Applied Structural Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Naomi Melamed-Book
- Bioimaging Unit, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - William Breuer
- Proteomics and Mass Spectrometry Unit, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dana Reichmann
- Proteomics and Mass Spectrometry Unit, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel,Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Benjamin Aroeti
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel,CONTACT Benjamin Aroeti Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem91904, Israel
| |
Collapse
|
4
|
Zhang Z, Liu M, Zheng Y. Role of Rho GTPases in stem cell regulation. Biochem Soc Trans 2021; 49:2941-2955. [PMID: 34854916 PMCID: PMC9008577 DOI: 10.1042/bst20211071] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 02/05/2023]
Abstract
The future of regenerative medicine relies on our understanding of stem cells which are essential for tissue/organ generation and regeneration to maintain and/or restore tissue homeostasis. Rho family GTPases are known regulators of a wide variety of cellular processes related to cytoskeletal dynamics, polarity and gene transcription. In the last decade, major new advances have been made in understanding the regulatory role and mechanism of Rho GTPases in self-renewal, differentiation, migration, and lineage specification in tissue-specific signaling mechanisms in various stem cell types to regulate embryonic development, adult tissue homeostasis, and tissue regeneration upon stress or damage. Importantly, implication of Rho GTPases and their upstream regulators or downstream effectors in the transformation, migration, invasion and tumorigenesis of diverse cancer stem cells highlights the potential of Rho GTPase targeting in cancer therapy. In this review, we discuss recent evidence of Rho GTPase signaling in the regulation of embryonic stem cells, multiple somatic stem cells, and cancer stem cells. We propose promising areas where Rho GTPase pathways may serve as useful targets for stem cell manipulation and related future therapies.
Collapse
Affiliation(s)
- Zheng Zhang
- Division of Experimental Hematology and Cancer Biology, Children’s Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229, U.S.A
| | - Ming Liu
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Children’s Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229, U.S.A
| |
Collapse
|
5
|
Pi L, Zhang Z, Gu Y, Wang X, Wang J, Xu J, Liu J, Zhang X, Du J. DNA methylation profiling in recurrent miscarriage. PeerJ 2020; 8:e8196. [PMID: 31938574 PMCID: PMC6953351 DOI: 10.7717/peerj.8196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/12/2019] [Indexed: 12/01/2022] Open
Abstract
Recurrent miscarriage (RM) is a complex clinical problem. However, specific diagnostic biomarkers and candidate regulatory targets have not yet been identified. To explore RM-related biological markers and processes, we performed a genome-wide DNA methylation analysis using the Illumina Infinium HumanMethylation450 array platform. Methylation variable positions and differentially methylated regions (DMRs) were selected using the Limma package in R language. Thereafter, gene ontology (GO) enrichment analysis and pathway enrichment analysis were performed on these DMRs. A total of 1,799 DMRs were filtered out between patients with RM and healthy pregnant women. The GO terms were mainly related to system development, plasma membrane part, and sequence-specific DNA binding, while the enriched pathways included cell adhesion molecules, type I diabetes mellitus, and ECM–receptor interactions. In addition, genes, including ABR, ALCAM, HLA-E, HLA-G, and ISG15, were obtained. These genes may be potential candidates for diagnostic biomarkers and possible regulatory targets in RM. We then detected the mRNA expression levels of the candidate genes. The mRNA expression levels of the candidate genes in the RM group were significantly higher than those in the control group. However, additional research is still required to confirm their potential roles in the occurrence of RM.
