1
|
Du Z, Bas-Cristóbal Menéndez A, Urban M, Hartley A, Ratsma D, Koedam M, van den Bosch TPP, Clahsen-van Groningen M, Gribnau J, Mulder J, Reinders MEJ, Baan CC, van der Eerden B, Harbottle RP, Hoogduijn MJ. Erythropoietin delivery through kidney organoids engineered with an episomal DNA vector. Stem Cell Res Ther 2025; 16:174. [PMID: 40221815 PMCID: PMC11993987 DOI: 10.1186/s13287-025-04282-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND The kidney's endocrine function is essential for maintaining body homeostasis. Erythropoietin (EPO) is one of the key endocrine factors produced by the kidney, and kidney disease patients frequently experience anemia due to impaired EPO production. In the present study we explored the potential of human induced pluripotent stem cell (iPSC)-derived kidney organoids to restore EPO production. METHODS EPO secretion by kidney organoids was examined under 1% and 20% oxygen levels. To increase the EPO secreting capacity of kidney organoids, iPSC were genetically engineered with a non-integrating scaffold/matrix attachment region (S/MAR) DNA vector containing the EPO gene and generated EPO-overexpressing (EPO+) kidney organoids. To assess the physiological effects of EPO + organoids, 2-8 organoids were implanted subcutaneously in immunodeficient mice. RESULTS Kidney organoids produced low amounts of EPO under 1% oxygen. EPO S/MAR DNA vectors persisted and continued to robustly express EPO during iPSC expansion and kidney organoid differentiation without interfering with cellular proliferation. EPO + iPSC demonstrated efficient differentiation into kidney organoids. One-month post-implantation, EPO + organoids displayed continuously elevated EPO mRNA levels and significantly increased endothelial cell numbers compared to control organoids. Hematocrit levels were notably elevated in mice implanted with EPO + organoids in an organoid number-dependent manner. EPO + organoids furthermore influenced bone homeostasis in their hosts, evidenced by a change in trabecular bone composition. CONCLUSION Kidney organoids modified by EPO S/MAR DNA vector allow stable long-term delivery of EPO. The observed physiological effects following the implantation of EPO + organoids underscore the potential of gene-edited kidney organoids for endocrine restoration therapy.
Collapse
Affiliation(s)
- Z Du
- Erasmus MC Transplant Institute, Department of Internal Medicine, University Medical Center, Wytemaweg 80, Rotterdam, 3015 CN, The Netherlands
| | - A Bas-Cristóbal Menéndez
- Erasmus MC Transplant Institute, Department of Internal Medicine, University Medical Center, Wytemaweg 80, Rotterdam, 3015 CN, The Netherlands
- Department of Pediatrics, Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M Urban
- DNA Vector Lab, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - A Hartley
- DNA Vector Lab, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - D Ratsma
- Department of Internal Medicine, University Medical Center, Rotterdam, The Netherlands
| | - M Koedam
- Department of Internal Medicine, University Medical Center, Rotterdam, The Netherlands
| | - T P P van den Bosch
- Department of Pathology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - M Clahsen-van Groningen
- Department of Pathology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - J Gribnau
- Department of Developmental Biology and iPS Core Facility, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - J Mulder
- Department of Pediatrics, Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - M E J Reinders
- Erasmus MC Transplant Institute, Department of Internal Medicine, University Medical Center, Wytemaweg 80, Rotterdam, 3015 CN, The Netherlands
| | - C C Baan
- Erasmus MC Transplant Institute, Department of Internal Medicine, University Medical Center, Wytemaweg 80, Rotterdam, 3015 CN, The Netherlands
| | - B van der Eerden
- Department of Internal Medicine, University Medical Center, Rotterdam, The Netherlands
| | - R P Harbottle
- DNA Vector Lab, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin J Hoogduijn
- Erasmus MC Transplant Institute, Department of Internal Medicine, University Medical Center, Wytemaweg 80, Rotterdam, 3015 CN, The Netherlands.
