1
|
Yan XY, Zhang L, Yang QB, Ge ZY, Liang LF, Guo YW. Genus Litophyton: A Hidden Treasure Trove of Structurally Unique and Diversely Bioactive Secondary Metabolites. Mar Drugs 2023; 21:523. [PMID: 37888458 PMCID: PMC10608288 DOI: 10.3390/md21100523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Marine soft corals are prolific sources of various natural products that have served as a wealthy reservoir of diverse chemical scaffolds with potential as new drug leads. The genus Litophyton contains almost 100 species but only a small proportion of them has been chemically investigated, which calls for more attentions from global researchers. In the current work, 175 secondary metabolites have been discussed, drawing from published data spanning almost five decades, up to July 2023. The studied species of the genus Litophyton resided in various tropical and temperate regions and encompassed a broad range of biologically active natural products including terpenes, steroids, nitrogen-containing metabolites, lipids, and other metabolites. A wide spectrum of pharmacological effects of these compounds had been evaluated, such as cytotoxic, antiviral, antibacterial, antifungal, anti-malarial, antifeedant, anti-inflammatory, molluscicidal, PTP1B inhibitory, insect growth inhibitory, and neuroprotective activities. This review aims to offer an up-to-date survey of the literature and provide a comprehensive understanding of the chemical structures, taxonomical distributions, and biological activities of the reported metabolites from the title genus whenever available.
Collapse
Affiliation(s)
- Xian-Yun Yan
- College of Materials Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Road, Changsha 410004, China; (X.-Y.Y.); (L.Z.); (Q.-B.Y.); (Z.-Y.G.)
| | - Ling Zhang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Road, Changsha 410004, China; (X.-Y.Y.); (L.Z.); (Q.-B.Y.); (Z.-Y.G.)
| | - Qi-Bin Yang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Road, Changsha 410004, China; (X.-Y.Y.); (L.Z.); (Q.-B.Y.); (Z.-Y.G.)
| | - Zeng-Yue Ge
- College of Materials Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Road, Changsha 410004, China; (X.-Y.Y.); (L.Z.); (Q.-B.Y.); (Z.-Y.G.)
| | - Lin-Fu Liang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Road, Changsha 410004, China; (X.-Y.Y.); (L.Z.); (Q.-B.Y.); (Z.-Y.G.)
| | - Yue-Wei Guo
- School of Medicine, Shanghai University, 99 Shangda Road, Bao Shan District, Shanghai 200444, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 Binhai East Road, High-tech Zone, Yantai 264117, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
2
|
Khotimchenko YS, Silachev DN, Katanaev VL. Marine Natural Products from the Russian Pacific as Sources of Drugs for Neurodegenerative Diseases. Mar Drugs 2022; 20:708. [PMID: 36421986 PMCID: PMC9697637 DOI: 10.3390/md20110708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 09/05/2023] Open
Abstract
Neurodegenerative diseases are growing to become one of humanity's biggest health problems, given the number of individuals affected by them. They cause enough mortalities and severe economic impact to rival cancers and infections. With the current diversity of pathophysiological mechanisms involved in neurodegenerative diseases, on the one hand, and scarcity of efficient prevention and treatment strategies, on the other, all possible sources for novel drug discovery must be employed. Marine pharmacology represents a relatively uncharted territory to seek promising compounds, despite the enormous chemodiversity it offers. The current work discusses one vast marine region-the Northwestern or Russian Pacific-as the treasure chest for marine-based drug discovery targeting neurodegenerative diseases. We overview the natural products of neurological properties already discovered from its waters and survey the existing molecular and cellular targets for pharmacological modulation of the disease. We further provide a general assessment of the drug discovery potential of the Russian Pacific in case of its systematic development to tackle neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuri S. Khotimchenko
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 8 ul. Sukhanova, 690950 Vladivostok, Russia
- A.V. Zhirmunsky National Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690950 Vladivostok, Russia
| | - Denis N. Silachev
- Department of Functional Biochemistry of Biopolymers, A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Vladimir L. Katanaev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 8 ul. Sukhanova, 690950 Vladivostok, Russia
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| |
Collapse
|
3
|
Pontini L, Marinozzi M. Novel Synthetic Access to 24a-Homochol-5-en-24a-oate Scaffold from Stigmasterol. ORG PREP PROCED INT 2021. [DOI: 10.1080/00304948.2021.1974260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Lorenzo Pontini