Collapse
Affiliation(s)
- Li Pi
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Medical School, Fudan University, Shanghai, China
| | - Zhaofeng Zhang
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Medical School, Fudan University, Shanghai, China
| | - Yan Gu
- The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xinyue Wang
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Medical School, Fudan University, Shanghai, China
| | - Jianmei Wang
- The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jianhua Xu
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Medical School, Fudan University, Shanghai, China
| | - Junwei Liu
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Medical School, Fudan University, Shanghai, China
| | - Xuan Zhang
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Medical School, Fudan University, Shanghai, China
| | - Jing Du
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Medical School, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Demanelis K, Argos M, Tong L, Shinkle J, Sabarinathan M, Rakibuz-Zaman M, Sarwar G, Shahriar H, Islam T, Rahman M, Yunus M, Graziano JH, Broberg K, Engström K, Jasmine F, Ahsan H, Pierce BL. Association of Arsenic Exposure with Whole Blood DNA Methylation: An Epigenome-Wide Study of Bangladeshi Adults. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:57011. [PMID: 31135185 PMCID: PMC6791539 DOI: 10.1289/ehp3849] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND Arsenic exposure affects [Formula: see text] people worldwide, including [Formula: see text] in Bangladesh. Arsenic exposure increases the risk of cancer and other chronic diseases, and one potential mechanism of arsenic toxicity is epigenetic dysregulation. OBJECTIVE We assessed associations between arsenic exposure and genome-wide DNA methylation measured at baseline among 396 Bangladeshi adults participating in the Health Effects of Arsenic Longitudinal Study (HEALS) who were exposed by drinking naturally contaminated well water. METHODS Methylation in whole blood DNA was measured at [Formula: see text] using the Illumina InfiniumMethylationEPIC (EPIC) array. To assess associations between arsenic exposure and CpG methylation, we used linear regression models adjusted for covariates and surrogate variables (SVs) (capturing unknown technical and biologic factors). We attempted replication and conducted a meta-analysis using an independent dataset of [Formula: see text] from 400 Bangladeshi individuals with arsenical skin lesions. RESULTS We identified 34 CpGs associated with [Formula: see text] creatinine-adjusted urinary arsenic [[Formula: see text]]. Sixteen of these CpGs annotated to the [Formula: see text] array, and 10 associations were replicated ([Formula: see text]). The top two CpGs annotated upstream of the ABR gene (cg01912040, cg10003262 ). All urinary arsenic-associated CpGs were also associated with arsenic concentration measured in drinking water ([Formula: see text]). Meta-analysis ([Formula: see text] samples) identified 221 urinary arsenic-associated CpGs ([Formula: see text]). The arsenic-associated CpGs from the meta-analysis were enriched in non-CpG islands and shores ([Formula: see text]) and depleted in promoter regions ([Formula: see text]). Among the arsenic-associated CpGs ([Formula: see text]), we observed significant enrichment of genes annotating to the reactive oxygen species pathway, inflammatory response, and tumor necrosis factor [Formula: see text] ([Formula: see text]) signaling via nuclear factor kappa-B ([Formula: see text]) hallmarks ([Formula: see text]). CONCLUSIONS The novel and replicable associations between arsenic exposure and DNA methylation at specific CpGs observed in this work suggest that epigenetic alterations should be further investigated as potential mediators in arsenic toxicity and as biomarkers of exposure and effect in exposed populations. https://doi.org/10.1289/EHP3849.
Collapse
Affiliation(s)
- Kathryn Demanelis
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
| | - Maria Argos
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Lin Tong
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
| | - Justin Shinkle
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
| | - Mekala Sabarinathan
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
| | | | - Golam Sarwar
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Hasan Shahriar
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Tariqul Islam
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Mahfuzar Rahman
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
- Research and Evaluation Division, BRAC, Dhaka, Bangladesh
| | - Mohammad Yunus
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Joseph H. Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Karin Broberg
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Karin Engström
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Farzana Jasmine
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
| | - Habibul Ahsan
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
- University of Chicago Comprehensive Cancer Center, University of Chicago, Chicago, Illinois, USA
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Brandon L. Pierce
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
- University of Chicago Comprehensive Cancer Center, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
7
|
A Practical Protocol for the Conditional Depletion of Rho Isoforms in Human Embryonic Stem Cells. Methods Mol Biol 2019. [PMID: 30062420 DOI: 10.1007/978-1-4939-8612-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Human pluripotent stem cells indefinitely proliferate and survive in culture while retaining genomic integrity, providing a unique opportunity to study human molecular biology. Here, we introduced an RNA interference-based protocol of inducible gene silencing in human embryonic stem cells, which has several advantages in handling simplicity/convenience, cost/time performance, and applicability. Using this method, we had succeeded to elucidate the isoform-unique roles of Rho-family small GTPases in human embryonic stem cells.
Collapse
|