1
|
Gautam P, Bisht P, Gautam A, Gupta GD, Singh R, Verma SK. A comprehension on structure guided alignment dependent 3D-QSAR modelling, and molecular dynamics simulation on 2,4-thiazolidinediones as aldose reductase inhibitors for the management of diabetic complications. J Biomol Struct Dyn 2023:1-20. [PMID: 37904329 DOI: 10.1080/07391102.2023.2275190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/20/2023] [Indexed: 11/01/2023]
Abstract
Aldose reductase is an oxo-reductase enzyme belonging to the aldo-keto reductase class. Compounds having thiazolidine-2,4-dione scaffold are reported as potential aldose reductase inhibitors for diabetic complications. The present work uses structure-guided alignment-dependent Gaussian field- and atom-based 3D-QSAR on a dataset of 84 molecules. 3D-QSAR studies on two sets of dataset alignment have been carried out to understand the favourable and unfavourable structural features influencing the affinity of these inhibitors towards the enzyme. Using common pharmacophore hypotheses, the five-point pharmacophores for aldose reductase favourable features were generated. The molecular dynamics simulations (up to 100 ns) were performed for the potent molecule from each alignment set (compounds 24 and 65) compared to reference standard tolrestat and epalrestat to study target-ligand complexes' binding energy and stability. Compound 65 was most stable with better interactions in the aldose reductase binding pocket than tolrestat. The MM-PBSA study suggests compound 65 possessed better binding energy than reference standard tolrestat, i.e. -87.437 ± 19.728 and -73.424 ± 12.502 kJ/mol, respectively. The generated 3D-QSAR models provide information about structure-activity relationships and ligand-target binding energy. Target-specific stability data from MD simulation would be helpful for rational compound design with better aldose reductase activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Priyadarshi Gautam
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Priya Bisht
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Anupam Gautam
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
- International Max Planck Research School "From Molecules to Organisms", Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, University of Tübingen, Tübingen, Germany
| | | | - Rajveer Singh
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, India
| | - Sant Kumar Verma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| |
Collapse
|
2
|
Singh Y, Sanjay KS, Pradeep Kumar, Singh S, Thareja S. Molecular dynamics and 3D-QSAR studies on indazole derivatives as HIF-1α inhibitors. J Biomol Struct Dyn 2022; 41:3524-3541. [PMID: 35318905 DOI: 10.1080/07391102.2022.2051745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Hypoxia-inducible factor (HIF) is a transcriptional factor which plays a crucial role in tumour metastasis thereby responsible for development of various forms of cancers. Indazole derivatives have been reported in the literature as potent HIF-1α inhibitor via interaction with key residues of the HIF-1α active site. Taking into consideration the role HIF-1α in cancer and potency of indazole derivative against HIF-1α; it was considered of interest to correlate structural features of known indazole derivatives with specified HIF-1α inhibitory activity to map pharmacophoric features through Three-dimensional quantitative structural activity relationship (3D-QSAR) and pharmacophore mapping. Field and Gaussian based 3D-QSAR studies were performed to realize the variables influencing the inhibitory potency of HIF-1α inhibitors. Field and Gaussian- based 3D-QSAR models were validated through various statistical measures generated by partial least square (PLS). The steric and electrostatic maps generated for both 3D-QSAR provide a structural framework for designing new inhibitors. Further; 3D-maps were also helpful in understanding variability in the activity of the compounds. Pharmacophore mapping also generates a common five-point pharmacophore hypothesis (A1D2R3R4R5_4) which can be employed in combination with 3D-contour maps to design potent HIF-1α inhibitors. Molecular docking and molecular dynamics (MD) simulation of the most potent compound 39 showed good binding efficiency and was found to be quite stable in the active site of the HIF-1α protein. The developed 3D-QSAR models; pharmacophore modelling; molecular docking studies along with the MD simulation analysis may be employed to design lead molecule as selective HIF-1α inhibitors for the treatment of Cancer.
