1
|
Aalders J, Muiño Mosquera L, van Hengel J. Human stem cell models for Marfan syndrome: a brief overview of the rising star in disease modelling. Front Cell Dev Biol 2025; 12:1498669. [PMID: 39830211 PMCID: PMC11739147 DOI: 10.3389/fcell.2024.1498669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025] Open
Abstract
The introduction of pluripotent stem cells into the field of disease modelling resulted in numerous opportunities to study and uncover disease mechanisms in a petri dish. This promising avenue has also been applied to model Marfan syndrome, a disease affecting multiple organ systems, including the skeletal and cardiovascular system. Marfan syndrome is caused by pathogenic variants in FBN1, the gene encoding for the extracellular matrix protein fibrillin-1 which ensembles into microfibrils. There is a poor genotype-phenotype correlation displayed by the diverse clinical manifestations of this disease in patients. Up to now, 52 different human pluripotent stem cells lines have been established and reported for Marfan syndrome. These stem cells have been employed to model aortopathy, skeletal abnormalities and cardiomyopathy in vitro. These models were able to recapitulate key features of the disease that are also observed in patients. The use of pluripotent stem cells will help to uncover disease mechanisms and to identify new therapeutic strategies in Marfan syndrome.
Collapse
Affiliation(s)
- Jeffrey Aalders
- Medical Cell Biology Research Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Laura Muiño Mosquera
- Center for Medical Genetics, Ghent University Hospital, Belgium and Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Pediatrics, Division of Pediatric Cardiology, Ghent University Hospital, Ghent, Belgium
| | - Jolanda van Hengel
- Medical Cell Biology Research Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Wang W, Wu H, Feng S, Huang X, Xu H, Shen X, Fu Y, Fang S. Tanshinone IIA promotes osteogenic differentiation potential and suppresses adipogenic differentiation potential of bone marrow mesenchymal stem cells. Mol Med Rep 2024; 30:177. [PMID: 39129299 PMCID: PMC11332326 DOI: 10.3892/mmr.2024.13301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/18/2024] [Indexed: 08/13/2024] Open
Abstract
Tanshinone IIA (Tan IIA) may have therapeutic effects on avascular necrosis of the femoral head (ANFH) by targeting bone marrow mesenchymal stem cells (BMSCs). The effect and underlying mechanism of Tan IIA on adipogenesis and osteogenesis ability of BMSCs remain to be elucidated. In the present study BMSCs were treated with osteogenic or adipogenic differentiation medium with or without Tan IIA under hypoxic environment. Osteogenic differentiation potential was evaluated by alkaline phosphatase (ALP) measurement, alizarin red staining and reverse transcription‑quantitative (RT‑q) PCR of osteogenic marker genes. Adipogenic differentiation potential was evaluated with oil red staining and RT‑qPCR of adipogenic marker genes. Detailed mechanism was explored by RNA‑seq and small molecular treatment during osteogenesis and adipogenesis of BMSCs. ALP level, mineralized nodules and expression level of osteogenic marker genes significantly increased following Tan IIA treatment during osteogenic differentiation of BMSCs. Lipid droplet and expression levels of adipogenic marker genes significantly decreased following Tan IIA treatment during adipogenic differentiation of BMSCs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses of RNA‑seq data indicated increased Akt and TGFβ signaling following Tan IIA treatment. Further western blot assay confirmed that Tan IIA significantly activated Akt/cAMP response element‑binding protein signaling and TGFβ/Smad3 signaling. Application of Akti1/2 (an Akt inhibitor) significantly decreased the promotion effect of osteogenesis induced by Tan IIA, while the addition of SB431542 significantly reduced inhibition effect of adipogenesis caused by Tan IIA. Tan IIA could promote osteogenic differentiation potential of BMSCs by activating AKT signaling and suppress adipogenic differentiation potential of BMSCs by activating TGFβ signaling.
Collapse
Affiliation(s)
- Wei Wang
- Department of Orthopedics, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430074, P.R. China
| | - Hangqin Wu
- Department of Orthopedics, Wuyi County First People's Hospital, Wuyi, Zhejiang 321200, P.R. China
| | - Shujing Feng
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Xingrui Huang
- Department of Orthopedics, Suzhou Wujiang District Hospital of Traditional Chinese Medicine (Suzhou Wujiang District Second People's Hospital), Suzhou, Jiangsu 215003, P.R. China
| | - Hao Xu
- Department of Orthopedics, Suzhou Wujiang District Hospital of Traditional Chinese Medicine (Suzhou Wujiang District Second People's Hospital), Suzhou, Jiangsu 215003, P.R. China
| | - Xinxin Shen
- Department of Orthopedics, Suzhou Wujiang District Hospital of Traditional Chinese Medicine (Suzhou Wujiang District Second People's Hospital), Suzhou, Jiangsu 215003, P.R. China
| | - Yajing Fu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Shuchen Fang
- Department of Orthopedics, Suzhou Wujiang District Hospital of Traditional Chinese Medicine (Suzhou Wujiang District Second People's Hospital), Suzhou, Jiangsu 215003, P.R. China
| |
Collapse
|
3
|
Kwartler CS, Pinelo JEE. Use of iPSC-Derived Smooth Muscle Cells to Model Physiology and Pathology. Arterioscler Thromb Vasc Biol 2024; 44:1523-1536. [PMID: 38695171 PMCID: PMC11209779 DOI: 10.1161/atvbaha.123.319703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The implementation of human induced pluripotent stem cell (hiPSC) models has introduced an additional tool for identifying molecular mechanisms of disease that complement animal models. Patient-derived or CRISPR/Cas9-edited induced pluripotent stem cells differentiated into smooth muscle cells (SMCs) have been leveraged to discover novel mechanisms, screen potential therapeutic strategies, and model in vivo development. The field has evolved over almost 15 years of research using hiPSC-SMCs and has made significant strides toward overcoming initial challenges such as the lineage specificity of SMC phenotypes. However, challenges both specific (eg, the lack of specific markers to thoroughly validate hiPSC-SMCs) and general (eg, a lack of transparency and consensus around methodology in the field) remain. In this review, we highlight the recent successes and remaining challenges of the hiPSC-SMC model.
