1
|
Xie P, Takeuchi T, Cheung S, Rosenwaks Z, Palermo GD. Male gamete copies to characterize genome inheritance and generate progenies. Sci Rep 2025; 15:15600. [PMID: 40320458 PMCID: PMC12050308 DOI: 10.1038/s41598-025-99188-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 04/17/2025] [Indexed: 05/08/2025] Open
Abstract
Male factor infertility accounts for approximately 30% of infertility cases. When spermatozoa are extremely scarce, replicating the male gamete to fertilize a large cohort of oocytes is ideal. Additionally, patients with inherited disorders currently rely on pre-implantation genetic testing (PGT) to select healthy embryos, which raises ethical concerns owing to the generation of multiple embryos to select one healthy conceptus. Therefore, it would be beneficial to decode the genetics of a single sperm cell before conceptus generation. In this study, we demonstrated the feasibility of replicating the sperm genome via androgenesis and selecting the desired gamete before fertilization to preserve a specific paternal genotype, as confirmed by phenotypic observations and genetic testing in a murine model. We achieved satisfactory pre-implantation development rates with replicated male gametes and generated healthy offspring. Specifically, using 8-cell stage androgenetic embryos, a single spermatozoon can yield up to three conceptuses carrying an identical paternal haplotype.
Collapse
Affiliation(s)
- Philip Xie
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, 1305 York Avenue, New York, NY, Y72010021, USA
| | - Takumi Takeuchi
- Reproduction Clinic Tokyo, Shiodome City Center 3F, 1-5-2 Higashi-shimbashi, Minato-ku, Tokyo, Japan
| | - Stephanie Cheung
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, 1305 York Avenue, New York, NY, Y72010021, USA
| | - Zev Rosenwaks
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, 1305 York Avenue, New York, NY, Y72010021, USA
| | - Gianpiero D Palermo
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, 1305 York Avenue, New York, NY, Y72010021, USA.
| |
Collapse
|
2
|
Aguila L, Sampaio RV, Therrien J, Nociti RP, Labrecque R, Tremblay A, Marras G, Blondin P, Smith LC. Replacing sperm with genotyped haploid androgenetic blastomeres to generate cattle with predetermined paternal genomes†. Biol Reprod 2024; 111:1311-1325. [PMID: 39303105 DOI: 10.1093/biolre/ioae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/11/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024] Open
Abstract
Although meiosis plays an essential role for the survival of species in natural selection, the genetic diversity resulting from sexual reproduction impedes human-driven strategies to transmit the most suitable genomes for genetic improvement, forcing breeders to select diploid genomes generated after fertilization, that is, after the encounter of sperm and oocytes carrying unknown genomes. To determine whether genomic assessment could be used before fertilization, some androgenetic haploid morula-stage bovine embryos derived from individual sperm were biopsied for genomic evaluation and others used to reconstruct "semi-cloned" (SC) diploid zygotes by the intracytoplasmic injection into parthenogenetically activated oocytes, and the resulting embryos were transferred to surrogate females to obtain gestations. Compared to controls, in vitro development to the blastocyst stage was lower and fewer surrogates became pregnant from the transfer of SC embryos. However, fetometric measurements of organs and placental membranes of all SC conceptuses were similar to controls, suggesting a normal post-implantation development. Moreover, transcript amounts of imprinted genes IGF2, IGF2R, PHLDA2, SNRPN, and KCNQ1OT1 and methylation pattern of the KCNQ1 DMR were unaltered in SC conceptuses. Overall, this study shows that sperm can be replaced by genotyped haploid embryonic-derived cells to produce bovine embryos carrying a predetermined paternal genome and viable first trimester fetuses after transfer to female recipients. SUMMARY SENTENCE Haploid morula-stage embryonic cells derived from a single sperm can be genotyped and injected into activated oocytes to reconstruct diploid zygotes that develop both in vitro into blastocysts and in vivo into viable post-implantation bovine conceptuses with predetermined paternal genomes.
Collapse
Affiliation(s)
- Luis Aguila
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, QC, Canada
- Laboratory of Reproduction, Centre of Reproductive Biotechnology, Faculty of Agriculture and Forestry, Universidad de La Frontera, Temuco, Chile
| | - Rafael V Sampaio
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, QC, Canada
| | - Jacinthe Therrien
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, QC, Canada
| | - Ricardo P Nociti
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, QC, Canada
| | | | | | | | | | - Lawrence C Smith
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, QC, Canada
| |
Collapse
|
3
|
Yu X, Xu J, Song B, Zhu R, Liu J, Liu YF, Ma YJ. The role of epigenetics in women's reproductive health: the impact of environmental factors. Front Endocrinol (Lausanne) 2024; 15:1399757. [PMID: 39345884 PMCID: PMC11427273 DOI: 10.3389/fendo.2024.1399757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
This paper explores the significant role of epigenetics in women's reproductive health, focusing on the impact of environmental factors. It highlights the crucial link between epigenetic modifications-such as DNA methylation and histones post-translational modifications-and reproductive health issues, including infertility and pregnancy complications. The paper reviews the influence of pollutants like PM2.5, heavy metals, and endocrine disruptors on gene expression through epigenetic mechanisms, emphasizing the need for understanding how dietary, lifestyle choices, and exposure to chemicals affect gene expression and reproductive health. Future research directions include deeper investigation into epigenetics in female reproductive health and leveraging gene editing to mitigate epigenetic changes for improving IVF success rates and managing reproductive disorders.