| |
Collapse
|
2
|
Lotter C, Kuzucu EÜ, Casper J, Alter CL, Puligilla RD, Detampel P, Lopez JS, Ham AS, Huwyler J. Comparison of ionizable lipids for lipid nanoparticle mediated DNA delivery. Eur J Pharm Sci 2024; 203:106898. [PMID: 39260517 DOI: 10.1016/j.ejps.2024.106898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/13/2024]
Abstract
Lipid nanoparticles (LNPs) are successfully used for RNA-based gene delivery. In the context of gene replacement therapies, however, delivery of DNA expression plasmids using LNPs as a non-viral vector could be a promising strategy for the induction of longer-lasting effects. Therefore, DNA expression plasmids (3 to 4 kbp) coding for fluorescent markers or luciferase were combined with LNPs. Different clinically used ionizable lipids (DLin-MC3-DMA, SM-102, and ALC-0315) were tested to compare their influence on DNA plasmid delivery. DNA-LNPs were characterized with respect to their colloidal properties (size, polydispersity, ζ-potential, morphology), in vitro performance (cellular uptake, DNA delivery, and gene expression), and in vivo characteristics (biodistribution and luciferase gene expression). At an optimized N/P ratio of 6, spherical, small and monodisperse particles with anionic ζ-potential were obtained. Efficient transgene expression was achieved with a minimum amount of 1 pg DNA per initially plated cells. Zebrafish studies allowed selection of DNA-LNPs, which demonstrated prolonged blood circulation, avoidance of macrophage clearance, and vascular extravasation. Our comparative study demonstrates a high impact of the ionizable lipid type on DNA-LNP performance. Superior transfection efficiency of DNA-LNPs containing the ionizable lipid ALC-0315 was confirmed in wildtype mice.
Collapse
Affiliation(s)
- Claudia Lotter
- Pharmazentrum, Division of Pharmaceutical Technology, University of Basel, CH-4056 Basel, Switzerland
| | - Evrim Ümit Kuzucu
- Pharmazentrum, Division of Pharmaceutical Technology, University of Basel, CH-4056 Basel, Switzerland
| | - Jens Casper
- Pharmazentrum, Division of Pharmaceutical Technology, University of Basel, CH-4056 Basel, Switzerland
| | - Claudio Luca Alter
- Pharmazentrum, Division of Pharmaceutical Technology, University of Basel, CH-4056 Basel, Switzerland; Swiss Nanoscience Institute, University of Basel, CH-4056 Basel, Switzerland
| | - Ramya Deepthi Puligilla
- Pharmazentrum, Division of Pharmaceutical Technology, University of Basel, CH-4056 Basel, Switzerland
| | - Pascal Detampel
- Pharmazentrum, Division of Pharmaceutical Technology, University of Basel, CH-4056 Basel, Switzerland
| | - Juana Serrano Lopez
- Instituto Investigación Sanitaria Fundación Jiménez Díaz, ES-28015 Madrid, Spain
| | | | - Jörg Huwyler
- Pharmazentrum, Division of Pharmaceutical Technology, University of Basel, CH-4056 Basel, Switzerland.
| |
Collapse
|
3
|
Niwa R, Matsumoto T, Liu AY, Kawato M, Kondo T, Tsukita K, Gee P, Inoue H, Maurissen TL, Woltjen K. Enrichment of Allelic Editing Outcomes by Prime Editing in Induced Pluripotent Stem Cells. CRISPR J 2024; 7:293-304. [PMID: 39436282 DOI: 10.1089/crispr.2024.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
Gene editing in human induced pluripotent stem (iPS) cells with programmable nucleases facilitates reliable disease models, but methods using double-strand break repair often produce random on-target by-products. Prime editing (PE) combines Cas9 nickase with reverse transcriptase and PE guide RNA (pegRNA) encoding a repair template to reduce by-products. We implemented a GMP-compatible protocol for transfecting Cas9- or PE-2A-mCherry plasmids to track and fractionate human iPS cells based on PE expression level. We compared the editing outcomes of Cas9- and PE-based methods in a GFP-to-BFP conversion assay at the HEK3 benchmark locus and at the APOE Alzheimer's risk locus, revealing superior precision of PE at high expression levels. Moreover, sorting cells for PE expression level influenced allelic editing outcomes at the target loci. We expect that our findings will aid in the creation of gene-edited human iPS cells with intentional heterozygous and homozygous genotypes.