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Maura Marinozzi
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| |
Collapse
|
4
|
Niu C, Leavitt LS, Lin Z, Paguigan ND, Sun L, Zhang J, Torres JP, Raghuraman S, Chase K, Cadeddu R, Karthikeyan M, Bortolato M, Reilly CA, Hughen RW, Light AR, Olivera BM, Schmidt EW. Neuroactive Type-A γ-Aminobutyric Acid Receptor Allosteric Modulator Steroids from the Hypobranchial Gland of Marine Mollusk, Conus geographus. J Med Chem 2021; 64:7033-7043. [PMID: 33949869 DOI: 10.1021/acs.jmedchem.1c00562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In a program to identify pain treatments with low addiction potential, we isolated five steroids, conosteroids A-E (1-5), from the hypobranchial gland of the mollusk Conus geographus. Compounds 1-5 were active in a mouse dorsal root ganglion (DRG) assay that suggested that they might be analgesic. A synthetic analogue 6 was used for a detailed pharmacological study. Compound 6 significantly increased the pain threshold in mice in the hot-plate test at 2 and 50 mg/kg. Compound 6 at 500 nM antagonizes type-A γ-aminobutyric acid receptors (GABAARs). In a patch-clamp experiment, out of the six subunit combinations tested, 6 exhibited subtype selectivity, most strongly antagonizing α1β1γ2 and α4β3γ2 receptors (IC50 1.5 and 1.0 μM, respectively). Although the structures of 1-6 differ from those of known neuroactive steroids, they are cell-type-selective modulators of GABAARs, expanding the known chemical space of neuroactive steroids.
Collapse
Affiliation(s)
- Changshan Niu
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Lee S Leavitt
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
| | - Zhenjian Lin
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Noemi D Paguigan
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Lili Sun
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jie Zhang
- Department of Anesthesiology, School of Medicine, University of Utah, Salt Lake City, Utah 84112, United States
| | - Joshua P Torres
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Shrinivasan Raghuraman
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
| | - Kevin Chase
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
| | - Roberto Cadeddu
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Manju Karthikeyan
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Christopher A Reilly
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Ronald W Hughen
- Department of Anesthesiology, School of Medicine, University of Utah, Salt Lake City, Utah 84112, United States
| | - Alan R Light
- Department of Anesthesiology, School of Medicine, University of Utah, Salt Lake City, Utah 84112, United States
| | - Baldomero M Olivera
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
| | - Eric W Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
5
|
Rahman MA, Dash R, Sohag AAM, Alam M, Rhim H, Ha H, Moon IS, Uddin MJ, Hannan MA. Prospects of Marine Sterols against Pathobiology of Alzheimer's Disease: Pharmacological Insights and Technological Advances. Mar Drugs 2021; 19:md19030167. [PMID: 33804766 PMCID: PMC8003995 DOI: 10.3390/md19030167] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a degenerative brain disorder characterized by a progressive decline in memory and cognition, mostly affecting the elderly. Numerous functional bioactives have been reported in marine organisms, and anti-Alzheimer's agents derived from marine resources have gained attention as a promising approach to treat AD pathogenesis. Marine sterols have been investigated for several health benefits, including anti-cancer, anti-obesity, anti-diabetes, anti-aging, and anti-Alzheimer's activities, owing to their anti-inflammatory and antioxidant properties. Marine sterols interact with various proteins and enzymes participating via diverse cellular systems such as apoptosis, the antioxidant defense system, immune response, and cholesterol homeostasis. Here, we briefly overview the potential of marine sterols against the pathology of AD and provide an insight into their pharmacological mechanisms. We also highlight technological advances that may lead to the potential application of marine sterols in the prevention and therapy of AD.
Collapse
Affiliation(s)
- Md. Ataur Rahman
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh;
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (R.D.); (I.S.M.)
| | - Abdullah Al Mamun Sohag
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Mahboob Alam
- Division of Chemistry and Biotechnology, Dongguk University, Gyeongju 780-714, Korea;
| | - Hyewhon Rhim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea;
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (R.D.); (I.S.M.)
