1
|
Khan A, Kango N, Srivastava R. Impact of Dietary Probiotics on the Immune and Reproductive Physiology of Pubertal Male Japanese Quail (Coturnix coturnix japonica) Administered at the Onset of Pre-Puberty. Probiotics Antimicrob Proteins 2025; 17:1399-1417. [PMID: 38170389 DOI: 10.1007/s12602-023-10209-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
Fertility in males is dependent on the proper production of sperms involving the synchronization of numerous factors like oxidative stress, inflammatory processes, and hormonal regulation. Inflammation associated with oxidative stress is also known to impair sperm function. Nutritional factors like probiotics and prebiotics have the potential benefits to modulate these factors which may enhance male fertility. In the present study, immature male Japanese quail at the beginning of 3rd week were administered with Lactobacillus rhamnosus (L), Bifidobacterium longum (B), and mannan-oligosaccharides (M) through dietary supplementation in individual groups as well as in combinations like LB and MLB. Markers of oxidative stress including SOD and catalase were examined by native PAGE; inflammatory biomarkers (IL-1β, IL-10, and NFκB), apoptotic markers (caspase 3 and caspase 7), steroidal hormones, and their receptors estrogen receptor alpha (ERα) and beta (ERβ) were assessed in testis. The study reveals that dietary supplementation of 1% L, B, and M in combination significantly and positively increases the overall growth of immature male quail specifically testicular weight and gonadosomatic index (GSI). Furthermore, significant improvement in testicular cell size; increased steroidal hormones like testosterone, FSH, and LH levels; increase in SOD, catalase enzymes; decrease in apoptotic factors Caspase 3, Caspase 7 and immune system strength observed indicated by a decrease in expression of IL-1β, NFκB; and increase of IL-10 in testis when LBM was used in combination. These variations are attributed to the increase in testicular estrogen receptors alpha and beta, facilitated by the neuroendocrine gonadal axis, ultimately leading to improved male fertility. It can be concluded that the dietary supplementation in combination with L, B, and M enhances male fertility in immature quail by increased expression of estrogen receptors via gut microbiota modulation. It also sheds light on the potential use of these nutritional factors in avian species as therapeutic interventions to overcome low fertility problems in quail thereby benefitting the poultry industry.
Collapse
Affiliation(s)
- Aamir Khan
- Avian Reproductive Physiology & Endocrinology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Naveen Kango
- Department of Microbiology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Rashmi Srivastava
- Department of Zoology, University of Allahabad, Prayagraj, U.P., 211002, India.
| |
Collapse
|
2
|
Gao H, Wang Y, Liang X, Wen J, Liu R, Meng Q, Martyniuk CJ. Long-term exposure to 2,4-di-tert-butylphenol impairs zebrafish fecundity and affects offspring development. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138108. [PMID: 40188547 DOI: 10.1016/j.jhazmat.2025.138108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/08/2025]
Abstract
As a widely used antioxidant, 2,4-di-tert-butylphenol (2,4-DTBP) has been frequently detected in the environment and biota. Although a few studies reported its hormone-like activity in vitro, the endocrine disrupting potential of 2,4-DTBP and its effect on reproduction are not yet elucidated. In this study, adult zebrafish were exposed to 5 and 50 nM 2,4-DTBP for 60 days. Reduction in cumulative egg production was observed after 45 days of exposure. Gonadal maturation was also delayed in both female and male zebrafish following 2,4-DTBP exposure. The impaired fecundity was attributed to an imbalance of 17β-estradiol/testosterone ratio (E2/T) and altered transcripts involved in the hypothalamic-pituitary-gonadal (HPG) axis. Upon exposure, aromatase (CYP19) and E2 levels were significantly decreased in females, but were increased in males. Additionally, molecular docking revealed potential binding of 2,4-DTBP to estrogen receptors and CYP19, highlighting molecular initiating events that may interfere with steroid hormone synthesis. We also showed that 2,4-DTBP can be transferred to offspring, affecting their development and compromising immunity. The expression of triiodothyronine (T3) and hatching-related genes (esr2α, esr2β, and zhe2) were altered, suggesting that parental exposure to 2,4-DTBP resulted in intergenerational toxicity in F1 larvae. Taken together, these findings provide novel insight into the reproductive toxicity of 2,4-DTBP, contributing to its ecological risk assessment.