Collapse
Affiliation(s)
- Callie S. Kwartler
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Jose Emiliano Esparza Pinelo
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| |
Collapse
|
4
|
Singh AA, Shetty DK, Jacob AG, Bayraktar S, Sinha S. Understanding genomic medicine for thoracic aortic disease through the lens of induced pluripotent stem cells. Front Cardiovasc Med 2024; 11:1349548. [PMID: 38440211 PMCID: PMC10910110 DOI: 10.3389/fcvm.2024.1349548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/31/2024] [Indexed: 03/06/2024] Open
Abstract
Thoracic aortic disease (TAD) is often silent until a life-threatening complication occurs. However, genetic information can inform both identification and treatment at an early stage. Indeed, a diagnosis is important for personalised surveillance and intervention plans, as well as cascade screening of family members. Currently, only 20% of heritable TAD patients have a causative mutation identified and, consequently, further advances in genetic coverage are required to define the remaining molecular landscape. The rapid expansion of next generation sequencing technologies is providing a huge resource of genetic data, but a critical issue remains in functionally validating these findings. Induced pluripotent stem cells (iPSCs) are patient-derived, reprogrammed cell lines which allow mechanistic insights, complex modelling of genetic disease and a platform to study aortic genetic variants. This review will address the need for iPSCs as a frontline diagnostic tool to evaluate variants identified by genomic discovery studies and explore their evolving role in biological insight through to drug discovery.
Collapse
Affiliation(s)
| | | | | | | | - Sanjay Sinha
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
| |
Collapse
|
5
|
Caudal A, Snyder MP, Wu JC. Harnessing human genetics and stem cells for precision cardiovascular medicine. CELL GENOMICS 2024; 4:100445. [PMID: 38359791 PMCID: PMC10879032 DOI: 10.1016/j.xgen.2023.100445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/22/2023] [Accepted: 10/25/2023] [Indexed: 02/17/2024]
Abstract
Human induced pluripotent stem cell (iPSC) platforms are valuable for biomedical and pharmaceutical research by providing tissue-specific human cells that retain patients' genetic integrity and display disease phenotypes in a dish. Looking forward, combining iPSC phenotyping platforms with genomic and screening technologies will continue to pave new directions for precision medicine, including genetic prediction, visualization, and treatment of heart disease. This review summarizes the recent use of iPSC technology to unpack the influence of genetic variants in cardiovascular pathology. We focus on various state-of-the-art genomic tools for cardiovascular therapies-including the expansion of genetic toolkits for molecular interrogation, in vitro population studies, and function-based drug screening-and their current applications in patient- and genome-edited iPSC platforms that are heralding new avenues for cardiovascular research.
Collapse
Affiliation(s)
- Arianne Caudal
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Greenstone Biosciences, Palo Alto, CA 94304, USA.
| |
Collapse
|
6
|
Raghavan A, Pirruccello JP, Ellinor PT, Lindsay ME. Using Genomics to Identify Novel Therapeutic Targets for Aortic Disease. Arterioscler Thromb Vasc Biol 2024; 44:334-351. [PMID: 38095107 PMCID: PMC10843699 DOI: 10.1161/atvbaha.123.318771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/21/2023] [Indexed: 01/04/2024]
Abstract
Aortic disease, including dissection, aneurysm, and rupture, carries significant morbidity and mortality and is a notable cause of sudden cardiac death. Much of our knowledge regarding the genetic basis of aortic disease has relied on the study of individuals with Mendelian aortopathies and, until recently, the genetic determinants of population-level variance in aortic phenotypes remained unclear. However, the application of machine learning methodologies to large imaging datasets has enabled researchers to rapidly define aortic traits and mine dozens of novel genetic associations for phenotypes such as aortic diameter and distensibility. In this review, we highlight the emerging potential of genomics for identifying causal genes and candidate drug targets for aortic disease. We describe how deep learning technologies have accelerated the pace of genetic discovery in this field. We then provide a blueprint for translating genetic associations to biological insights, reviewing techniques for locus and cell type prioritization, high-throughput functional screening, and disease modeling using cellular and animal models of aortic disease.
Collapse
Affiliation(s)
- Avanthi Raghavan
- Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - James P. Pirruccello
- Division of Cardiology, University of California San Francisco, San Francisco, CA, USA
| | - Patrick T. Ellinor
- Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Mark E. Lindsay
- Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|