Collapse
Affiliation(s)
- Yogesh Singh
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Ghudda, Bathinda, India
| | - Kulkarni Swanand Sanjay
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Ghudda, Bathinda, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Ghudda, Bathinda, India
| | - Satwinder Singh
- Department of Computer Science and Technology, Central University of Punjab, Ghudda, Bathinda, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Ghudda, Bathinda, India
| |
Collapse
|
3
|
Martínez-Gallegos AA, Guerrero-Luna G, Ortiz-González A, Cárdenas-García M, Bernès S, Hernández-Linares MG. Azasteroids from diosgenin: Synthesis and evaluation of their antiproliferative activity. Steroids 2021; 166:108777. [PMID: 33309534 DOI: 10.1016/j.steroids.2020.108777] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/17/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022]
Abstract
In this work, we report the synthesis of two new azasteroids through the modification of the A and B rings of diosgenin 1. The 4-azasteroid derivative 12 was prepared in three steps using the α,β-insaturated-3-keto compound 11 as a precursor, which was first oxidized with KMnO4/KIO4 followed by an oxidative cleavage of ring A, and subsequently cyclized with an ammonium salt, under focused microwave irradiation for a short time of 3 min. A second azasteroid was synthesized, for which the key step was the Beckmann rearrangement of ring B of the oxime 16, affording the lactam-type enamide 17 in good yield. The methodologies developed for the synthesis of the precursors derivatives 10 and 11 contribute to improved yields, compared to those reported in the literature. The biological activity of the azasteroidal compounds 12 and 17 and their precursors has been evaluated in cervical cancer cells (HeLa), colon (HCT-15), and triple negative breast cancer (MDA-MB-231) lines.
Collapse
Affiliation(s)
| | - Gabriel Guerrero-Luna
- Posgrado en Ciencias Químicas. Benemérita, Universidad Autónoma de Puebla, 72570 Puebla, Pue, Mexico
| | - Alejandra Ortiz-González
- Laboratorio de Fisiología Celular, Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue, Mexico
| | - Maura Cárdenas-García
- Laboratorio de Fisiología Celular, Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue, Mexico
| | - Sylvain Bernès
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue, Mexico
| | - María Guadalupe Hernández-Linares
- Centro de Química, Instituto de Ciencias. Benemérita, Universidad Autónoma de Puebla, 72570 Puebla, Pue, Mexico; Laboratorio de Investigación Herbario y Jardín Botánico Universitario, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue, Mexico.
| |
Collapse
|
4
|
Verma SK, Kumar N, Thareja S. Gaussian field-based comparative 3D QSAR modelling for the identification of favourable pharmacophoric features of chromene derivatives as selective inhibitors of ALR2 over ALR1. Struct Chem 2021. [DOI: 10.1007/s11224-020-01714-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Banjare L, Verma SK, Jain AK, Thareja S. Structure Guided Molecular Docking Assisted Alignment Dependent 3DQSAR Study on Steroidal Aromatase Inhibitors (SAIs) as Anti-breast Cancer Agents. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180815666181010101024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background:
In spite of the availability of various treatment approaches including
surgery, radiotherapy, and hormonal therapy, the steroidal aromatase inhibitors (SAIs) play a
significant role as chemotherapeutic agents for the treatment of estrogen-dependent breast cancer
with the benefit of reduced risk of recurrence. However, due to greater toxicity and side effects
associated with currently available anti-breast cancer agents, there is emergent requirement to
develop target-specific AIs with safer anti-breast cancer profile.
Methods:
It is challenging task to design target-specific and less toxic SAIs, though the molecular
modeling tools viz. molecular docking simulations and QSAR have been continuing for more than
two decades for the fast and efficient designing of novel, selective, potent and safe molecules
against various biological targets to fight the number of dreaded diseases/disorders. In order to
design novel and selective SAIs, structure guided molecular docking assisted alignment dependent
3D-QSAR studies was performed on a data set comprises of 22 molecules bearing steroidal
scaffold with wide range of aromatase inhibitory activity.
Results:
3D-QSAR model developed using molecular weighted (MW) extent alignment approach
showed good statistical quality and predictive ability when compared to model developed using
moments of inertia (MI) alignment approach.
Conclusion:
The explored binding interactions and generated pharmacophoric features (steric and
electrostatic) of steroidal molecules could be exploited for further design, direct synthesis and
development of new potential safer SAIs, that can be effective to reduce the mortality and
morbidity associated with breast cancer.