Collapse
Affiliation(s)
- Ryo Niwa
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoko Matsumoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Alexander Y Liu
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Maki Kawato
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Takayuki Kondo
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- iPSC-Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
- Medical-Risk Avoidance Based On iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Kayoko Tsukita
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- iPSC-Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
| | - Peter Gee
- MaxCyte Inc., Rockville, Maryland, USA
| | - Haruhisa Inoue
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- iPSC-Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
- Medical-Risk Avoidance Based On iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Thomas L Maurissen
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Knut Woltjen
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Goolab S, Scholefield J. Making gene editing accessible in resource limited environments: recommendations to guide a first-time user. Front Genome Ed 2024; 6:1464531. [PMID: 39386178 PMCID: PMC11461239 DOI: 10.3389/fgeed.2024.1464531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024] Open
Abstract
The designer nuclease, CRISPR-Cas9 system has advanced the field of genome engineering owing to its programmability and ease of use. The application of these molecular scissors for genome engineering earned the developing researchers the Nobel prize in Chemistry in the year 2020. At present, the potential of this technology to improve global challenges continues to grow exponentially. CRISPR-Cas9 shows promise in the recent advances made in the Global North such as the FDA-approved gene therapy for the treatment of sickle cell anaemia and β-thalassemia and the gene editing of porcine kidney for xenotransplantation into humans affected by end-stage kidney failure. Limited resources, low government investment with an allocation of 1% of gross domestic production to research and development including a shortage of skilled professionals and lack of knowledge may preclude the use of this revolutionary technology in the Global South where the countries involved have reduced science and technology budgets. Focusing on the practical application of genome engineering, successful genetic manipulation is not easily accomplishable and is influenced by the chromatin landscape of the target locus, guide RNA selection, the experimental design including the profiling of the gene edited cells, which impacts the overall outcome achieved. Our assessment primarily delves into economical approaches of performing efficient genome engineering to support the first-time user restricted by limited resources with the aim of democratizing the use of the technology across low- and middle-income countries. Here we provide a comprehensive overview on existing experimental techniques, the significance for target locus analysis and current pitfalls such as the underrepresentation of global genetic diversity. Several perspectives of genome engineering approaches are outlined, which can be adopted in a resource limited setting to enable a higher success rate of genome editing-based innovations in low- and middle-income countries.
Collapse
Affiliation(s)
- Shivani Goolab
- Bioengineering and Integrated Genomics Group, Future Production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Janine Scholefield
- Bioengineering and Integrated Genomics Group, Future Production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Human Genetics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
5
|
Stranak Z, Ardan T, Nemesh Y, Toms M, Toualbi L, Harbottle R, Ellederova Z, Lytvynchuk L, Petrovski G, Motlik J, Moosajee M, Kozak I. Feasibility of Direct Vitrectomy-Sparing Subretinal Injection for Gene Delivery in Large Animals. Curr Eye Res 2024; 49:879-887. [PMID: 38666493 DOI: 10.1080/02713683.2024.2343335] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/09/2024] [Indexed: 07/18/2024]
Abstract
PURPOSE To assess the safety and feasibility of direct vitrectomy-sparing subretinal injection for gene delivery in a large animal model. METHODS The experimental Liběchov minipigs were used for subretinal delivery of a plasmid DNA vector (pS/MAR-CMV-copGFP) with cytomegalovirus (CMV) promoter, green fluorescent protein (GFP) reporter (copGFP) and a scaffold/matrix attachment region (S/MAR) sequence. The eyes were randomized to subretinal injection of the vector following pars plana vitrectomy (control group) or a direct injection without prior vitrectomy surgery (experimental group). Intra- and post-operative observations up to 30 days after surgery were compared. RESULTS Six eyes of three mini-pigs underwent surgery for delivery into the subretinal space. Two eyes in the control group were operated with a classical approach (lens-sparing vitrectomy and posterior hyaloid detachment). The other four eyes in the experimental group were injected directly with a subretinal cannula without vitrectomy surgery. No adverse events, such as endophthalmitis, retinal detachment and intraocular pressure elevation were observed post-operatively. The eyes in the experimental group had both shorter surgical time and recovery while achieving the same surgical goal. CONCLUSIONS This pilot study demonstrates that successful subretinal delivery of gene therapy vectors is achievable using a direct injection without prior vitrectomy surgery.
