1
|
Guo L, Wang J, Yu D, Zhang Y, Zhang H, Guo Y. Expression and Functional Analysis of the Smo Protein in Apis mellifera. INSECTS 2024; 15:555. [PMID: 39057287 PMCID: PMC11277047 DOI: 10.3390/insects15070555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/14/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Smoothened (Smo) is a critical component regulating the Hedgehog signaling pathway. However, whether Smo is associated with the modulation of olfactory recognition capabilities of bees remains unclear. In this study, we amplified Smo from Apis mellifera. The coding sequence of Smo was 2952 bp long, encoded 983 amino acids. Smo was most highly expressed in the antennae. Cyclopamine (200 μg/mL) significantly reduced but purmorphamine (800 μg/mL) significantly increased Smo expression (p < 0.05). OR152 and OR2 expression in the cyclopamine group significantly decreased, whereas OR152 expression in the purmorphamine group significantly increased (p < 0.05). A significant decrease in the relative values of electroantennography was observed in the cyclopamine group exposed to neral. Behavioral tests indicated a significant decrease in the attractive rates of neral, VUAA1, linalool, and methyl heptenone in the cyclopamine group. Conversely, the selection rates of linalool and methyl heptenone in the purmorphamine group significantly increased. Our findings indicate that Smo may play a role in modulating olfactory receptors in bees.
Collapse
Affiliation(s)
- Lina Guo
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (L.G.); (J.W.); (D.Y.); (Y.Z.); (H.Z.)
| | - Jue Wang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (L.G.); (J.W.); (D.Y.); (Y.Z.); (H.Z.)
| | - Diandian Yu
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (L.G.); (J.W.); (D.Y.); (Y.Z.); (H.Z.)
| | - Yu Zhang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (L.G.); (J.W.); (D.Y.); (Y.Z.); (H.Z.)
| | - Huiman Zhang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (L.G.); (J.W.); (D.Y.); (Y.Z.); (H.Z.)
| | - Yuan Guo
- College of Horticulture, Shanxi Agricultural University, Taiyuan 030031, China
| |
Collapse
|
2
|
Yamakawa K, Koyanagi-Aoi M, Machinaga A, Kakiuchi N, Hirano T, Kodama Y, Aoi T. Blockage of retinoic acid signaling via RARγ suppressed the proliferation of pancreatic cancer cells by arresting the cell cycle progression of the G1-S phase. Cancer Cell Int 2023; 23:94. [PMID: 37198667 DOI: 10.1186/s12935-023-02928-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/18/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Our study and several studies have reported that in some cancers, including pancreatic ductal adenocarcinoma (PDAC), the expression of squamous lineage markers, such as esophagus-tissue-specific genes, correlated with a poor prognosis. However, the mechanism by which the acquisition of squamous lineage phenotypes leads to a poor prognosis remains unclear. We previously reported that retinoic acid signaling via retinoic acid receptor γ (RARγ signaling) determines the differentiation lineage into the esophageal squamous epithelium. These findings hypothesized that the activation of RARγ signaling contributed to acquiring squamous lineage phenotypes and malignant behavior in PDAC. METHODS This study utilized public databases and immunostaining of surgical specimens to examine RARγ expression in PDAC. We evaluated the function of RARγ signaling by inhibitors and siRNA knockdown using a PDAC cell line and patient-derived PDAC organoids. The mechanism of the tumor-suppressive effects by blocking RARγ signaling was examined by a cell cycle analysis, apoptosis assays, RNA sequencing and Western blotting. RESULTS RARγ expression in pancreatic intraepithelial neoplasia (PanIN) and PDAC was higher than that in the normal pancreatic duct. Its expression correlated with a poor patient prognosis in PDAC. In PDAC cell lines, blockade of RARγ signaling suppressed cell proliferation by inducing cell cycle arrest in the G1 phase without causing apoptosis. We demonstrated that blocking RARγ signaling upregulated p21 and p27 and downregulated many cell cycle genes, including cyclin-dependent kinase 2 (CDK2), CDK4 and CDK6. Furthermore, using patient-derived PDAC organoids, we confirmed the tumor-suppressive effect of RARγ inhibition and indicated the synergistic effects of RARγ inhibition with gemcitabine. CONCLUSIONS This study clarified the function of RARγ signaling in PDAC progression and demonstrated the tumor-suppressive effect of selective blockade of RARγ signaling against PDAC. These results suggest that RARγ signaling might be a new therapeutic target for PDAC.
Collapse
Affiliation(s)
- Kohei Yamakawa
- Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Michiyo Koyanagi-Aoi
- Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan
- Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, Kobe, Hyogo, Japan
| | - Akihito Machinaga
- Oncology Tsukuba Research Department, Discovery, Medicine Creation, DHBL, Eisai Co., Ltd, Tsukuba, Ibaraki, Japan
| | - Nobuyuki Kakiuchi
- Department of Pathology and Tumour Biology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
- The Hakubi Center for Advanced Research, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Tomonori Hirano
- Department of Pathology and Tumour Biology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Yuzo Kodama
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Takashi Aoi
- Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan.