Collapse
Affiliation(s)
- Xinru Yu
- College Of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jiawei Xu
- College Of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine School, Jinan, Shandong, China
| | - Bihan Song
- College Of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine School, Jinan, Shandong, China
| | - Runhe Zhu
- College Of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine School, Jinan, Shandong, China
| | - Jiaxin Liu
- College Of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yi Fan Liu
- Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ying Jie Ma
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
4
|
Nie S, Zhang W, Jin X, Li X, Sun S, Zhao Y, Jia Q, Li L, Liu Y, Liu D, Gao Q. Genetic Screening of Haploid Neural Stem Cells Reveals that Nfkbia and Atp2b4 are Key Regulators of Oxidative Stress in Neural Precursors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309292. [PMID: 38666459 PMCID: PMC11304298 DOI: 10.1002/advs.202309292] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/31/2024] [Indexed: 08/09/2024]
Abstract
Neurological diseases are expected to become the leading cause of death in the next decade. Although little is known about it, the interaction between oxidative stress and inflammation is harmful to the nervous system. To find an advanced tool for neural genetics, mouse haploid neural stem cells (haNSCs) from the somite of chimeric mouse embryos at E8.5 is established. The haNSCs present a haploid neural progenitor identity for long-term culture, promising to robustly differentiate into neural subtypes and being able to form cerebral organoids efficiently. Thereafter, haNSC mutants via a high-throughput approach and screened targets of oxidative stress is generated using the specific mutant library. Deletion of Nfkbia (the top hit among the insertion mutants) reduces damage from reactive oxygen species (ROS) in NSCs exposed to H2O2. Transcriptome analysis revealed that Atp2b4 is upregulated significantly in Nfkbia-null NSCs and is probably responsible for the observed resistance. Additionally, overexpression of Atp2b4 itself can increase the survival of NSCs in the presence of H2O2, suggesting that Atp2b4 is closely involved in this resistance. Herein, a powerful haploid system is presented to study functional genetics in neural lineages, shedding light on the screening of critical genes and drugs for neurological diseases.
Collapse
Affiliation(s)
- Shaochen Nie
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of stomatologyTianjin Medical University School of StomatologyTianjin300070China
| | - Wenhao Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
| | - Xin Jin
- School of MedicineNankai UniversityTianjin300071China
| | - Xiaoyan Li
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of stomatologyTianjin Medical University School of StomatologyTianjin300070China
| | - Shengyi Sun
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
| | - Yiding Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
| | - Qingshen Jia
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
| | - Luyuan Li
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
| | - Yan Liu
- Department of ObstetricsTianjin First Central HospitalNankai UniversityTianjin300192China
| | - Dayong Liu
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of stomatologyTianjin Medical University School of StomatologyTianjin300070China
| | - Qian Gao
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
- Tianjin Key Laboratory of Animal and Plant ResistanceCollege of Life SciencesTianjin Normal UniversityTianjin300387China
| |
Collapse
|
5
|
He W, Tang H, Li Y, Wang M, Li Y, Chen J, Gao S, Han Z. Overexpression of Let-7a mitigates diploidization in mouse androgenetic haploid embryonic stem cells. iScience 2024; 27:109769. [PMID: 38711447 PMCID: PMC11070717 DOI: 10.1016/j.isci.2024.109769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/23/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
Mouse androgenetic haploid embryonic stem cells (mAG-haESCs) can be utilized to uncover gene functions, especially those of genes with recessive effects, and to produce semicloned mice when injected into mature oocytes. However, mouse haploid cells undergo rapid diploidization during long-term culture in vitro and subsequently lose the advantages of haploidy, and the factors that drive diploidization are poorly understood. In this study, we compared the small RNAs (sRNAs) of mAG-haESCs, normal embryonic stem cells (ESCs), and mouse round spermatids by high-throughput sequencing and identified distinct sRNA profiles. Several let-7 family members and miR-290-295 cluster microRNAs (miRNAs) were found significantly differentially transcribed. Knockdown and overexpression experiments showed that let-7a and let-7g suppress diploidization while miR-290a facilitates diploidization. Our study revealed the unique sRNA profile of mAG-haESCs and demonstrated that let-7a overexpression can mitigate diploidization in mAG-haESCs. These findings will help us to better understand mAG-haESCs and utilize them as tools in the future.