Collapse
Affiliation(s)
- Zbynek Stranak
- Department of Ophthalmology, Charles University, Prague and the Kralovske Vinohrady University Hospital, Prague, Czech Republic
| | - Taras Ardan
- Libechov Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czech Republic
| | - Yaroslav Nemesh
- Libechov Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czech Republic
| | - Maria Toms
- UCL Institute of Ophthalmology, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Lyes Toualbi
- UCL Institute of Ophthalmology, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | | | - Zdenka Ellederova
- Libechov Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czech Republic
| | - Lyubomyr Lytvynchuk
- Department of Ophthalmology, Justus-Liebig-University Giessen, Eye Clinic, University Hospital Giessen and Marburg GmbH, Giessen, Germany
- Karl Landsteiner Institute for Retinal Research and Imaging, Vienna, Austria
| | - Goran Petrovski
- Department of Ophthalmology, Oslo University Hospital, Kirkeveien 166, Oslo, Norway
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Oslo University Hospital and Institute for Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Ophthalmology, University of Split School of Medicine and University Hospital Centre, Split, Croatia
| | - Jan Motlik
- Libechov Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czech Republic
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Igor Kozak
- Department of Vitreoretinal Surgery and Research and Innovation, Moorfields Eye Hospitals UAE, Abu Dhabi
| |
Collapse
|
6
|
Hartley A, Burger L, Wincek CL, Dons L, Li T, Grewenig A, Taşgın T, Urban M, Roig-Merino A, Ghazvini M, Harbottle RP. A Simple Nonviral Method to Generate Human Induced Pluripotent Stem Cells Using SMAR DNA Vectors. Genes (Basel) 2024; 15:575. [PMID: 38790204 PMCID: PMC11121542 DOI: 10.3390/genes15050575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Induced pluripotent stem cells (iPSCs) are a powerful tool for biomedical research, but their production presents challenges and safety concerns. Yamanaka and Takahashi revolutionised the field by demonstrating that somatic cells could be reprogrammed into pluripotent cells by overexpressing four key factors for a sufficient time. iPSCs are typically generated using viruses or virus-based methods, which have drawbacks such as vector persistence, risk of insertional mutagenesis, and oncogenesis. The application of less harmful nonviral vectors is limited as conventional plasmids cannot deliver the levels or duration of the factors necessary from a single transfection. Hence, plasmids that are most often used for reprogramming employ the potentially oncogenic Epstein-Barr nuclear antigen 1 (EBNA-1) system to ensure adequate levels and persistence of expression. In this study, we explored the use of nonviral SMAR DNA vectors to reprogram human fibroblasts into iPSCs. We show for the first time that iPSCs can be generated using nonviral plasmids without the use of EBNA-1 and that these DNA vectors can provide sufficient expression to induce pluripotency. We describe an optimised reprogramming protocol using these vectors that can produce high-quality iPSCs with comparable pluripotency and cellular function to those generated with viruses or EBNA-1 vectors.
Collapse
Affiliation(s)
- Anna Hartley
- DNA Vector Laboratory, German Cancer Research Center, 69120 Heidelberg, Germany; (A.H.); (A.G.); (A.R.-M.)
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Luisa Burger
- DNA Vector Laboratory, German Cancer Research Center, 69120 Heidelberg, Germany; (A.H.); (A.G.); (A.R.-M.)
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Cornelia L. Wincek
- DNA Vector Laboratory, German Cancer Research Center, 69120 Heidelberg, Germany; (A.H.); (A.G.); (A.R.-M.)
| | - Lieke Dons
- Erasmus MC iPS Core Facility, Erasmus Medical Centre, 3015 GD Rotterdam, The Netherlands (M.G.)
| | - Tracy Li
- Erasmus MC iPS Core Facility, Erasmus Medical Centre, 3015 GD Rotterdam, The Netherlands (M.G.)
| | - Annabel Grewenig
- DNA Vector Laboratory, German Cancer Research Center, 69120 Heidelberg, Germany; (A.H.); (A.G.); (A.R.-M.)
| | - Toros Taşgın
- DNA Vector Laboratory, German Cancer Research Center, 69120 Heidelberg, Germany; (A.H.); (A.G.); (A.R.-M.)