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh;
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea;
- Correspondence: (M.J.U.); (M.A.H.)
| | - Md. Abdul Hannan
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh;
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
- Correspondence: (M.J.U.); (M.A.H.)
| |
Collapse
|
6
|
Kuzminac IZ, Jakimov DS, Bekić SS, Ćelić AS, Marinović MA, Savić MP, Raičević VN, Kojić VV, Sakač MN. Synthesis and anticancer potential of novel 5,6-oxygenated and/or halogenated steroidal d-homo lactones. Bioorg Med Chem 2021; 30:115935. [PMID: 33340938 DOI: 10.1016/j.bmc.2020.115935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/19/2020] [Accepted: 12/03/2020] [Indexed: 11/18/2022]
Abstract
A series of 5,6-modified steroidal d-homo lactones, comprising of halogenated and/or oxygenated derivatives, was synthesized and evaluated for potential anticancer properties. Preparation of many of these compounds involved investigating alternative synthetic pathways. In silico ADME testing was performed for both novel and some previously synthesized compounds. Calculated physicochemical properties were in accordance with the Lipinski, Veber, Egan, Ghose and Muegge criteria, suggesting the potential of these molecules as orally active agents. Cytotoxicity of the synthesized steroid derivatives was tested on six tumor and one normal human cell line. None of the investigated derivatives was toxic to non-cancerous MRC-5 control cells. Most of the compounds showed significant cytotoxicity against the treated cancer cell lines. Most notably, the 3β,5α,6β-trihydroxy derivative exhibited strong cytotoxicity against multiple cell lines (MCF-7, MDA-MB-231 and HT-29), with the highest effect observed for lung adenocarcinoma (A549) cells, for which this steroid was more cytotoxic than all of the three commercial chemotherapeutic agents used as reference compounds. Molecular docking suggests the 3β,5α,6β-trihydroxy derivative could bind the EGFR tyrosine kinase domain with high affinity, providing a potential mechanism for its cytotoxicity via inhibition of EGFR signaling. The most active compounds were further studied for their potential to induce apoptosis by the double-staining fluorescence method; where the 5α,6β-dibromide, 5α,6β-dichloride and 3β,5α,6β-triol induced apoptotic changes in all three treated cell lines: MDA-MB-231, HT-29 and A549. To predict interactions with nuclear steroidal receptors, affinity for the ligand binding domains of ERα, ERβ and AR was measured using a yeast-based fluorescence assay. The 5β,6β-epoxide, dibromide and 5α-hydroxy-3,6-dioxo derivatives showed affinity for ERα, while the 5α-fluoro-6β-hydroxy and 3β-acetoxy-5α,6β-dihydroxy derivatives were identified as ERβ ligands. None of the tested compounds showed affinity for AR. Structure-activity relationships of selected compounds were also examined.
Collapse
Affiliation(s)
- Ivana Z Kuzminac
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia.
| | - Dimitar S Jakimov
- Oncology Institute of Vojvodina, Faculty of Medicine, University of Novi Sad, Put Dr Goldmana 4, 21204 Sremska Kamenica, Serbia
| | - Sofija S Bekić
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Anđelka S Ćelić
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Maja A Marinović
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Marina P Savić
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Vidak N Raičević
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Vesna V Kojić
- Oncology Institute of Vojvodina, Faculty of Medicine, University of Novi Sad, Put Dr Goldmana 4, 21204 Sremska Kamenica, Serbia
| | - Marija N Sakač
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| |
Collapse
|
7
|
Wang Y, Chen B, He X, Gui J. Development of Biomimetic Synthesis of Propindilactone G
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yu Wang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences Shanghai 200032 China
| | - Bo Chen
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences Shanghai 200032 China
| | - Xubiao He
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences Shanghai 200032 China
| | - Jinghan Gui
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
8
|
Rathnayake AU, Abuine R, Kim YJ, Byun HG. Anti-Alzheimer's Materials Isolated from Marine Bio-resources: A Review. Curr Alzheimer Res 2020; 16:895-906. [PMID: 31647396 DOI: 10.2174/1567205016666191024144044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 08/12/2019] [Accepted: 09/08/2019] [Indexed: 12/15/2022]
Abstract
The most common type of dementia found in the elderly population is Alzheimer's disease. The disease not only impacts the patients and their families but also the society therefore, the main focus of researchers is to search new bioactive materials for treating AD. The marine environment is a rich source of functional ingredients and to date, we can find sufficient research relating to anti- Alzheimer's compounds isolated from marine environment. Therefore, this review focuses on the anti- Alzheimer's material from marine bio-resources and then expounds on the anti-Alzheimer's compounds from marine seaweed, marine animal and marine microorganisms. Moreover, because of the complexity of the disease, different hypothesizes have been elaborated and active compounds have been isolated to inhibit different stages of pathophysiological mechanisms. Sulfated polysaccharides, glycoprotein, and enzymatic hydrolysates from marine seaweeds, peptides, dietary omega-3 polyunsaturated fatty acids and skeletal polysaccharide from marine animals and secondary metabolites from marine microorganism are summarized in this review under the anti-Alzheimer's compounds from the marine.