Collapse
Affiliation(s)
- Wenteng He
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Hongming Tang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Yuanyuan Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Mingzhu Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Yuanyuan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiayu Chen
- Clinical and Translation Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Shaorong Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
- Clinical and Translation Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhiming Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| |
Collapse
|
6
|
Sun S, Zhao Q, Zhao Y, Geng M, Wang Q, Gao Q, Zhang X, Zhang W, Shuai L. BCL2 is a major regulator of haploidy maintenance in murine embryonic stem cells. Cell Prolif 2023; 56:e13498. [PMID: 37144356 PMCID: PMC10693186 DOI: 10.1111/cpr.13498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
Mammalian haploid cells are important resources for forward genetic screening and are important in genetic medicine and drug development. However, the self-diploidization of murine haploid embryonic stem cells (haESCs) during daily culture or differentiation jeopardizes their use in genetic approaches. Here, we show that overexpression (OE) of an antiapoptosis gene, BCL2, in haESCs robustly ensures their haploidy maintenance in various situations, even under strict differentiation in vivo (embryonic 10.5 chimeric fetus or 21-day teratoma). Haploid cell lines of many lineages, including epiblasts, trophectodermal lineages, and neuroectodermal lineages, can be easily derived by the differentiation of BCL2-OE haESCs in vitro. Transcriptome analysis revealed that BCL2-OE activates another regulatory gene, Has2, which is also sufficient for haploidy maintenance. Together, our findings provide an effective and secure strategy to reduce diploidization during differentiation, which will contribute to the generation of haploid cell lines of the desired lineage and related genetic screening.
Collapse
Affiliation(s)
- Shengyi Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive RegulationNankai UniversityTianjinChina
| | - Qin Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive RegulationNankai UniversityTianjinChina
| | - Yiding Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive RegulationNankai UniversityTianjinChina
| | - Mengyang Geng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive RegulationNankai UniversityTianjinChina
| | - Qing Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive RegulationNankai UniversityTianjinChina
| | - Qian Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive RegulationNankai UniversityTianjinChina
| | - Xiao‐Ou Zhang
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life and Science and TechnologyTongji UniversityShanghaiChina
| | - Wenhao Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive RegulationNankai UniversityTianjinChina
- Chongqing Key Laboratory of Human Embryo EngineeringChongqing Health Center for Women and ChildrenChongqingChina
| | - Ling Shuai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive RegulationNankai UniversityTianjinChina
- National Clinical Research Center for Obstetrics and GynecologyPeking University Third HospitalBeijingChina
| |
Collapse
|
7
|
Liu C, Li W. Advances in haploid embryonic stem cell research. Biol Reprod 2022; 107:250-260. [PMID: 35639627 DOI: 10.1093/biolre/ioac110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/12/2022] [Accepted: 05/25/2022] [Indexed: 11/14/2022] Open
Abstract
Haploid embryonic stem cells are embryonic stem cells of a special type. Their nuclei contain one complete set of genetic material, and they are capable of self-renewal and differentiation. The emergence of haploid embryonic stem cells has aided research in functional genomics, genetic imprinting, parthenogenesis, genetic screening, and somatic cell nuclear transfer. This article reviews current issues in haploid stem cell research based on reports published in recent years and assesses the potential applications of these cells in somatic cell nuclear transfer, genome imprinting, and parthenogenesis.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
BMP4 preserves the developmental potential of mESCs through Ube2s- and Chmp4b-mediated chromosomal stability safeguarding. Protein Cell 2022; 13:580-601. [PMID: 35147915 PMCID: PMC9232672 DOI: 10.1007/s13238-021-00896-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chemically defined medium is widely used for culturing mouse embryonic stem cells (mESCs), in which N2B27 works as a substitution for serum, and GSK3β and MEK inhibitors (2i) help to promote ground-state pluripotency. However, recent studies suggested that MEKi might cause irreversible defects that compromise the developmental potential of mESCs. Here, we demonstrated the deficient bone morphogenetic protein (BMP) signal in the chemically defined condition is one of the main causes for the impaired pluripotency. Mechanistically, activating the BMP signal pathway by BMP4 could safeguard the chromosomal integrity and proliferation capacity of mESCs through regulating downstream targets Ube2s and Chmp4b. More importantly, BMP4 promotes a distinct in vivo developmental potential and a long-term pluripotency preservation. Besides, the pluripotent improvements driven by BMP4 are superior to those by attenuating MEK suppression. Taken together, our study shows appropriate activation of BMP signal is essential for regulating functional pluripotency and reveals that BMP4 should be applied in the serum-free culture system.