Collapse
Affiliation(s)
- Huina Gao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Low Carbon Resource Utilization, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yuchen Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Low Carbon Resource Utilization, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xuefang Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Low Carbon Resource Utilization, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| | - Jinfeng Wen
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Low Carbon Resource Utilization, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Ruimin Liu
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Low Carbon Resource Utilization, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Qingjian Meng
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Low Carbon Resource Utilization, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
3
|
张 晓, 钟 艳, 牟 宏, 刘 菲, 常 熙, 王 荣. [ Lycium barbarum Polysaccharide Improves Reproductive Injury in Female Rats Exposed to High-Altitude Hypoxic Environment: Investigation of the Mechanisms Involved]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:1477-1484. [PMID: 39990833 PMCID: PMC11839352 DOI: 10.12182/20241160203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Indexed: 02/25/2025]
Abstract
Objective To investigate the protective effect of Lycium barbarum polysaccharide (LBP) on reproductive system damage induced by exposure to high-altitude hypoxic environment in female rats, and to explore the mechanisms involved. Methods After undergoing physiological synchronization, 30 female Wistar rats were randomly and evenly assigned to 3 groups, including a plain control (C) group, a high-altitude hypoxia (H) group, and a high-altitude hypoxia + LBP (H-LBP) group. The C group was placed in a region at an altitude of 1500 m above sea level (with an oxygen volume fraction of 18.55%), while the H group and the H-LBP group were placed in a region at an altitude of 4010 m above sea level (with an oxygen volume fraction of 12.70%). Rats in the H-LBP group were fed with LBP at 75 mg/kg via gastric gavage, while the C and H groups received normal saline once a day for 14 days in a row. Changes in estrous cycles were documented throughout the experiment. At the end of the experiment, the serum levels of reproductive hormones and the levels of oxidative stress in the ovarian and uterine tissues were measured. Morphological changes in the ovarian and uterine tissues were assessed using hematoxylin-eosin (HE) staining. A component-target-pathway network diagram was constructed using network pharmacology methods to analyze the key targets and pathways. Results Compared with the C group, rats in the H group had disrupted estrous cycles and significantly lower serum levels of reproductive hormones (all P<0.05). In addition, rats in the H group had increased oxidative stress damage and experienced pathological damage in the ovarian and uterine tissues. However, compared with those of the H group, the estrous cycle in the H-LBP group became normalized after the administration of LBP and the serum levels of estradiol (E2), progesterone (P), luteinizing hormone (LH), and anti- Müllerian hormone (AMH) were significantly increased in H-LBP group (all P<0.05). In the ovarian tissue, the malondialdehyde (MDA) content was significantly reduced, superoxide dismutase (SOD) activity was increased, and the content of reduced glutathione (GSH) was increased. In addition, in the uterine tissue, the MDA content was reduced and SOD activity was increased (all P<0.05), with LBP significantly improving the pathological damage to the reproductive organs of female rats caused by high-altitude hypoxic environment. Through network pharmacology analysis, we identified 76 potential targets for the protective effect of LBP against high-altitude hypoxia-induced reproductive injury, and the targets were mainly involved in the signaling pathways such as calcium channels, PI3K-Akt, MAPK, and HIF-1. Conclusion LBP can ameliorate high-altitude hypoxia-induced reproductive damage in female rats. The mechanisms involved may be associated with the regulation of PI3K-Akt, MAPK, and HIF-1 pathways.