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Manuela Urban
- DNA Vector Laboratory, German Cancer Research Center, 69120 Heidelberg, Germany; (A.H.); (A.G.); (A.R.-M.)
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Alicia Roig-Merino
- DNA Vector Laboratory, German Cancer Research Center, 69120 Heidelberg, Germany; (A.H.); (A.G.); (A.R.-M.)
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Mehrnaz Ghazvini
- Erasmus MC iPS Core Facility, Erasmus Medical Centre, 3015 GD Rotterdam, The Netherlands (M.G.)
| | - Richard P. Harbottle
- DNA Vector Laboratory, German Cancer Research Center, 69120 Heidelberg, Germany; (A.H.); (A.G.); (A.R.-M.)
| |
Collapse
|
7
|
Toualbi L, Toms M, Almeida PV, Harbottle R, Moosajee M. Gene Augmentation of CHM Using Non-Viral Episomal Vectors in Models of Choroideremia. Int J Mol Sci 2023; 24:15225. [PMID: 37894906 PMCID: PMC10607001 DOI: 10.3390/ijms242015225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/19/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Choroideremia (CHM) is an X-linked chorioretinal dystrophy leading to progressive retinal degeneration that results in blindness by late adulthood. It is caused by mutations in the CHM gene encoding the Rab Escort Protein 1 (REP1), which plays a crucial role in the prenylation of Rab proteins ensuring correct intracellular trafficking. Gene augmentation is a promising therapeutic strategy, and there are several completed and ongoing clinical trials for treating CHM using adeno-associated virus (AAV) vectors. However, late-phase trials have failed to show significant functional improvements and have raised safety concerns about inflammatory events potentially caused by the use of viruses. Therefore, alternative non-viral therapies are desirable. Episomal scaffold/matrix attachment region (S/MAR)-based plasmid vectors were generated containing the human CHM coding sequence, a GFP reporter gene, and ubiquitous promoters (pS/MAR-CHM). The vectors were assessed in two choroideremia disease model systems: (1) CHM patient-derived fibroblasts and (2) chmru848 zebrafish, using Western blotting to detect REP1 protein expression and in vitro prenylation assays to assess the rescue of prenylation function. Retinal immunohistochemistry was used to investigate vector expression and photoreceptor morphology in injected zebrafish retinas. The pS/MAR-CHM vectors generated persistent REP1 expression in CHM patient fibroblasts and showed a significant rescue of prenylation function by 75%, indicating correction of the underlying biochemical defect associated with CHM. In addition, GFP and human REP1 expression were detected in zebrafish microinjected with the pS/MAR-CHM at the one-cell stage. Injected chmru848 zebrafish showed increased survival, prenylation function, and improved retinal photoreceptor morphology. Non-viral S/MAR vectors show promise as a potential gene-augmentation strategy without the use of immunogenic viral components, which could be applicable to many inherited retinal disease genes.
Collapse
Affiliation(s)
- Lyes Toualbi
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
| | - Maria Toms
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
| | | | - Richard Harbottle
- cDNA Vector Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (P.V.A.)
| | - Mariya Moosajee
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
- Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| |
Collapse
|
8
|
Lazaris VM, Simantirakis E, Stavrou EF, Verras M, Sgourou A, Keramida MK, Vassilopoulos G, Athanassiadou A. Non-Viral Episomal Vector Mediates Efficient Gene Transfer of the β-Globin Gene into K562 and Human Haematopoietic Progenitor Cells. Genes (Basel) 2023; 14:1774. [PMID: 37761914 PMCID: PMC10530965 DOI: 10.3390/genes14091774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/13/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
β-Thalassemia is a subgroup of inherited blood disorders associated with mild to severe anemia with few and limited conventional therapy options. Lately, lentiviral vector-based gene therapy has been successfully applied for disease treatment. However, the current development of non-viral episomal vectors (EV), non-integrating and non-coding for viral proteins, may be helpful in generating valid alternatives to viral vectors. We constructed a non-viral, episomal vector pEPβ-globin for the physiological β-globin gene based on two human chromosomal elements: the scaffold or matrix attachment region (S/MAR), allowing for long nuclear retention and non-integration and the β-globin replication initiation region (IR), allowing for enhancement of replication and establishment. After nucleofections into K562 cells with a transfection efficiency of 24.62 ± 7.7%, the vector induces stable transfection and is detected in long-term cultures as a non-integrating, circular episome expressing the β-globin gene efficiently. Transfections into CD34+ cells demonstrate an average efficiency of 15.57 ± 11.64%. In the colony-forming cell assay, fluorescent colonies are 92.21%, which is comparable to those transfected with vector pEP-IR at 92.68%. Additionally, fluorescent colonies produce β-globin mRNA at a physiologically 3-fold higher level than the corresponding non-transfected cells. Vector pEPβ-globin provides the basis for the development of therapeutic EV for gene therapy of β-thalassemias.