Collapse
|
9
|
Xu M, Zhang W, Geng M, Zhao Y, Sun S, Gao Q, Liu Y, Shuai L. Rapid generation of murine haploid-induced trophoblast stem cells via a Tet-on system. STAR Protoc 2021; 2:100881. [PMID: 34806042 PMCID: PMC8585661 DOI: 10.1016/j.xpro.2021.100881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Haploid trophoblast stem cells (TSCs) are advanced in studying placental development for their placental precursor and homozygous features. Here, we describe how to generate haploid-induced TSCs (haiTSCs) from haploid embryonic stem cells with a Tet-on system. Our haiTSCs can maintain haploidy long-term and can produce genome-wide mutants combined with transposons. It is promising in high-throughput genetic screening of trophoblast-specific modulators. For complete details on the use and execution of this protocol, please refer to Peng et al. (2019). Protocol for inducing a Cdx2-OE Tet-on system into haploid ESCs Protocol for conversion and purification of haploid induced TSCs from haploid ESCs Protocol for construction of genome-wide mutated homozygous TSCs by piggyBac transposon
Collapse
Affiliation(s)
- Mei Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University, Tianjin 300350, China
| | - Wenhao Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University, Tianjin 300350, China
| | - Mengyang Geng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University, Tianjin 300350, China
| | - Yiding Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University, Tianjin 300350, China
| | - Shengyi Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University, Tianjin 300350, China
| | - Qian Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University, Tianjin 300350, China
| | - Yan Liu
- Department of Obstetrics, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Ling Shuai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University, Tianjin 300350, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
10
|
Aizawa E, Kaufmann C, Sting S, Boigner S, Freimann R, Di Minin G, Wutz A. Haploid mouse germ cell precursors from embryonic stem cells reveal Xist activation from a single X chromosome. Stem Cell Reports 2021; 17:43-52. [PMID: 34919812 PMCID: PMC8758942 DOI: 10.1016/j.stemcr.2021.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/03/2022] Open
Abstract
Mammalian haploid cells have applications for genetic screening and substituting gametic genomes. Here, we characterize a culture system for obtaining haploid primordial germ cell-like cells (PGCLCs) from haploid mouse embryonic stem cells (ESCs). We find that haploid cells show predisposition for PGCLCs, whereas a large fraction of somatic cells becomes diploid. Characterization of the differentiating haploid ESCs (haESCs) reveals that Xist is activated from and colocalizes with the single X chromosome. This observation suggests that X chromosome inactivation (XCI) is initiated in haploid cells consistent with a model where autosomal blocking factors set a threshold for X-linked activators. We further find that Xist expression is lost at later timepoints in differentiation, which likely reflects the loss of X-linked activators. In vitro differentiation of haploid PGCLCs can be a useful approach for future studies of potential X-linked activators of Xist. A culture system for obtaining haploid PGCLCs Predisposition of haploid cells in the germline over somatic lineages A single X chromosome in haploid cells leads to activation of Xist Mutation of Xist is insufficient to prevent diploidization of haESCs
Collapse
Affiliation(s)
- Eishi Aizawa
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Corinne Kaufmann
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Sarah Sting
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Sarah Boigner
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Remo Freimann
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Giulio Di Minin
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Anton Wutz
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
Zhao K, Wang M, Gao S, Chen J. Chromatin architecture reorganization during somatic cell reprogramming. Curr Opin Genet Dev 2021; 70:104-114. [PMID: 34530248 DOI: 10.1016/j.gde.2021.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/25/2021] [Accepted: 07/08/2021] [Indexed: 01/14/2023]
Abstract
It has been nearly 60 years since Dr John Gurdon achieved the first cloning of Xenopus by somatic cell nuclear transfer (SCNT). Later, in 2006, Takahashi and Yamanaka published their landmark study demonstrating the application of four transcription factors to induce pluripotency. These two amazing discoveries both clearly established that cell identity can be reprogrammed and that mature cells still contain the information required for lineage specification. Considering that different cell types possess identical genomes, what orchestrates reprogramming has attracted wide interest. Epigenetics, including high-level chromatin structure, might provide some answers. Benefitting from the tremendous progress in high-throughput and multi-omics techniques, we here address the roles and interactions of genome architecture, chromatin modifications, and transcription regulation during somatic cell reprogramming that were previously beyond reach. In addition, we provide perspectives on recent technical advances that might help to overcome certain barriers in the field.