Collapse
Affiliation(s)
- 晓静 张
- 中国人民解放军联勤保障部队第九四〇医院 药剂科 (兰州 730050)Department of Pharmacy, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, China
| | - 艳 钟
- 中国人民解放军联勤保障部队第九四〇医院 药剂科 (兰州 730050)Department of Pharmacy, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, China
- 甘肃中医药大学药学院 (兰州 730000)College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - 宏芳 牟
- 中国人民解放军联勤保障部队第九四〇医院 药剂科 (兰州 730050)Department of Pharmacy, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, China
| | - 菲菲 刘
- 中国人民解放军联勤保障部队第九四〇医院 药剂科 (兰州 730050)Department of Pharmacy, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, China
- 甘肃中医药大学药学院 (兰州 730000)College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - 熙雯 常
- 中国人民解放军联勤保障部队第九四〇医院 药剂科 (兰州 730050)Department of Pharmacy, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, China
| | - 荣 王
- 中国人民解放军联勤保障部队第九四〇医院 药剂科 (兰州 730050)Department of Pharmacy, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, China
- 甘肃中医药大学药学院 (兰州 730000)College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| |
Collapse
|
4
|
Gupta V, Srivastava R. Ashwagandha Diminishes Hippocampal Apoptosis Induced by Microwave Radiation by Acetylcholinesterase Dependent Neuro-Inflammatory Pathway in Male Coturnix coturnix Japonica. Neurochem Res 2024; 49:1687-1702. [PMID: 38506951 DOI: 10.1007/s11064-024-04127-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/22/2024]
Abstract
Microwave radiation (MWR) has been linked to neurodegeneration by inducing oxidative stress in the hippocampus of brain responsible for learning and memory. Ashwagandha (ASW), a medicinal plant is known to prevent neurodegeneration and promote neuronal health. This study investigated the effects of MWR and ASW on oxidative stress and cholinergic imbalance in the hippocampus of adult male Japanese quail. One control group received no treatment, the second group quails were exposed to MWR at 2 h/day for 30 days, third was administered with ASW root extract orally 100 mg/day/kg body weight and the fourth was exposed to MWR and also treated with ASW. The results showed that MWR increased serum corticosterone levels, disrupted cholinergic balance and induced neuro-inflammation. This neuro-inflammation further led to oxidative stress, as evidenced by decreased activity of antioxidant enzymes SOD, CAT and GSH. MWR also caused a significant decline in the nissil substances in the hippocampus region of brain indicating neurodegeneration through oxidative stress mediated hippocampal apoptosis. ASW, on the other hand, was able to effectively enhance the cholinergic balance and subsequently lower inflammation in hippocampus neurons. This suggests that ASW can protect against the neurodegenerative effects of MWR. ASW also reduced excessive ROS production by increasing the activity of ROS-scavenging enzymes. Additionally, ASW prevented neurodegeneration through decreased expression of caspase-3 and caspase-7 in hippocampus, thus promoting neuronal health. In conclusion, this study showed that MWR induces apoptosis and oxidative stress in the brain, while ASW reduces excessive ROS production, prevents neurodegeneration and promotes neuronal health.
Collapse
Affiliation(s)
- Vaibhav Gupta
- Avian Reproductive and Endocrinology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Rashmi Srivastava
- Department of Zoology, Faculty of Science, University of Allahabad, Prayagraj, UP, 211002, India.
| |
Collapse
|
5
|
Zhong Y, Liu F, Zhang X, Guo Q, Wang Z, Wang R. Research progress on reproductive system damage caused by high altitude hypoxia. Endocrine 2024; 83:559-570. [PMID: 38170433 DOI: 10.1007/s12020-023-03643-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024]
Abstract
PURPOSE The high altitude area is characterized by low pressure and hypoxia, and rapidly entering the high altitude area will cause a series of damage to the body. Some studies have shown that hypoxia can cause damage to the reproductive system. In recent years, researchers have been paying attention to the effects of hypoxia on hormone level, ovarian reserve, embryonic development, testicular development, sperm motility level, and have begun to explore its injury mechanism, but its mechanism is not clear. In this paper, the mechanism of hypoxia on the reproductive system is reviewed, which is expected to provide a new idea for solving the problem of the low fertility rate of humans and animals at high altitudes. METHODS A comprehensive PubMed search was conducted, selecting all relevant peer-reviewed English papers published before January 2022. Other relevant papers were selected from the list of references. RESULTS Studies have shown that the complete fertility rate of people living at low altitudes is 7.7, and the complete fertility rate of people living at high altitudes is 4.77, and the hypoxic environment at high altitudes reduces fertility. At the same time, high-altitude, low-oxygen environments are associated with increased infant mortality and post-neonatal mortality. To date, most studies seem to point to a correlation between anoxic exposure at high altitudes and low fertility in humans and animals. CONCLUSION Although the molecular mechanisms are not fully understood, the effects of hypoxia at high altitude on hormonal level, ovarian reserve, embryonic development, testicular development, and sperm motility and levels require further research to investigate this complex topic.
Collapse
Affiliation(s)
- Yan Zhong
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China.