Collapse
Affiliation(s)
- Laxmi Banjare
- School of Pharmaceutical Sciences, Guru Ghasidas Central University, Bilaspur- 495 009, C.G., India
| | - Sant Kumar Verma
- School of Pharmaceutical Sciences, Guru Ghasidas Central University, Bilaspur- 495 009, C.G., India
| | - Akhlesh Kumar Jain
- School of Pharmaceutical Sciences, Guru Ghasidas Central University, Bilaspur- 495 009, C.G., India
| | - Suresh Thareja
- School of Pharmaceutical Sciences, Guru Ghasidas Central University, Bilaspur- 495 009, C.G., India
| |
Collapse
|
6
|
Brito V, Santos AO, Almeida P, Silvestre S. Novel 4-azaandrostenes as prostate cancer cell growth inhibitors: Synthesis, antiproliferative effects, and molecular docking studies. CR CHIM 2019. [DOI: 10.1016/j.crci.2018.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Molecular docking, 3D-QSAR and structural optimization on imidazo-pyridine derivatives dually targeting AT1 and PPARg. Oncotarget 2018; 8:25612-25627. [PMID: 28445965 PMCID: PMC5421955 DOI: 10.18632/oncotarget.15778] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/27/2017] [Indexed: 12/14/2022] Open
Abstract
Telmisartan, a bifunctional agent of blood pressure lowering and glycemia reduction, was previously reported to antagonize angiotensin II type 1 (AT1) receptor and partially activate peroxisome proliferator-activated receptor γ (PPARγ) simultaneously. Through the modification to telmisartan, researchers designed and obtained imidazo-\pyridine derivatives with the IC50s of 0.49∼94.1 nM against AT1 and EC50s of 20∼3640 nM towards PPARγ partial activation. For minutely inquiring the interaction modes with the relevant receptor and analyzing the structure-activity relationships, molecular docking and 3D-QSAR (Quantitative structure-activity relationships) analysis of these imidazo-\pyridines on dual targets were conducted in this work. Docking approaches of these derivatives with both receptors provided explicit interaction behaviors and excellent matching degree with the binding pockets. The best CoMFA (Comparative Molecular Field Analysis) models exhibited predictive results of q2=0.553, r2=0.954, SEE=0.127, r2pred=0.779 for AT1 and q2=0.503, r2=1.00, SEE=0.019, r2pred=0.604 for PPARγ, respectively. The contour maps from the optimal model showed detailed information of structural features (steric and electrostatic fields) towards the biological activity. Combining the bioisosterism with the valuable information from above studies, we designed six molecules with better predicted activities towards AT1 and PPARγ partial activation. Overall, these results could be useful for designing potential dual AT1 antagonists and partial PPARγ agonists.
Collapse
|
8
|
Governa P, Giachetti D, Biagi M, Manetti F, De Vico L. Hypothesis on Serenoa repens (Bartram) small extract inhibition of prostatic 5 α-reductase through an in silico approach on 5 β-reductase x-ray structure. PeerJ 2016; 4:e2698. [PMID: 27904805 PMCID: PMC5126621 DOI: 10.7717/peerj.2698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 10/18/2016] [Indexed: 11/20/2022] Open
Abstract
Benign prostatic hyperplasia is a common disease in men aged over 50 years old, with an incidence increasing to more than 80% over the age of 70, that is increasingly going to attract pharmaceutical interest. Within conventional therapies, such as α-adrenoreceptor antagonists and 5α-reductase inhibitor, there is a large requirement for treatments with less adverse events on, e.g., blood pressure and sexual function: phytotherapy may be the right way to fill this need. Serenoa repens standardized extract has been widely studied and its ability to reduce lower urinary tract symptoms related to benign prostatic hyperplasia is comprehensively described in literature. An innovative investigation on the mechanism of inhibition of 5α-reductase by Serenoa repens extract active principles is proposed in this work through computational methods, performing molecular docking simulations on the crystal structure of human liver 5β-reductase. The results confirm that both sterols and fatty acids can play a role in the inhibition of the enzyme, thus, suggesting a competitive mechanism of inhibition. This work proposes a further confirmation for the rational use of herbal products in the management of benign prostatic hyperplasia, and suggests computational methods as an innovative, low cost, and non-invasive process for the study of phytocomplex activity toward proteic targets.