Collapse
Affiliation(s)
- Kun Zhao
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Mingzhu Wang
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Shaorong Gao
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China.
| | - Jiayu Chen
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China.
| |
Collapse
|
12
|
Aguila L, Suzuki J, Hill ABT, García M, de Mattos K, Therrien J, Smith LC. Dysregulated Gene Expression of Imprinted and X-Linked Genes: A Link to Poor Development of Bovine Haploid Androgenetic Embryos. Front Cell Dev Biol 2021; 9:640712. [PMID: 33869192 PMCID: PMC8044962 DOI: 10.3389/fcell.2021.640712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/25/2021] [Indexed: 11/13/2022] Open
Abstract
Mammalian uniparental embryos are efficient models for genome imprinting research and allow studies on the contribution of the paternal and maternal genomes to early embryonic development. In this study, we analyzed different methods for production of bovine haploid androgenetic embryos (hAE) to elucidate the causes behind their poor developmental potential. Results indicate that hAE can be efficiently generated by using intracytoplasmic sperm injection and oocyte enucleation at telophase II. Although androgenetic haploidy does not disturb early development up to around the 8-cell stage, androgenetic development is disturbed after the time of zygote genome activation and hAE that reach the morula stage are less capable to reach the blastocyst stage of development. Karyotypic comparisons to parthenogenetic- and ICSI-derived embryos excluded chromosomal segregation errors as causes of the developmental constraints of hAE. However, analysis of gene expression indicated abnormal levels of transcripts for key long non-coding RNAs involved in X chromosome inactivation and genomic imprinting of the KCNQ1 locus, suggesting an association with X chromosome and some imprinted loci. Moreover, transcript levels of methyltransferase 3B were significantly downregulated, suggesting potential anomalies in hAE establishing de novo methylation. Finally, the methylation status of imprinted control regions for XIST and KCNQ1OT1 genes remained hypomethylated in hAE at the morula and blastocyst stages, confirming their origin from spermatozoa. Thus, our results exclude micromanipulation and chromosomal abnormalities as major factors disturbing the normal development of bovine haploid androgenotes. In addition, although the cause of the arrest remains unclear, we have shown that the inefficient development of haploid androgenetic bovine embryos to develop to the blastocyst stage is associated with abnormal expression of key factors involved in X chromosome activity and genomic imprinting.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lawrence C. Smith
- Département de Biomédecine Vétérinaire, Centre de Recherche en Reproduction Et Fertilité, Université de Montreal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
13
|
Gao Q, Zhang W, Zhao Y, Tian Y, Wang Y, Zhang J, Geng M, Xu M, Yao C, Wang H, Li L, Liu Y, Shuai L. High-throughput screening in postimplantation haploid epiblast stem cells reveals Hs3st3b1 as a modulator for reprogramming. Stem Cells Transl Med 2021; 10:743-755. [PMID: 33511777 PMCID: PMC8046116 DOI: 10.1002/sctm.20-0468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/12/2020] [Accepted: 01/03/2021] [Indexed: 12/15/2022] Open
Abstract
Epiblast stem cells (EpiSCs) derived from postimplantation epiblast are pluripotent stem cells, epigenetically distinct from embryonic stem cells (ESCs), which are widely used in reprogramming studies. Recent achieved haploid cell lines in mammalian species open a new era for high-throughput genetic screening, due to their homozygous phenotypes. Here, we report the generation of mouse haploid EpiSCs (haEpiSCs) from postimplantation chimeric embryos at embryonic day 6.5 (E6.5). These cells maintain one set of chromosomes, express EpiSC-specific genes, and have potentials to differentiate into three germ layers. We also develop a massive mutagenesis protocol with haEpiSCs, and subsequently perform reprogramming selection using this genome-wide mutation library. Multiple modules related to various pathways are implicated. The validation experiments prove that knockout of Hst3st3b1 (one of the candidates) can promote reprogramming of EpiSCs to the ground state efficiently. Our results open the feasibility of utilizing haEpiSCs to elucidate fundamental biological processes including cell fate alternations.
Collapse
Affiliation(s)
- Qian Gao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Wenhao Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Yiding Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Yaru Tian
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Yuna Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Jinxin Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Mengyang Geng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Mei Xu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Chunmeng Yao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Haoyu Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Luyuan Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Yan Liu
- Department of Obstetrics, Tianjin First Central Hospital, Nankai University, Tianjin, People's Republic of China
| | - Ling Shuai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China.,Nankai Animal Resource Center, Nankai University, Tianjin, People's Republic of China.,Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, People's Republic of China
| |
Collapse
|
14
|
Zhang G, Li X, Sun Y, Wang X, Liu G, Huang Y. A Genetic Screen Identifies Etl4-Deficiency Capable of Stabilizing the Haploidy in Embryonic Stem Cells. Stem Cell Reports 2021; 16:29-38. [PMID: 33440180 PMCID: PMC7815943 DOI: 10.1016/j.stemcr.2020.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 01/05/2023] Open
Abstract
Mammalian haploid embryonic stem cells (haESCs) hold great promise for functional genetic studies and forward screening. However, all established haploid cells are prone to spontaneous diploidization during long-term culture, rendering application challenging. Here, we report a genome-wide loss-of-function screening that identified gene mutations that could significantly reduce the rate of self-diploidization in haESCs. We further demonstrated that CRISPR/Cas9-mediated Etl4 knockout (KO) stabilizes the haploid state in different haESC lines. More interestingly, Etl4 deficiency increases mitochondrial oxidative phosphorylation (OXPHOS) capacity and decreases glycolysis in haESCs. Mimicking this effect by regulating the energy metabolism with drugs decreased the rate of self-diploidization. Collectively, our study identified Etl4 as a novel haploidy-related factor linked to an energy metabolism transition occurring during self-diploidization of haESCs. A genome-wide genetic screen identifies several haploidy-related factors in haESCs Etl4-deficiency stabilizes the haploid state in different haESC lines Etl4-deficiency increases mitochondrial OXPHOS and decrease glycolysis in haESCs Energy metabolism regulation with drugs decreased the rate of self-diploidization
Collapse
Affiliation(s)
- Guozhong Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Xiaowen Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Yi Sun
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Xue Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Guang Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China.