Collapse
Affiliation(s)
- Vassileios M. Lazaris
- Department of General Biology, Medical School, University of Patras, 26504 Patras, Greece; (V.M.L.); (E.F.S.); (M.V.)
| | - Emmanouil Simantirakis
- Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece; (E.S.); (G.V.)
| | - Eleana F. Stavrou
- Department of General Biology, Medical School, University of Patras, 26504 Patras, Greece; (V.M.L.); (E.F.S.); (M.V.)
| | - Meletios Verras
- Department of General Biology, Medical School, University of Patras, 26504 Patras, Greece; (V.M.L.); (E.F.S.); (M.V.)
| | - Argyro Sgourou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece;
| | - Maria K. Keramida
- IVF and Andrology Labs, IVF Unit, General University Hospital of Patras, 26504 Patras, Greece;
| | - George Vassilopoulos
- Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece; (E.S.); (G.V.)
| | - Aglaia Athanassiadou
- Department of General Biology, Medical School, University of Patras, 26504 Patras, Greece; (V.M.L.); (E.F.S.); (M.V.)
| |
Collapse
|
9
|
Williams JA, Paez PA. Improving cell and gene therapy safety and performance using next-generation Nanoplasmid vectors. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:494-503. [PMID: 37346980 PMCID: PMC10280095 DOI: 10.1016/j.omtn.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
The cell and gene therapy industry has employed the same plasmid technology for decades in vaccination, cell and gene therapy, and as a raw material in viral vector and RNA production. While canonical plasmids contain antibiotic resistance markers in bacterial backbones greater than 2,000 base pairs, smaller backbones increase expression level and durability and reduce the cell-transfection-associated toxicity and transgene silencing that can occur with canonical plasmids. Therefore, the small backbone and antibiotic-free selection method of Nanoplasmid vectors have proven to be a transformative replacement in a wide variety of applications, offering a greater safety profile and efficiency than traditional plasmids. This review provides an overview of the Nanoplasmid technology and highlights its specific benefits for various applications with examples from recent publications.
Collapse
Affiliation(s)
- James A. Williams
- Research & Development, Aldevron, 4055 41st Avenue S, Fargo, ND 58104, USA
| | - Patrick A. Paez
- Research & Development, Aldevron, 4055 41st Avenue S, Fargo, ND 58104, USA
| |
Collapse
|
10
|
Giandomenico SL, Schuman EM. Genetic manipulation and targeted protein degradation in mammalian systems: practical considerations, tips and tricks for discovery research. FEBS Open Bio 2023. [PMID: 36815235 DOI: 10.1002/2211-5463.13581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/13/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023] Open
Abstract
Gaining a mechanistic understanding of the molecular pathways underpinning cellular and organismal physiology invariably relies on the perturbation of an experimental system to infer causality. This can be achieved either by genetic manipulation or by pharmacological treatment. Generally, the former approach is applicable to a wider range of targets, is more precise, and can address more nuanced functional aspects. Despite such apparent advantages, genetic manipulation (i.e., knock-down, knock-out, mutation, and tagging) in mammalian systems can be challenging due to problems with delivery, low rates of homologous recombination, and epigenetic silencing. The advent of CRISPR-Cas9 in combination with the development of robust differentiation protocols that can efficiently generate a variety of different cell types in vitro has accelerated our ability to probe gene function in a more physiological setting. Often, the main obstacle in this path of enquiry is to achieve the desired genetic modification. In this short review, we will focus on gene perturbation in mammalian cells and how editing and differentiation of pluripotent stem cells can complement more traditional approaches. Additionally, we introduce novel targeted protein degradation approaches as an alternative to DNA/RNA-based manipulation. Our aim is to present a broad overview of recent approaches and in vitro systems to study mammalian cell biology. Due to space limitations, we limit ourselves to providing the inexperienced reader with a conceptual framework on how to use these tools, and for more in-depth information, we will provide specific references throughout.
