1
|
Wang HS, Ma XR, Guo YH. Development and application of haploid embryonic stem cells. Stem Cell Res Ther 2024; 15:116. [PMID: 38654389 PMCID: PMC11040874 DOI: 10.1186/s13287-024-03727-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Haploid cells are a kind of cells with only one set of chromosomes. Compared with traditional diploid cells, haploid cells have unique advantages in gene screening and drug-targeted therapy, due to their phenotype being equal to the genotype. Embryonic stem cells are a kind of cells with strong differentiation potential that can differentiate into various types of cells under specific conditions in vitro. Therefore, haploid embryonic stem cells have the characteristics of both haploid cells and embryonic stem cells, which makes them have significant advantages in many aspects, such as reproductive developmental mechanism research, genetic screening, and drug-targeted therapy. Consequently, establishing haploid embryonic stem cell lines is of great significance. This paper reviews the progress of haploid embryonic stem cell research and briefly discusses the applications of haploid embryonic stem cells.
Collapse
Affiliation(s)
- Hai-Song Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 40 Daxue Road, 450052, Zhengzhou, Henan Province, China.
| | - Xin-Rui Ma
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 40 Daxue Road, 450052, Zhengzhou, Henan Province, China
| | - Yi-Hong Guo
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 40 Daxue Road, 450052, Zhengzhou, Henan Province, China.
| |
Collapse
|
2
|
Kussauer S, Dilk P, Elleisy M, Michaelis C, Lichtwark S, Rimmbach C, David R, Jung J. Heart rhythm in vitro: measuring stem cell-derived pacemaker cells on microelectrode arrays. Front Cardiovasc Med 2024; 11:1200786. [PMID: 38450366 PMCID: PMC10915086 DOI: 10.3389/fcvm.2024.1200786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
Background Cardiac arrhythmias have markedly increased in recent decades, highlighting the urgent need for appropriate test systems to evaluate the efficacy and safety of new pharmaceuticals and the potential side effects of established drugs. Methods The Microelectrode Array (MEA) system may be a suitable option, as it provides both real-time and non-invasive monitoring of cellular networks of spontaneously active cells. However, there is currently no commercially available cell source to apply this technology in the context of the cardiac conduction system (CCS). In response to this problem, our group has previously developed a protocol for the generation of pure functional cardiac pacemaker cells from mouse embryonic stem cells (ESCs). In addition, we compared the hanging drop method, which was previously utilized, with spherical plate-derived embryoid bodies (EBs) and the pacemaker cells that are differentiated from these. Results We described the application of these pacemaker cells on the MEA platform, which required a number of crucial optimization steps in terms of coating, dissociation, and cell density. As a result, we were able to generate a monolayer of pure pacemaker cells on an MEA surface that is viable and electromechanically active for weeks. Furthermore, we introduced spherical plates as a convenient and scalable method to be applied for the production of induced sinoatrial bodies. Conclusion We provide a tool to transfer modeling and analysis of cardiac rhythm diseases to the cell culture dish. Our system allows answering CCS-related queries within a cellular network, both under baseline conditions and post-drug exposure in a reliable and affordable manner. Ultimately, our approach may provide valuable guidance not only for cardiac pacemaker cells but also for the generation of an MEA test platform using other sensitive non-proliferating cell types.
Collapse
Affiliation(s)
- Sophie Kussauer
- Department of Cardiac Surgery, Rostock University Medical Centre, Rostock, Germany
- Department of Life, Light, & Matter, University of Rostock, Rostock, Germany
| | - Patrick Dilk
- Department of Cardiac Surgery, Rostock University Medical Centre, Rostock, Germany
- Department of Life, Light, & Matter, University of Rostock, Rostock, Germany
| | - Moustafa Elleisy
- Department of Cardiac Surgery, Rostock University Medical Centre, Rostock, Germany
- Department of Life, Light, & Matter, University of Rostock, Rostock, Germany
| | - Claudia Michaelis
- Department of Cardiac Surgery, Rostock University Medical Centre, Rostock, Germany
- Department of Life, Light, & Matter, University of Rostock, Rostock, Germany
| | - Sarina Lichtwark
- Department of Cardiac Surgery, Rostock University Medical Centre, Rostock, Germany
- Department of Life, Light, & Matter, University of Rostock, Rostock, Germany
| | - Christian Rimmbach
- Department of Cardiac Surgery, Rostock University Medical Centre, Rostock, Germany
- Department of Life, Light, & Matter, University of Rostock, Rostock, Germany
| | - Robert David
- Department of Cardiac Surgery, Rostock University Medical Centre, Rostock, Germany
- Department of Life, Light, & Matter, University of Rostock, Rostock, Germany
| | - Julia Jung
- Department of Cardiac Surgery, Rostock University Medical Centre, Rostock, Germany
- Department of Life, Light, & Matter, University of Rostock, Rostock, Germany
| |
Collapse
|
3
|
Zheng W, Wang L, He W, Hu X, Zhu Q, Gu L, Jiang C. Transcriptome profiles and chromatin states in mouse androgenetic haploid embryonic stem cells. Cell Prolif 2023; 56:e13436. [PMID: 36855927 PMCID: PMC10472531 DOI: 10.1111/cpr.13436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
Haploid embryonic stem cells (haESCs) are derived from the inner cell mass of the haploid blastocyst, containing only one set of chromosomes. Extensive and accurate chromatin remodelling occurs during haESC derivation, but the intrinsic transcriptome profiles and chromatin structure of haESCs have not been fully explored. We profiled the transcriptomes, nucleosome positioning, and key histone modifications of four mouse haESC lines, and compared these profiles with those of other closely-related stem cell lines, MII oocytes, round spermatids, sperm, and mouse embryonic fibroblasts. haESCs had transcriptome profiles closer to those of naïve pluripotent stem cells. Consistent with the one X chromosome in haESCs, Xist was repressed, indicating no X chromosome inactivation. haESCs and ESCs shared a similar global chromatin structure. However, a nucleosome depletion region was identified in 2056 promoters in ESCs, which was absent in haESCs. Furthermore, three characteristic spatial relationships were formed between transcription factor motifs and nucleosomes in both haESCs and ESCs, specifically in the linker region, on the nucleosome central surface, and nucleosome borders. Furthermore, the chromatin state of 4259 enhancers was off in haESCs but active in ESCs. Functional annotation of these enhancers revealed enrichment in regulation of the cell cycle, a predominantly reported mechanism of haESC self-diploidization. Notably, the transcriptome profiles and chromatin structure of haESCs were highly preserved during passaging but different from those of differentiated cell types.
Collapse
Affiliation(s)
- Weisheng Zheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Liping Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Wenteng He
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Xinjie Hu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Qianshu Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Liang Gu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Cizhong Jiang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
- Frontier Science Center for Stem Cell ResearchTongji UniversityShanghaiChina
| |
Collapse
|