| | - Yue Huang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
15
|
Sun S, Zhao Y, Shuai L. The milestone of genetic screening: Mammalian haploid cells. Comput Struct Biotechnol J 2020; 18:2471-2479. [PMID: 33005309 PMCID: PMC7509586 DOI: 10.1016/j.csbj.2020.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 12/30/2022] Open
Abstract
Mammalian haploid cells provide insights into multiple genetics approaches as have been proved by advances in homozygous phenotypes and function as gametes. Recent achievements make ploidy of mammalian haploid cells stable and improve the developmental efficiency of embryos derived from mammalian haploid cells intracytoplasmic microinjection, which promise great potentials for using mammalian haploid cells in forward and reverse genetic screening. In this review, we introduce breakthroughs of mammalian haploid cells involving in mechanisms of self-diploidization, forward genetics for various targeting genes and imprinted genes related development.
Collapse
Affiliation(s)
- Shengyi Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Yiding Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Ling Shuai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
- Tate Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Tianjin Central Hospital of Gynecology Obstetrics / Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin 300052, China
| |
Collapse
|
16
|
Yoshizawa K, Yaguchi K, Uehara R. Uncoupling of DNA Replication and Centrosome Duplication Cycles Is a Primary Cause of Haploid Instability in Mammalian Somatic Cells. Front Cell Dev Biol 2020; 8:721. [PMID: 32850837 PMCID: PMC7408703 DOI: 10.3389/fcell.2020.00721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/14/2020] [Indexed: 11/13/2022] Open
Abstract
Mammalian haploid somatic cells are unstable and prone to diploidize, but the cause of haploid instability remains largely unknown. Previously, we found that mammalian haploid somatic cells suffer chronic centrosome loss stemming from the uncoupling of DNA replication and centrosome duplication cycles. However, the lack of methodology to restore the coupling between DNA replication and centrosome duplication has precluded us from investigating the potential contribution of the haploidy-linked centrosome loss to haploid instability. In this study, we developed an experimental method that allows the re-coupling of DNA and centrosome cycles through the chronic extension of the G1/S phase without compromising cell proliferation using thymidine treatment/release cycles. Chronic extension of G1/S restored normal mitotic centrosome number and mitotic control, substantially improving the stability of the haploid state in HAP1 cells. Stabilization of the haploid state was compromised when cdk2 was inhibited during the extended G1/S, or when early G1 was chronically extended instead of G1/S, showing that the coupling of DNA and centrosome cycles rather than a general extension of the cell cycle is required for haploid stability. Our data indicate the chronic centriole loss arising from the uncoupling of centrosome and DNA cycles as a direct cause of genome instability in haploid somatic cells, and also demonstrate the feasibility of modulation of haploid stability through artificial coordination between DNA and centrosome cycles in mammalian somatic cells.
Collapse
Affiliation(s)
- Koya Yoshizawa
- Graduate School of Life Science, Hokkaido University, Hokkaido, Japan
| | - Kan Yaguchi
- Graduate School of Life Science, Hokkaido University, Hokkaido, Japan
| | - Ryota Uehara
- Graduate School of Life Science, Hokkaido University, Hokkaido, Japan
- Faculty of Advanced Life Science, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
17
|
Li Y, Li W, Zhou Q. Haploid pluripotent stem cells: twofold benefits with half the effort in genetic screening and reproduction. Curr Opin Genet Dev 2020; 64:6-12. [PMID: 32563751 DOI: 10.1016/j.gde.2020.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 11/30/2022]
Abstract
Haploid pluripotent stem cells, which are capable of self-renewal and differentiation into other cell types with only one set of chromosomes, have been established in several species from haploid embryos. Compared with diploid embryonic stem cells (ESCs), haploid embryonic stem cells (haESCs) are smaller in size, have a prolonged metaphase, and undergo self-doubling during culture. The monoallelic expression of haESCs provides great convenience for recessive inheritance research. Genetically modified haESCs also provide benefits in replacement of the gamete genomes, which not only facilitates the study of the function of imprinted genes but also potentially removes barriers to same-sex reproduction. In this review, we focus on strategies for obtaining haESCs and their potential applications in genetic screening, genomic imprinting, and unisexual reproduction.
