1
|
Lindsey B, Shaul Y, Martin J. Salivary biomarkers of tactical athlete readiness: A systematic review. PLoS One 2025; 20:e0321223. [PMID: 40299918 PMCID: PMC12040155 DOI: 10.1371/journal.pone.0321223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 03/03/2025] [Indexed: 05/01/2025] Open
Abstract
Tactical athletes must maintain high levels of physical and cognitive readiness to handle the rigorous demands of their roles. They frequently encounter acute stressors like sleep deprivation, muscle fatigue, dehydration, and harsh environmental conditions, which can impair their readiness and increase the risk of mission failure. Given the challenging conditions these athletes face, there is a vital need for non-invasive, rapidly deployable point-of-care assessments to effectively measure the impact of these stressors on their operational readiness. Salivary biomarkers are promising in this regard, as they reflect physiological changes due to stress. This systematic review aims to investigate salivary markers as potential indicators for readiness, specifically focusing on their sensitivity to acute stressors like sleep deprivation, dehydration, environmental factors, and muscle fatigue. A search was conducted using the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines (PROSPERO; registration #: CRD42022370388). The primary inclusion criteria were the use of a quantitative analysis to assess salivary biomarkers changes in response to acute stressors. Risk of bias and methodological quality were evaluated with the modified Downs and Black checklist. Hormonal salivary biomarkers were the most commonly studied biomarkers. Muscle damage and fatigue were the most frequently studied acute stressors, followed by sleep deprivation, multiple stressors, dehydration, and environmental. Biomarkers such as creatine kinase, aspartate aminotransferase, uric acid, cortisol, testosterone, and the testosterone to cortisol ratio were indicative of muscle damage. Dehydration influenced osmolality, total protein, flow rate, and chloride ion concentrations. Sleep deprivation affected proteins, peptides, and alpha-amylase levels. Environmental stressors, such as hypoxia and cold temperatures, altered cortisol, pH, dehydroepiandrosterone-sulfate (DHEA-s), and salivary IgA levels. The current body of research highlights that various salivary biomarkers react to acute stressors, and proteomic panels appear promising for predicting physical and cognitive outcomes relevant to the operational readiness of tactical athletes.
Collapse
Affiliation(s)
- Bryndan Lindsey
- Research and Exploratory Development Department, Johns Hopkins Applied Physics Laboratory, Laurel, Maryland, United States of America
| | - Yosef Shaul
- Sports Medicine Assessment Research & Testing (SMART) Laboratory, George Mason University, Virginia, United States of America
| | - Joel Martin
- Sports Medicine Assessment Research & Testing (SMART) Laboratory, George Mason University, Virginia, United States of America
- Center for the Advancement of Well-Being, George Mason University, Fairfax, Virginia, United States of America
| |
Collapse
|
2
|
Ruan Y, Song SJ, Yin ZF, Wang M, Huang N, Gu W, Ling CQ. Comprehensive evaluation of military training-induced fatigue among soldiers in China: A Delphi consensus study. Front Public Health 2022; 10:1004910. [PMID: 36523578 PMCID: PMC9745162 DOI: 10.3389/fpubh.2022.1004910] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/02/2022] [Indexed: 12/02/2022] Open
Abstract
Objective Military training-induced fatigue (MIF) often results into non-combat attrition. However, standard evaluation of MIF is unavailable. This study aimed to provide credible suggestions about MIF-evaluation. Methods A 3-round Delphi study was performed. The authority of the experts was assessed by the authority coefficient (Aa). In round 1, categories of indicators were collected via anonymous survey of experts, then potential indicators were selected via literature search. In round 2, experts should evaluate the clinical implication, practical value, and importance of each potential indicators, or recommend new indicators based on feedback of round 1. Indicators with recommendation proportions ≥ 70% and new recommended indicators would be included in round 3 to be rated on a 5-point Likert scale. "Consensus in" was achieved when coefficient of concordance (Kendall's W) of a round was between 0.2 and 0.5 and the coefficient of variation (CV) of each aspect for an indicator was < 0.5. If round 3 could not achieve "consensus in," more rounds would be conducted iteratively based on round 3. Indicators included in the recommendation set were ultimately classified into grade I (highly recommended) or grade II (recommended) according to the mean score and CV of the aspects. Results Twenty-three experts participated with credible authority coefficient (mean Aa = 0.733). "Consensus in" was achieved in round 3 (Kendall's W = 0.435, p < 0.001; all CV < 0.5). Round 1 recommended 10 categories with 73 indicators identified from 2,971 articles. After 3-round consultation, consensus was reached on 28 indicators focusing on the cardiovascular system (n = 4), oxygen transport system (n = 5), energy metabolism/metabolite level (n = 6), muscle/tissue damage level (n = 3), neurological function (n = 2), neuropsychological/psychological function (n = 3), endocrine function (n = 3), and exercise capacity (n = 2). Among these, 11 indicators were recommended as grade I: basic heart rate, heart-rate recovery time, heart rate variability, hemoglobin, blood lactic acid, urine protein, creatine kinase, reaction time, Borg Rating of Perceived Exertion Scale, testosterone/cortisol, and vertical jump height. Conclusion This study developed a reliable foundation for the comprehensive evaluation of MIF among soldiers.