- Pharmacy of the 940th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Lanzhou, China.
| | - Feifei Liu
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Pharmacy of the 940th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Xiaojing Zhang
- Pharmacy of the 940th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Lanzhou, China.
| | - Qianwen Guo
- Pharmacy of the 940th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Zihan Wang
- Pharmacy of the 940th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Rong Wang
- Pharmacy of the 940th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Lanzhou, China.
| |
Collapse
|
6
|
Shakyawal S, Namdev N, Ahmad Z, Mahobiya P. Effects of Ultraviolet B Radiation on the Function of the Testicles, Expression of Caspase-3 and NOS-2, and the Protective Role of Naringin in Mice. Reprod Sci 2024; 31:452-468. [PMID: 37814202 DOI: 10.1007/s43032-023-01366-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/17/2023] [Indexed: 10/11/2023]
Abstract
In today's evolving global environment, reproductive dysfunctions brought on by various environmental toxins are of greatest concern. Radiation is a constant threat to living things, causing both genetic and cellular changes that result in mutations and cell death. It is thought that ultraviolet B (UVB) radiation we are exposed to daily has biological effects on rats and humans that are both short and long term. Due to the damaging effects of UVB radiation on the living system, this study explores the automatic mechanism by which a certain level of radiation induces oxidative stress, which is further controlled by the antioxidant activity of naringin (NG). In our study, male Swiss albino mice were exposed to UVB irradiation, which altered mice's body and testes weight, hormonal imbalance, biochemical parameters, and histo-morphometric parameter. In addition, we chose naringin's UVB irradiation deterrent effect. Twenty-four healthy adult male Swiss albino mice weighing 25-35 g were chosen at random. For 15 days of exposure, they were divided into four groups at random: group I-control, group II-UVB exposure (2 h per day), group III-UVB exposure with naringin (NG) (80 mg/kg, bw), and group IV-naringin (NG) (80 mg/kg, bw). Compared to the control group, UVB irradiation causes alterations in the animal body weight, testes weight, hormones, enzymatic and non-enzymatic assays, and histological parameters. It was seen that NG retrieved the alterations in parameters caused by UVB irradiation. The UVB radiation exposure on mice caused the testicular dysfunction drastically, while the naringin recapitulates testis functioning.
Collapse
Affiliation(s)
- Shashank Shakyawal
- Endocrinology Laboratory, Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh, India
| | - Narendra Namdev
- Endocrinology Laboratory, Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh, India
| | - Zaved Ahmad
- Cancer Biology Laboratory, Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh, India
| | - Payal Mahobiya
- Endocrinology Laboratory, Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh, India.
| |
Collapse
|
7
|
Baghel K, Azam Z, Srivastava R. Dietary restriction-induced alterations on estrogen receptor alpha expression in regulating fertility in male Coturnix coturnix japonica: Relevance of Withania somnifera in modulation of inflammation and oxidative stress in testis. Am J Reprod Immunol 2024; 91:e13816. [PMID: 38414306 DOI: 10.1111/aji.13816] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/04/2024] [Accepted: 01/16/2024] [Indexed: 02/29/2024] Open
Abstract
PROBLEM Reproductive performance of animals gets affected by nutritional restrictions which act as potential stressors leading to hormonal imbalance and testicular inflammation, the major causes of infertility. Withania somnifera (WS), well-known traditional medicinal plant, has been used as antistress and infertility treatment. Therefore, the present study looks into the ameliorative effects of WS on the reproductive and immune system of male Coturnix coturnix japonica in stressed conditions like water and food restriction focussing on the modulation in estrogen receptor alpha (ERα). METHOD OF STUDY Biochemical estimations for oxidative stress, histological alterations, immuno-fluorescent localization of ERα, interleukin (IL)-1β, IL-4, and interferon gamma (IFN-γ) in testicular cells were performed. RESULTS Nutritional restriction declines endogenous estradiol, ERα in testicular cells while it elevates corticosterone leading to oxidative stress in testis thereby reducing fertility by decrease in sperm. Results indicate significant reversal in all the parameters after the administration of WS by improving testicular cell morphology, increased superoxide and catalase activity thus reducing oxidative stress. WS increases spermatogenesis and enhances expression of ERα in testicular cells in quail. Further, WS increases IL-4, decreases IL-1β and IFN-γ expression in testis, thereby improving immune profile contrary to stressed conditions. CONCLUSION WS stimulates HPG-axis even after stress resulting in increased endogenous estradiol which stimulates the expression of ERα in testis; increases sperm count and immunity thereby improving the reproductive performance. WS may be the best therapy against nutritional-restriction stress induced reproductive toxicity by reducing oxidative stress mediated inflammatory response via increased testicular expression of ERα in quail.