Collapse
Affiliation(s)
- Yufei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
18
|
Zhang W, Tian Y, Gao Q, Li X, Li Y, Zhang J, Yao C, Wang Y, Wang H, Zhao Y, Zhang Q, Li L, Yu Y, Fan Y, Shuai L. Inhibition of Apoptosis Reduces Diploidization of Haploid Mouse Embryonic Stem Cells during Differentiation. Stem Cell Reports 2020; 15:185-197. [PMID: 32502463 PMCID: PMC7363743 DOI: 10.1016/j.stemcr.2020.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 01/19/2023] Open
Abstract
Phenotypes of haploid embryonic stem cells (haESCs) are dominant for recessive traits in mice. However, one major obstacle to their use is self-diploidization in daily culture. Although haESCs maintain haploidy well by deleting p53, whether they can sustain haploidy in differentiated status and the mechanism behind it remain unknown. To address this, we induced p53-deficient haESCs into multiple differentiated lineages maintain haploid status in vitro. Haploid cells also remained in chimeric embryos and teratomas arising from p53-null haESCs. Transcriptome analysis revealed that apoptosis genes were downregulated in p53-null haESCs compared with that in wild-type haESCs. Finally, we knocked out p73, another apoptosis-related gene, and observed stabilization of haploidy in haESCs. These results indicated that the main mechanism of diploidization was apoptosis-related gene-triggered cell death in haploid cell cultures. Thus, we can derive haploid somatic cells by manipulating the apoptosis gene, facilitating genetic screens of lineage-specific development. haEpiLCs and haNSCLCs differentiated from p53-null haESCs in vitro p53-null haESCs contributed to chimeric embryos and teratoma Downregulation of apoptosis genes resulted in haploidy stabilization Deletion of p73 was also of benefit for haploidy sustenance
Collapse
Affiliation(s)
- Wenhao Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Yaru Tian
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Qian Gao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China; Reproductive Medical Center, Department of Gynecology and Obstetrics, Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Xu Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Yanni Li
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Jinxin Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Chunmeng Yao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Yuna Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Haoyu Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Yiding Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Qian Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Luyuan Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Yang Yu
- Reproductive Medical Center, Department of Gynecology and Obstetrics, Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China.
| | - Yong Fan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China.
| | - Ling Shuai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China.
| |
Collapse
|
19
|
Hui Y, Zhang Y, Wang K, Pan C, Chen H, Qu L, Song X, Lan X. Goat DNMT3B: An indel mutation detection, association analysis with litter size and mRNA expression in gonads. Theriogenology 2020; 147:108-115. [PMID: 32122684 DOI: 10.1016/j.theriogenology.2020.02.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/10/2020] [Accepted: 02/16/2020] [Indexed: 12/20/2022]
Abstract
DNA methyltransferase 3β (DNMT3B) is a gene encoding a de novo methylation enzyme that is required for DNA methylation during mammalian embryo development. Previous genome-wide association analysis suggested DNMT3B is a candidate gene for goat fertility, but there is no study on the effect of DNMT3B on litter size in goat. The aim of this study was to identify possible insertion/deletion (indel) mutations associated with litter size. Seven putative indels were designed to study their association with litter size, but just one 11-bp insertion variant of intron 22 (the last intron) was found in healthy female Shaanbei white cashmere goats (SBWC goats) (n = 1534). Statistical analysis showed that the 11-bp insertion was related to the first-born litter size (P < 0.01) and the goats with the deletion/deletion genotype had a higher average first-born litter size (P < 0.01). In addition, the expression profile of the DNMT3B mRNA in goat was detected, which revealed significant differences in DNMT3B mRNA expression in the gonads. Additionally, the results of western blotting revealed that the ovaries of mothers of multi-lamb (MML) had a higher level of DNMT3B protein than the ovaries of mothers of single-lamb (MSL). Furthermore, the mRNA of DNMT3B was widely expressed in male goats. Differences in mRNA expression levels were observed in the ovaries of MSL and MML. These findings indicated that the 11-bp indel in DNMT3B was significantly associated with first-born litter size, which can be used for marker-assisted selection (MAS) of goats for breeding.