Collapse
Affiliation(s)
| | - Racheal Abuine
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Yong-Jae Kim
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Hee-Guk Byun
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung 25457, Korea
| |
Collapse
|
9
|
Marine-Steroid Derivative 5α-Androst-3β, 5α, 6β-triol Protects Retinal Ganglion Cells from Ischemia⁻Reperfusion Injury by Activating Nrf2 Pathway. Mar Drugs 2019; 17:md17050267. [PMID: 31060323 PMCID: PMC6562834 DOI: 10.3390/md17050267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/26/2019] [Accepted: 05/02/2019] [Indexed: 01/17/2023] Open
Abstract
High intraocular pressure (IOP)-induced retinal ischemia leads to acute glaucoma, which is one of the leading causes of irreversible visual-field loss, characterized by loss of retinal ganglion cells (RGCs) and axonal injury in optic nerves (ONs). Oxidative stress and the inflammatory response play an important role in the ischemic injury of retinal and optic nerves. We focus on 5α-androst-3β, 5α, 6β-triol (TRIOL), a synthetic neuroactive derivative of natural marine steroids 24-methylene-cholest-3β, 5α, 6β, 19-tetrol and cholestane-3β, 5α, 6β-triol, which are two neuroactive polyhydroxysterols isolated from the soft coral Nephthea brassica and the gorgonian Menella kanisa, respectively. We previously demonstrated that TRIOL was a neuroprotective steroid with anti-inflammatory and antioxidative activities. However, the potential role of TRIOL on acute glaucoma and its underlying mechanisms remains unclear. Here, we report TRIOL as a promising neuroprotectant that can protect RGCs and their axons/dendrites from ischemic-reperfusion (I/R) injury in an acute intraocular hypertension (AIH) model. Intravitreal injection of TRIOL significantly alleviated the loss of RGCs and the damage of axons and dendrites in rats and mice with acute glaucoma. As NF-E2-related factor 2 (Nrf2) is one of the most critical regulators in oxidative and inflammatory injury, we further evaluated the effect of TRIOL on Nrf2 knockout mice, and the neuroprotective role of TRIOL on retinal ischemia was not observed in Nrf2 knockout mice, indicating that activation of Nrf2 is responsible for the neuroprotection of TRIOL. Further experiments demonstrated that TRIOL can activate and upregulate Nrf2, along with its downstream hemeoxygenase-1 (HO-1), by negative regulation of Kelch-like ECH (Enoyl-CoA Hydratase) associated Protein-1 (Keap1). In conclusion, our study shed new light on the neuroprotective therapy of retinal ischemia and proposed a promising marine drug candidate, TRIOL, for the therapeutics of acute glaucoma.