Collapse
Affiliation(s)
- Kalpana Baghel
- Department of Zoology, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, India
| | - Zaffar Azam
- Department of Zoology, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, India
| | - Rashmi Srivastava
- Department of Zoology, University of Allahabad, (A Central University), Prayagraj, Uttar Pradesh, India
| |
Collapse
|
8
|
Baghel K, Niranjan MK, Srivastava R. Withania somnifera inhibits photorefractoriness which triggers neuronal apoptosis in both pre-optic and paraventricular hypothalamic area of Coturnix coturnix japonica: involvement of oxidative stress induced p53 dependent Caspase-3 mediated low immunoreactivity of estrogen receptor alpha. Photochem Photobiol Sci 2023; 22:2205-2218. [PMID: 37266906 DOI: 10.1007/s43630-023-00442-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
Light has a very important function in the regulation of the normal physiology including the neuroendocrine system, biological rhythms, cognitive behavior, etc. The variation in photoperiod acts as a stressor due to imbalance in endogenous hormones. Estrogen and its receptors ER alpha and beta play a vital role in the control of stress response in birds. The study investigates the estrogenic effects of a well-known medicinal plant Withania somnifera (WS), mediated by estrogen receptor alpha (ERα) in the hypothalamic pre-optic area (POA) and paraventricular nuclei (PVN). Further the study elucidates its anti-oxidants and anti-apoptotic activities in the brain of Japanese quail. To validate this hypothesis, mature male quails were exposed to long day length for 3 months and then transferred to intermediate day length to become photorefractory (PR) while controls were still continued under long daylength. Supplementation of WS root extract in PR quail increases plasma estrogen and lowers corticosterone. Further, in PR quail the variation in light downregulates immunoreactivity of ERα, oxidative stress and antioxidant enzyme activities i.e. superoxide dismutase and catalase in the brain. Neuronal apoptosis was observed in the POA and PVN of PR quail as indicated by the abundant expression of Caspase-3 and p53 which reduces after the administration of WS root extract. The neuronal population also found to decrease in PR although it increased in WS administered quails. Further, the study concluded that change in photoperiod from 3 months exposure of 16L: 8D to 13.5L: 10.5D directly activates neuronal apoptosis via expression of Caspase3 and p53 expression in the brain and increases neuronal and gonadal oxidative stress while WS root extract reverses them via enhanced estrogen and its receptor ERα expression in the hypothalamic pre-optic and PVN area of Japanese quail.
Collapse
Affiliation(s)
- Kalpana Baghel
- Avian Reproductive and Endocrinology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | | | - Rashmi Srivastava
- Department of Zoology, University of Allahabad, Prayagraj, UP, 211002, India.
| |
Collapse
|
9
|
Gupta V, Srivastava R. 2.45 GHz microwave radiation induced oxidative stress: Role of inflammatory cytokines in regulating male fertility through estrogen receptor alpha in Gallus gallus domesticus. Biochem Biophys Res Commun 2022; 629:61-70. [PMID: 36113179 DOI: 10.1016/j.bbrc.2022.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/24/2022]
Abstract
Due to the growing number of gadgets emitting electromagnetic radiation (EMR), particularly microwave (MW) radiation, in our daily lives, it is believed that EMR have both long-term and short-term biological impacts that are quite concerning for avian as well as human health. Due to the negative impact of MW emitting equipment on the biological system this study looks into the mechanistic approach by which low-level of 2.45 GHz MW radiation causes an oxidative stress and inflammatory response in the testes micro-environment which further gets regulated by estrogen receptor alpha (ERα) expression in immature Gallus gallus domesticus leading to male infertility. Two weeks old immature male chickens were exposed to non-thermal low-level 2.45-GHz MW radiation for 2 h/day for 30 days (power density = 0.1264 mw/cm2 and SAR = 0.9978 W/kg). In the exposed group, morphometric examination of the testes revealed decreased testicular weight, volume and gonado-somatic index. Further, histological staining demonstrated a substantial reduction in the diameter of seminiferous tubules in the exposed group as compared to the control. The degree of oxidative stress was also determined showing an increase in oxidative stress parameters after exposure. The radiation exposed testes showed a significant increase in IL-1β immunoreactivity and decline in IL-10 immunoreactivity, indicating a sense of MW radiation-induced oxidative stress-regulated inflammatory response. A substantial reduction in ERα expression was also observed in exposed testes by Western blotting. Our investigations conclude that testes being vulnerable to free radical damage become an easy target organ for MW exposure induced oxidative and inflammatory stress. Therefore it becomes evident that it may cause male infertility in chicks via downregulation of ER-α in testis.