Collapse
Affiliation(s)
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| |
Collapse
|
11
|
Farhoudi M, Sadigh-Eteghad S, Farjami A, Salatin S. Nanoparticle and Stem Cell Combination Therapy for the Management of Stroke. Curr Pharm Des 2023; 29:15-29. [PMID: 36515043 DOI: 10.2174/1381612829666221213113119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 12/15/2022]
Abstract
Stroke is currently one of the primary causes of morbidity and mortality worldwide. Unfortunately, the available treatments for stroke are still extremely limited. Indeed, stem cell (SC) therapy is a new option for the treatment of stroke that could significantly expand the therapeutic time window of stroke. Some proposed mechanisms for stroke-based SC therapy are the incorporation of SCs into the host brain to replace dead or damaged cells/tissues. Moreover, acute cell delivery can inhibit apoptosis and decrease lesion size, providing immunomudolatory and neuroprotection effects. However, several major SC problems related to SCs such as homing, viability, uncontrolled differentiation, and possible immune response, have limited SC therapy. A combination of SC therapy with nanoparticles (NPs) can be a solution to address these challenges. NPs have received considerable attention in regulating and controlling the behavior of SCs because of their unique physicochemical properties. By reviewing the pathophysiology of stroke and the therapeutic benefits of SCs and NPs, we hypothesize that combined therapy will offer a promising future in the field of stroke management. In this work, we discuss recent literature in SC research combined with NP-based strategies that may have a synergistic outcome after stroke incidence.
Collapse
Affiliation(s)
- Mehdi Farhoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afsaneh Farjami
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Salatin
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Khan SU, Khan MU, Khan MI, Kalsoom F, Zahra A. Current Landscape and Emerging Opportunities of Gene Therapy with Non-viral Episomal Vectors. Curr Gene Ther 2023; 23:135-147. [PMID: 36200188 DOI: 10.2174/1566523222666221004100858] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 11/22/2022]
Abstract
Gene therapy has proven to be extremely beneficial in the management of a wide range of genetic disorders for which there are currently no or few effective treatments. Gene transfer vectors are very significant in the field of gene therapy. It is possible to attach a non-viral attachment vector to the donor cell chromosome instead of integrating it, eliminating the negative consequences of both viral and integrated vectors. It is a safe and optimal express vector for gene therapy because it does not cause any adverse effects. However, the modest cloning rate, low expression, and low clone number make it unsuitable for use in gene therapy. Since the first generation of non-viral attachment episomal vectors was constructed, various steps have been taken to regulate their expression and stability, such as truncating the MAR element, lowering the amount of CpG motifs, choosing appropriate promoters and utilizing regulatory elements. This increases the transfection effectiveness of the non-viral attachment vector while also causing it to express at a high level and maintain a high level of stability. A vector is a genetic construct commonly employed in gene therapy to treat various systemic disorders. This article examines the progress made in the development of various optimization tactics for nonviral attachment vectors and the future applications of these vectors in gene therapy.