Collapse
|
10
|
Li CX, Wang XQ, Cheng FF, Yan X, Luo J, Wang QG. Hyodeoxycholic acid protects the neurovascular unit against oxygen-glucose deprivation and reoxygenation-induced injury in vitro. Neural Regen Res 2019; 14:1941-1949. [PMID: 31290452 PMCID: PMC6676877 DOI: 10.4103/1673-5374.259617] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Calculus bovis is commonly used for the treatment of stroke in traditional Chinese medicine. Hyodeoxycholic acid (HDCA) is a bioactive compound extracted from calculus bovis. When combined with cholic acid, baicalin and jas-minoidin, HDCA prevents hypoxia-reoxygenation-induced brain injury by suppressing endoplasmic reticulum stress-mediated apoptotic signaling. However, the effects of HDCA in ischemic stroke injury have not yet been studied. Neurovascular unit (NVU) dysfunction occurs in ischemic stroke. Therefore, in this study, we investigated the effects of HDCA on the NVU under ischemic conditions in vitro. We co-cultured primary brain microvascular endothelial cells, neurons and astrocytes using a transwell chamber co-culture system. The NVU was pre-treated with 10.16 or 2.54 μg/mL HDCA for 24 hours before exposure to oxygen-glucose deprivation for 1 hour. The cell counting kit-8 assay was used to detect cell activity. Flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling were used to assess apoptosis. Enzyme-linked immunosorbent assay was used to measure the expression levels of inflammatory cytokines, including interleukin-1β, interleukin-6 and tumor necrosis factor-α, and neurotrophic factors, including brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. Oxidative stress-related factors, such as superoxide dismutase, nitric oxide, malondialdehyde and γ-glutamyltransferase, were measured using kits. Pretreatment with HDCA significantly decreased blood-brain barrier permeability and neuronal apoptosis, significantly increased transendothelial electrical resistance and γ-glutamyltransferase activity, attenuated oxidative stress damage and the release of inflammatory cytokines, and increased brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor expression. Our findings suggest that HDCA maintains NVU morphological integrity and function by modulating inflammation, oxidation stress, apoptosis, and the expression of neurotrophic factors. Therefore, HDCA may have therapeutic potential in the clinical management of ischemic stroke. This study was approved by the Ethics Committee of Experimental Animals of Beijing University of Chinese Medicine (approval No. BUCM-3-2016040201-2003) in April 2016.
Collapse
Affiliation(s)
- Chang-Xiang Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xue-Qian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fa-Feng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xin Yan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Juan Luo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qing-Guo Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
11
|
Blanco MJ, La D, Coughlin Q, Newman CA, Griffin AM, Harrison BL, Salituro FG. Breakthroughs in neuroactive steroid drug discovery. Bioorg Med Chem Lett 2018; 28:61-70. [DOI: 10.1016/j.bmcl.2017.11.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/26/2017] [Accepted: 11/27/2017] [Indexed: 12/14/2022]
|
12
|
Bansal R, Singh R. Exploring the potential of natural and synthetic neuroprotective steroids against neurodegenerative disorders: A literature review. Med Res Rev 2017; 38:1126-1158. [PMID: 28697282 DOI: 10.1002/med.21458] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/01/2017] [Accepted: 06/20/2017] [Indexed: 12/18/2022]
Abstract
Neurodegeneration is a complex process, which leads to progressive brain damage due to loss of neurons. Despite exhaustive research, the cause of neuronal loss in various degenerative disorders is not entirely understood. Neuroprotective steroids constitute an important line of attack, which could play a major role against the common mechanisms associated with various neurodegenerative disorders like Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Natural endogenous steroids induce the neuroprotection by protecting the nerve cells from neuronal injury through multiple mechanisms, therefore the structural modifications of the endogenous steroids could be helpful in the generation of new therapeutically useful neuroprotective agents. The review article will keep the readers apprised of the detailed description of natural as well as synthetic neuroprotective steroids from the medicinal chemistry point of view, which would be helpful in drug discovery efforts aimed toward neurodegenerative diseases.
Collapse
Affiliation(s)
- Ranju Bansal
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Ranjit Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
13
|
A UPLC-MS/MS method for quantification of 5α-androst-3β,5,6β-triol in human plasma: development, validation and its application in clinical pharmacokinetic study. Bioanalysis 2017; 9:873-885. [PMID: 28617033 DOI: 10.4155/bio-2017-0035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
AIM 5α-androst-3β,5,6β-triol is a novel ischemic stroke drug under clinical development. The objective of this study was to develop and validate a simple ultraperformance liquid chromatography tandem mass spectrometry method for 5α-androst-3β,5,6β-triol in human plasma and its application in clinical pharmacokinetic study. Methodology & results: After being pretreated using an automatized solid-phase extraction procedure, plasma sample was separated on a Waters® Acquity™ BEH C18 column (2.1 × 50 mm id, 1.7 mm) by an Acquity UPLC system and detected by an API 5500 triple quadrupole mass spectrometer, which was validated following international guidelines. CONCLUSION A simple method was successfully validated over a concentration range of 2.00-500 ng/ml for 5α-androst-3β,5,6β-triol and applied to investigate its plasma pharmacokinetic profiles in healthy Chinese subjects.
Collapse
|