Collapse
Affiliation(s)
- Vaibhav Gupta
- Avian Reproductive and Endocrinology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Rashmi Srivastava
- Avian Reproductive and Endocrinology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India.
| |
Collapse
|
10
|
Pillerová M, Borbélyová V, Hodosy J, Riljak V, Renczés E, Frick KM, Tóthová Ľ. On the role of sex steroids in biological functions by classical and non-classical pathways. An update. Front Neuroendocrinol 2021; 62:100926. [PMID: 34089761 PMCID: PMC8523217 DOI: 10.1016/j.yfrne.2021.100926] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/02/2022]
Abstract
The sex steroid hormones (SSHs) play several roles in regulation of various processes in the cardiovascular, immune, muscular and neural systems. SSHs affect prenatal and postnatal development of various brain structures, including regions associated with important physiological, behavioral, cognitive, and emotional functions. This action can be mediated by either intracellular or transmembrane receptors. While the classical mechanisms of SSHs action are relatively well examined, the physiological importance of non-classical mechanism of SSHs action through membrane-associated and transmembrane receptors in the brain remains unclear. The most recent summary describing the role of SSHs in different body systems is lacking. Therefore, the aim of this review is to discuss classical and non-classical signaling pathways of testosterone and estradiol action via their receptors at functional, cellular, tissue level and to describe the effects on various body systems and behavior. Particular emphasis will be on brain regions including the hippocampus, hypothalamus, frontal cortex and cerebellum.
Collapse
Affiliation(s)
- Miriam Pillerová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Veronika Borbélyová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Július Hodosy
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Vladimír Riljak
- Institute of Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Emese Renczés
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Ľubomíra Tóthová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia.
| |
Collapse
|
11
|
Niranjan MK, Koiri RK, Srivastava R. Expression of estrogen receptor alpha in response to stress and estrogen antagonist tamoxifen in the shell gland of Gallus gallus domesticus: involvement of anti-oxidant system and estrogen. Stress 2021; 24:261-272. [PMID: 31885314 DOI: 10.1080/10253890.2019.1710127] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Animals are frequently exposed to various kinds of environmental stressors and estrogen is known to play important role in stress response besides its crucial role in regulation of cellular proliferation, metabolic activity and reproduction. The study investigates the estrogen antagonist, tamoxifen (TM), mediated estrogen receptor alpha (ERα) expression, to modulate stress induced parameters in chickens. The study further explores the activity of superoxide dismutase (SOD), catalase and glutathione peroxidase (GPX) and malonaldehyde (MDA) in brain, ovary and shell gland during water deprivation (WD) and tamoxifen administration in sexually mature chicken. WD and TM administration both decrease the plasma estradiol while WD increases corticosterone. WD also elevates MDA concentration in the brain, ovary and shell gland while TM lowers it. WD and TM administration lowers the specific activity of SOD in brain and shell gland. In contrast, WD increases the specific activity of catalase, GPx and GR in the brain and shell gland, while TM decreases it. It appears that endogenous estradiol plays a crucial role in expression of antioxidant enzymes and tamoxifen acts as an antioxidant by reducing the oxidative stress in chicken. Abundant expression of ERα has been observed in the shell gland of egg laying birds while stress like water deprivation and TM down-regulates its expression. Thus, it can be concluded that expression of ERα in shell gland plays a predominant role in mediating estrogen action in response to water deprivation stress and tamoxifen.