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan.
- Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, Kobe, Hyogo, Japan.
| |
Collapse
|
3
|
The role of Hedgehog and Notch signaling pathway in cancer. MOLECULAR BIOMEDICINE 2022; 3:44. [PMID: 36517618 PMCID: PMC9751255 DOI: 10.1186/s43556-022-00099-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022] Open
Abstract
Notch and Hedgehog signaling are involved in cancer biology and pathology, including the maintenance of tumor cell proliferation, cancer stem-like cells, and the tumor microenvironment. Given the complexity of Notch signaling in tumors, its role as both a tumor promoter and suppressor, and the crosstalk between pathways, the goal of developing clinically safe, effective, tumor-specific Notch-targeted drugs has remained intractable. Drugs developed against the Hedgehog signaling pathway have affirmed definitive therapeutic effects in basal cell carcinoma; however, in some contexts, the challenges of tumor resistance and recurrence leap to the forefront. The efficacy is very limited for other tumor types. In recent years, we have witnessed an exponential increase in the investigation and recognition of the critical roles of the Notch and Hedgehog signaling pathways in cancers, and the crosstalk between these pathways has vast space and value to explore. A series of clinical trials targeting signaling have been launched continually. In this review, we introduce current advances in the understanding of Notch and Hedgehog signaling and the crosstalk between pathways in specific tumor cell populations and microenvironments. Moreover, we also discuss the potential of targeting Notch and Hedgehog for cancer therapy, intending to promote the leap from bench to bedside.
Collapse
|
4
|
Wang Q, Guo F, Jin Y, Ma Y. Applications of human organoids in the personalized treatment for digestive diseases. Signal Transduct Target Ther 2022; 7:336. [PMID: 36167824 PMCID: PMC9513303 DOI: 10.1038/s41392-022-01194-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/09/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022] Open
Abstract
Digestive system diseases arise primarily through the interplay of genetic and environmental influences; there is an urgent need in elucidating the pathogenic mechanisms of these diseases and deploy personalized treatments. Traditional and long-established model systems rarely reproduce either tissue complexity or human physiology faithfully; these shortcomings underscore the need for better models. Organoids represent a promising research model, helping us gain a more profound understanding of the digestive organs; this model can also be used to provide patients with precise and individualized treatment and to build rapid in vitro test models for drug screening or gene/cell therapy, linking basic research with clinical treatment. Over the past few decades, the use of organoids has led to an advanced understanding of the composition of each digestive organ and has facilitated disease modeling, chemotherapy dose prediction, CRISPR-Cas9 genetic intervention, high-throughput drug screening, and identification of SARS-CoV-2 targets, pathogenic infection. However, the existing organoids of the digestive system mainly include the epithelial system. In order to reveal the pathogenic mechanism of digestive diseases, it is necessary to establish a completer and more physiological organoid model. Combining organoids and advanced techniques to test individualized treatments of different formulations is a promising approach that requires further exploration. This review highlights the advancements in the field of organoid technology from the perspectives of disease modeling and personalized therapy.
Collapse
Affiliation(s)
- Qinying Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fanying Guo
- School of Clinical Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yutao Jin
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Kusumoto D, Yuasa S, Fukuda K. Induced Pluripotent Stem Cell-Based Drug Screening by Use of Artificial Intelligence. Pharmaceuticals (Basel) 2022; 15:562. [PMID: 35631387 PMCID: PMC9145330 DOI: 10.3390/ph15050562] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 12/10/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are terminally differentiated somatic cells that differentiate into various cell types. iPSCs are expected to be used for disease modeling and for developing novel treatments because differentiated cells from iPSCs can recapitulate the cellular pathology of patients with genetic mutations. However, a barrier to using iPSCs for comprehensive drug screening is the difficulty of evaluating their pathophysiology. Recently, the accuracy of image analysis has dramatically improved with the development of artificial intelligence (AI) technology. In the field of cell biology, it has become possible to estimate cell types and states by examining cellular morphology obtained from simple microscopic images. AI can evaluate disease-specific phenotypes of iPS-derived cells from label-free microscopic images; thus, AI can be utilized for disease-specific drug screening using iPSCs. In addition to image analysis, various AI-based methods can be applied to drug development, including phenotype prediction by analyzing genomic data and virtual screening by analyzing structural formulas and protein-protein interactions of compounds. In the future, combining AI methods may rapidly accelerate drug discovery using iPSCs. In this review, we explain the details of AI technology and the application of AI for iPSC-based drug screening.
Collapse
Affiliation(s)
- Dai Kusumoto
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
- Center for Preventive Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shinsuke Yuasa
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
| |
Collapse
|