Collapse
Affiliation(s)
- Paolo Governa
- Department of Physical Sciences, Earth and Environment, University of Siena, Siena, Italy; Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Daniela Giachetti
- Department of Physical Sciences, Earth and Environment, University of Siena , Siena , Italy
| | - Marco Biagi
- Department of Physical Sciences, Earth and Environment, University of Siena , Siena , Italy
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena , Siena , Italy
| | - Luca De Vico
- Department of Chemistry, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
9
|
Corbin CJ, Legacki EL, Ball BA, Scoggin KE, Stanley SD, Conley AJ. Equine 5α-reductase activity and expression in epididymis. J Endocrinol 2016; 231:23-33. [PMID: 27466384 DOI: 10.1530/joe-16-0175] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 06/22/2016] [Indexed: 11/08/2022]
Abstract
The 5α-reductase enzymes play an important role during male sexual differentiation, and in pregnant females, especially equine species where maintenance relies on 5α-reduced progesterone, 5α-dihydroprogesterone (DHP). Epididymis expresses 5α-reductases but was not studied elaborately in horses. Epididymis from younger and older postpubertal stallions was divided into caput, corpus and cauda and examined for 5α-reductase activity and expression of type 1 and 2 isoforms by quantitative real-time polymerase chain reaction (qPCR). Metabolism of progesterone and testosterone to DHP and dihydrotestosterone (DHT), respectively, by epididymal microsomal protein was examined by thin-layer chromatography and verified by liquid chromatography tandem mass spectrometry (LC-MS/MS). Relative inhibitory potencies of finasteride and dutasteride toward equine 5α-reductase activity were investigated. Pregnenolone was investigated as an additional potential substrate for 5α-reductase, suggested previously from in vivo studies in mares but never directly examined. No regional gradient of 5α-reductase expression was observed by either enzyme activity or transcript analysis. Results of PCR experiments suggested that type 1 isoform predominates in equine epididymis. Primers for the type 2 isoform were unable to amplify product from any samples examined. Progesterone and testosterone were readily reduced to DHP and DHT, and activity was effectively inhibited by both inhibitors. Using epididymis as an enzyme source, no experimental evidence was obtained supporting the notion that pregnenolone could be directly metabolized by equine 5α-reductases as has been suggested by previous investigators speculating on alternative metabolic pathways leading to DHP synthesis in placenta during equine pregnancies.
Collapse
Affiliation(s)
- C J Corbin
- Department of Population Health and ReproductionSchool of Veterinary Medicine, University of California, Davis, California, USA
| | - E L Legacki
- Department of Population Health and ReproductionSchool of Veterinary Medicine, University of California, Davis, California, USA
| | - B A Ball
- Department of Veterinary ScienceGluck Equine Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - K E Scoggin
- Department of Veterinary ScienceGluck Equine Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - S D Stanley
- Department of Molecular BiosciencesSchool of Veterinary Medicine, University of California, Davis, California, USA
| | - A J Conley
- Department of Population Health and ReproductionSchool of Veterinary Medicine, University of California, Davis, California, USA
| |
Collapse
|
10
|
Verma SK, Thareja S. Formylchromone derivatives as novel and selective PTP-1B inhibitors: a drug design aspect using molecular docking-based self-organizing molecular field analysis. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1584-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
11
|
Thareja S, Verma SK, Haksar D, Bhardwaj TR, Kumar M. Discovery of novel cinnamylidene-thiazolidinedione derivatives as PTP-1B inhibitors for the management of type 2 diabetes. RSC Adv 2016. [DOI: 10.1039/c6ra24501c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synthesis, biological evaluation,in silicobinding affinity prediction and 3D-QSAR studies of cinnamylidene-thiazolidinedione derivatives was performed as inhibitors of PTP-1B.
Collapse
Affiliation(s)
- Suresh Thareja
- School of Pharmaceutical Sciences
- Guru Ghasidas Central University
- Bilaspur-495 009
- India
- University Institute of Pharmaceutical Sciences
| | - Sant K. Verma
- School of Pharmaceutical Sciences
- Guru Ghasidas Central University
- Bilaspur-495 009
- India
| | - Diksha Haksar
- University Institute of Pharmaceutical Sciences
- Panjab University
- India
| | - Tilak R. Bhardwaj
- University Institute of Pharmaceutical Sciences
- Panjab University
- India
| | - Manoj Kumar
- University Institute of Pharmaceutical Sciences
- Panjab University
- India
| |
Collapse
|
12
|
Verma SK, Thareja S. Molecular docking assisted 3D-QSAR study of benzylidene-2,4-thiazolidinedione derivatives as PTP-1B inhibitors for the management of Type-2 diabetes mellitus. RSC Adv 2016. [DOI: 10.1039/c6ra03067j] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
An integrated molecular docking assisted 3D-QSAR study was performed on benzylidene-2,4-thiazolidinediones to identify spatial fingerprints for designing PTP-1B inhibitors.
Collapse
Affiliation(s)
- Sant K. Verma
- School of Pharmaceutical Sciences
- Guru Ghasidas Vishwavidyalaya (A Central University)
- Bilaspur-495 009
- India
| | - Suresh Thareja
- School of Pharmaceutical Sciences
- Guru Ghasidas Vishwavidyalaya (A Central University)
- Bilaspur-495 009
- India
| |
Collapse
|
13
|
Thareja S. Steroidal 5α-Reductase Inhibitors: A Comparative 3D-QSAR Study Review. Chem Rev 2015; 115:2883-94. [DOI: 10.1021/cr5005953] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Suresh Thareja
- School
of Pharmaceutical
Sciences, Guru Ghasidas Central University, Bilaspur, Chhattisgarh 495 009, India
| |
Collapse
|