Collapse
Affiliation(s)
- Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Munir Ullah Khan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Muhammad Imran Khan
- School of Life Sciences and Medicine, University of Science and Technology of China,Hefei 230027,People's Republic of China
- Department of Pathology, District Headquarters Hospital Jhang 35200, Punjab Province, Islamic Republic of Pakistan
| | - Fadia Kalsoom
- Department of Pathology, District Headquarters Hospital Jhang 35200, Punjab Province, Islamic Republic of Pakistan
| | - Aqeela Zahra
- Department of Family and Community Medicine. College of Medicine, University of Ha'il, Ha'il 81451, Saudi Arabia
| |
Collapse
|
13
|
Episomes and Transposases-Utilities to Maintain Transgene Expression from Nonviral Vectors. Genes (Basel) 2022; 13:genes13101872. [PMID: 36292757 PMCID: PMC9601623 DOI: 10.3390/genes13101872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/04/2022] Open
Abstract
The efficient delivery and stable transgene expression are critical for applications in gene therapy. While carefully selected and engineered viral vectors allowed for remarkable clinical successes, they still bear significant safety risks. Thus, nonviral vectors are a sound alternative and avoid genotoxicity and adverse immunological reactions. Nonviral vector systems have been extensively studied and refined during the last decades. Emerging knowledge of the epigenetic regulation of replication and spatial chromatin organisation, as well as new technologies, such as Crispr/Cas, were employed to enhance the performance of different nonviral vector systems. Thus, nonviral vectors are in focus and hold some promising perspectives for future applications in gene therapy. This review addresses three prominent nonviral vector systems: the Sleeping Beauty transposase, S/MAR-based episomes, and viral plasmid replicon-based EBV vectors. Exemplarily, we review different utilities, modifications, and new concepts that were pursued to overcome limitations regarding stable transgene expression and mitotic stability. New insights into the nuclear localisation of nonviral vector molecules and the potential consequences thereof are highlighted. Finally, we discuss the remaining limitations and provide an outlook on possible future developments in nonviral vector technology.
Collapse
|
14
|
Elder N, Fattahi F, McDevitt TC, Zholudeva LV. Diseased, differentiated and difficult: Strategies for improved engineering of in vitro neurological systems. Front Cell Neurosci 2022; 16:962103. [PMID: 36238834 PMCID: PMC9550918 DOI: 10.3389/fncel.2022.962103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/22/2022] [Indexed: 12/01/2022] Open
Abstract
The rapidly growing field of cellular engineering is enabling scientists to more effectively create in vitro models of disease and develop specific cell types that can be used to repair damaged tissue. In particular, the engineering of neurons and other components of the nervous system is at the forefront of this field. The methods used to engineer neural cells can be largely divided into systems that undergo directed differentiation through exogenous stimulation (i.e., via small molecules, arguably following developmental pathways) and those that undergo induced differentiation via protein overexpression (i.e., genetically induced and activated; arguably bypassing developmental pathways). Here, we highlight the differences between directed differentiation and induced differentiation strategies, how they can complement one another to generate specific cell phenotypes, and impacts of each strategy on downstream applications. Continued research in this nascent field will lead to the development of improved models of neurological circuits and novel treatments for those living with neurological injury and disease.
Collapse
Affiliation(s)
- Nicholas Elder
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, United States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
- Gladstone Institutes, San Francisco, CA, United States
| | - Faranak Fattahi
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, United States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
| | - Todd C. McDevitt
- Gladstone Institutes, San Francisco, CA, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States
- Sana Biotechnology, Inc., South San Francisco, CA, United States
| | - Lyandysha V. Zholudeva
- Gladstone Institutes, San Francisco, CA, United States
- *Correspondence: Lyandysha V. Zholudeva,
| |
Collapse
|
15
|
Pellegrini S, Zamarian V, Sordi V. Strategies to Improve the Safety of iPSC-Derived β Cells for β Cell Replacement in Diabetes. Transpl Int 2022; 35:10575. [PMID: 36090777 PMCID: PMC9448870 DOI: 10.3389/ti.2022.10575] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022]
Abstract
Allogeneic islet transplantation allows for the re-establishment of glycemic control with the possibility of insulin independence, but is severely limited by the scarcity of organ donors. However, a new source of insulin-producing cells could enable the widespread use of cell therapy for diabetes treatment. Recent breakthroughs in stem cell biology, particularly pluripotent stem cell (PSC) techniques, have highlighted the therapeutic potential of stem cells in regenerative medicine. An understanding of the stages that regulate β cell development has led to the establishment of protocols for PSC differentiation into β cells, and PSC-derived β cells are appearing in the first pioneering clinical trials. However, the safety of the final product prior to implantation remains crucial. Although PSC differentiate into functional β cells in vitro, not all cells complete differentiation, and a fraction remain undifferentiated and at risk of teratoma formation upon transplantation. A single case of stem cell-derived tumors may set the field back years. Thus, this review discusses four approaches to increase the safety of PSC-derived β cells: reprogramming of somatic cells into induced PSC, selection of pure differentiated pancreatic cells, depletion of contaminant PSC in the final cell product, and control or destruction of tumorigenic cells with engineered suicide genes.
Collapse
|