Collapse
Affiliation(s)
- Yiqing Hui
- College of Animals Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling, Shaanxi, 712100, P.R. China.
| | - Yanghai Zhang
- College of Animals Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling, Shaanxi, 712100, P.R. China.
| | - Ke Wang
- College of Animals Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling, Shaanxi, 712100, P.R. China.
| | - Chuanying Pan
- College of Animals Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling, Shaanxi, 712100, P.R. China.
| | - Hong Chen
- College of Animals Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling, Shaanxi, 712100, P.R. China.
| | - Lei Qu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, Shaanxi, 719000, PR China; College of Life Sciences, Yulin University, Yulin, Shaanxi, 719000, PR China.
| | - Xiaoyue Song
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, Shaanxi, 719000, PR China; College of Life Sciences, Yulin University, Yulin, Shaanxi, 719000, PR China.
| | - Xianyong Lan
- College of Animals Science and Technology, Northwest A&F University, No.22 Xinong Road, Yangling, Shaanxi, 712100, P.R. China.
| |
Collapse
|
20
|
He W, Chen J, Gao S. Mammalian haploid stem cells: establishment, engineering and applications. Cell Mol Life Sci 2019; 76:2349-2367. [PMID: 30888429 PMCID: PMC11105600 DOI: 10.1007/s00018-019-03069-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/23/2019] [Accepted: 03/13/2019] [Indexed: 12/19/2022]
Abstract
Haploid embryonic stem cells (haESCs) contain only one set of genomes inherited from the sperm or egg and are termed AG- or PG-haESCs, respectively. Mammalian haESCs show genome-wide hypomethylation and dysregulated imprinting, whereas they can sustain genome integrity during derivation and long-term propagation. In addition, haESCs exhibit similar pluripotency to traditional diploid ESCs but are unique because they function as gametes and have been used to produce semi-cloned animals. More strikingly, unisexual reproduction has been achieved in mice by using haESCs. In combination with a gene editing or screening system, haESCs represent a powerful tool for studies of underlying gene functions and explorations of mechanisms of genetic and epigenetic regulation not only at the cellular level in vitro but also at the animal level in vivo. More importantly, genetically edited AG-haESC lines may further serve as an ideal candidate for the establishment of a sperm bank, which is a highly cost-effective approach, and a wide range of engineered semi-cloned mice have been produced. Here, we review the historical development, characteristics, advantages and disadvantages of haESCs. Additionally, we present an in-depth discussion of the recent advances in haESCs and their potential applications.
Collapse
Affiliation(s)
- Wenteng He
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Jiayu Chen
- Clinical and Translation Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Shaorong Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China.
- Clinical and Translation Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
21
|
Cui T, Li Z, Zhou Q, Li W. Current advances in haploid stem cells. Protein Cell 2019; 11:23-33. [PMID: 31004328 PMCID: PMC6949308 DOI: 10.1007/s13238-019-0625-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/29/2019] [Indexed: 12/14/2022] Open
Abstract
Diploidy is the typical genomic mode in all mammals. Haploid stem cells are artificial cell lines experimentally derived in vitro in the form of different types of stem cells, which combine the characteristics of haploidy with a broad developmental potential and open the possibility to uncover biological mysteries at a genomic scale. To date, a multitude of haploid stem cell types from mouse, rat, monkey and humans have been derived, as more are in development. They have been applied in high-throughput genetic screens and mammalian assisted reproduction. Here, we review the generation, unique properties and broad applications of these remarkable cells.
Collapse
Affiliation(s)
- Tongtong Cui
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhikun Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
22
|
Derivation of Haploid Trophoblast Stem Cells via Conversion In Vitro. iScience 2019; 11:508-518. [PMID: 30635215 PMCID: PMC6354440 DOI: 10.1016/j.isci.2018.12.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/11/2018] [Accepted: 12/17/2018] [Indexed: 11/22/2022] Open
Abstract
Owing to their single genome, haploid cells are powerful to uncover unknown genes by performing genetic screening in mammals. However, no haploid cell line from an extraembryonic lineage has been achieved yet, which limits the application of haploid cells in placental genetic screening. Here, we show that overexpression of Cdx2 can convert haploid embryonic stem cells to trophoblast stem cells (TSCs). p53 deletion reduces diploidization during the conversion and guarantees the generation of haploid-induced TSCs (haiTSCs). haiTSCs not only share the same molecular characterization with trophoderm-derived TSCs but also possess multipotency to placental lineages in various procedures. In addition, haiTSCs can maintain haploidy in the long term, assisted by periodic sorting and with reliance on FGF4 and heparin. Finally, we perform piggyBac-mediated high-throughput mutation in haiTSCs and use them in trophoblast lineage genetic screening. Deep sequencing analysis and validation experiments prove that Htra1 is a blocker for spongiotrophoblast specification. A haploid cell line of extraembryonic lineages with self-renewal ability haiTSCs have multipotency to functional trophoblast lineages both in vitro and in vivo High-throughput screening of spongiotrophoblast specification-related genes in haiTSCs Htra1 is a blocker for spongiotrophoblast-specific differentiation
Collapse
|