Collapse
Affiliation(s)
- Yi Ruan
- Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, China,PLA Naval Medical Center, Shanghai, China
| | - Shang-jin Song
- Department of Traditional Chinese Medicine, Xingcheng Sanatorium of PLA Strategic Support Force, Xingcheng, China
| | - Zi-fei Yin
- Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| | - Man Wang
- Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| | - Nian Huang
- Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| | - Wei Gu
- Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, China,*Correspondence: Wei Gu ;
| | - Chang-quan Ling
- Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, China,Chang-quan Ling
| |
Collapse
|
3
|
Tait JL, Drain JR, Corrigan SL, Drake JM, Main LC. Impact of military training stress on hormone response and recovery. PLoS One 2022; 17:e0265121. [PMID: 35271678 PMCID: PMC8912193 DOI: 10.1371/journal.pone.0265121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/23/2022] [Indexed: 11/19/2022] Open
Abstract
Objectives
Military personnel are required to train and operate in challenging multi-stressor environments, which can affect hormonal levels, and subsequently compromise performance and recovery. The aims of this project were to 1) assess the impact of an eight-day military training exercise on salivary cortisol and testosterone, 2) track the recovery of these hormones during a period of reduced training.
Methods
This was a prospective study whereby 30 soldiers (n = 27 men, n = 3 women) undergoing the Australian Army combat engineer ‘Initial Employment Training’ course were recruited and tracked over a 16-day study period which included an eight-day military training exercise. Non-stimulated saliva samples were collected at waking, 30 min post waking, and bedtime on days 1, 5, 9, 13, 15; measures of subjective load were collected on the same days. Sleep was measured continuously via actigraphy, across four sequential study periods; 1) baseline (PRE: days 1–4), 2) field training with total sleep deprivation (EX-FIELD: days 5–8), 3) training at simulated base camp with sleep restriction (EX-BASE: days 9–12), and 4) a three-day recovery period (REC: days 13–15).
Results
Morning cortisol concentrations were lower following EX-FIELD (p<0.05) compared to the end of REC. Training in the field diminished testosterone concentrations (p<0.05), but levels recovered within four days. Bedtime testosterone/cortisol ratios decreased following EX-FIELD and did not return to pre-training levels.
Conclusions
The sensitivity of testosterone levels and the testosterone/cortisol ratio to the period of field training suggests they may be useful indicators of a soldier’s state of physiological strain, or capacity, however inter-individual differences in response to a multi-stressor environment need to be considered.
Collapse
Affiliation(s)
- Jamie L. Tait
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
- * E-mail:
| | - Jace R. Drain
- Defence Science and Technology Group, Fisherman’s Bend, Australia
| | - Sean L. Corrigan
- School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Jeremy M. Drake
- School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Luana C. Main
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| |
Collapse
|
4
|
Taylor MK, Hernández LM, Schoenherr MR, Stump J. Genetic, Physiologic, and Behavioral Predictors of Cardiorespiratory Fitness in Specialized Military Men. Mil Med 2019; 184:e474-e481. [DOI: 10.1093/milmed/usz033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/18/2018] [Accepted: 02/07/2019] [Indexed: 12/15/2022] Open
Abstract
AbstractIntroductionCardiorespiratory fitness (CRF) is a crucial performance requirement of specialized military occupations. Age and physical activity are established predictors of CRF, but it is not clear how these predictors combine with each other and/or with genetic predisposition. The goal of this study was to derive inclusive explanatory models of CRF in US Navy Explosive Ordnance Disposal (EOD) operators, synthesizing conventional (e.g., age, body composition, and physical activity) and novel influences (e.g., genetic variance).Materials and MethodsIn this cross-sectional study, 40 male, active duty EOD operators completed a graded exercise test to assess maximal oxygen consumption and ventilatory threshold (VT) using the Bruce protocol. Aerobic performance was further quantified via time of test termination and time at which VT was achieved. Body composition was determined via dual x-ray absorptiometry, and physical activity was assessed by self-report. Genetic variants underlying human stress systems (5HTTLPR, BclI, −2 C/G, and COMT) were assayed. Descriptive analyses were conducted to summarize subject characteristics. Hypotheses were tested with linear regression models. Specifically, separate univariate regression models first determined associations between each of the independent and dependent variables. This protocol was approved by the Naval Health Research Center Institutional Review Board (NHRC.2015.0013).ResultsIn univariate regression models, age, body composition, physical activity, and 5HTTLPR consistently predicted CRF and/or aerobic performance (R2 range 0.07–0.55). Multivariate regression models routinely outperformed the univariate models, explaining 36–62% of variance.ConclusionThis study signifies a shift toward inclusive explanatory models of CRF and aerobic performance, accounting for combined roles of genetic, physiologic, and behavioral influences. Although we were able to quantify combined effects, we were unable to evaluate interaction effects (e.g., gene–gene, gene–behavior) due to limited statistical power. Other limitations are that this specialized military population may not readily generalize to broader populations, and the current sample was all male. Considering these limitations, we aim to replicate this study in various populations, both male and female. Despite its limitations, this study reflects a shift toward more comprehensive predictive models of CRF, explaining the unique and shared contributions of genetic predisposition, physiology, and behavior. These findings have implications for assessment, selection, and training of specialized military members, and may also impact mission success and survivability. Future studies are needed to better characterize additive, interactive, and mediated effects.
Collapse
Affiliation(s)
- Marcus K Taylor
- Naval Health Research Center, 140 Sylvester Road, San Diego, CA
| | - Lisa M Hernández
- Naval Health Research Center, 140 Sylvester Road, San Diego, CA
- Leidos, Inc., 140 Sylvester Road, San Diego, CA
| | - Matthew R Schoenherr
- Naval Health Research Center, 140 Sylvester Road, San Diego, CA
- Leidos, Inc., 140 Sylvester Road, San Diego, CA
| | - Jeremiah Stump
- Explosive Ordnance Disposal Training and Evaluation Unit One, NAS North Island, San Diego, CA
| |
Collapse
|