Collapse
Affiliation(s)
| | - Raj Kumar Koiri
- Department of Zoology, Dr H. S. Gour Vishwavidyalaya, Sagar, India
| | | |
Collapse
|
12
|
Grzegorzewska AK, Grot E, Sechman A. Sodium Fluoride In Vitro Treatment Affects the Expression of Gonadotropin and Steroid Hormone Receptors in Chicken Embryonic Gonads. Animals (Basel) 2021; 11:ani11040943. [PMID: 33810503 PMCID: PMC8066272 DOI: 10.3390/ani11040943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Effects of in vitro sodium fluoride (NaF) treatment on the mRNA expression of luteinizing hormone receptor (LHR), follicle-stimulating hormone receptor (FSHR), estrogen receptors (ESR1 and ESR2), progesterone receptor (PGR), and the immunolocalization of PGRs were examined in gonads of 14-day-old chicken embryos. In the ovary, the NaF treatment significantly increased mRNA levels of all investigated receptors. In the testes, the lowest applied dose of NaF (1.7 mM) significantly decreased the expression of FSHR, ESR1, ESR2, and PGR. Alternatively, the higher NaF dose (7.1 mM) elevated PGR mRNA level in the male gonad. Immunohistochemical analysis revealed that the NaF exposure increased PGR expression in the ovarian cortex, while it decreased its expression in the testes. Collectively, these data indicate that: (i) NaF may disturb the chicken embryonic development, and (ii) different mechanisms of this toxicant action exist within the female and male gonads. Abstract Sodium fluoride (NaF), in addition to preventing dental decay may negatively affect the body. The aim of this study was to examine the effect of a 6 h in vitro treatment of gonads isolated from 14-day-old chicken embryos with NaF at doses of 1.7 (D1), 3.5 (D2), 7.1 (D3), and 14.2 mM (D4). The mRNA expression of luteinizing hormone receptor (LHR), follicle-stimulating hormone receptor (FSHR), estrogen receptors (ESR1 and ESR2), progesterone receptor (PGR), and the immunolocalization of progesterone receptors were examined in the tissue. In the ovary, the expression of FSHR and LHR increased following the NaF treatment. In the case of FSHR the highest stimulatory effect was noticed in the D2 group, while the expression of LHR increased in a dose-dependent manner. A gradual increase in ESR1 and PGR mRNA levels was also observed in the ovary following the NaF treatment, but only up to the D3 dose of NaF. The highest ESR2 level was also found in the D3 group. In the testes, the lowest dose of NaF significantly decreased the expression of FSHR, ESR1, ESR2, and PGR. On the other hand, an increase in PGR expression was observed in the D3 group. The expression of LHR in the testes was not affected by the NaF treatment. Immunohistochemical analysis showed that NaF exposure increased progesterone receptor expression in the ovarian cortex, while it decreased its expression in the testes. These results reveal that NaF may disturb the chicken embryonic development and different mechanisms of this toxicant action exist within the females and males.
Collapse
|
13
|
Photoperiod dependent expression of estrogen receptor alpha in testes of Japanese quail: Involvement of Withania somnifera in apoptosis amelioration. Biochem Biophys Res Commun 2020; 534:957-965. [PMID: 33129445 DOI: 10.1016/j.bbrc.2020.10.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 01/18/2023]
Abstract
Light plays important function in the regulation of reproduction in vertebrates including birds. The prolonged long day length exposure causes reproductively inactive state or photorefractoriness in many avian species including Japanese quail. Withania somnifera (WS) is a medicinal plant known to have beneficial effects on stress and infertility. The study investigates the physiological effect of WS on the light-induced stress in quail mediated by estrogen receptor alpha. Quails were exposed to long day length for three months and then transferred into intermediate day length to make them photorefractory (PR) while controls under natural day length. Administration of Withania somnifera root extract (WSRE) in PR quail induces estrogen and decreases corticosterone in male Japanese quail. Immunoreactivity of ERα decreased in testis of PR quail and increased after oral administration of WSRE compared to control. Expression of ir-Caspase-3 and ir-p53 in the testis increased in PR while decreased in PR + WS. Histologically, seminiferous tubules size decreased in PR whereas increased in PR + WS quails. Scanning electron microscopic study reveals sperms in clusters with proper head and tail in control. In PR quails sperms were few and distorted while WSRE improved the sperm morphology. From the study, it is concluded that during photorefractoriness gonadal regression occurs due to testicular apoptosis which causes stress. WSRE helps to overcome stress and improve reproductive performance via increase in expression of ir-ERα during PR condition. Further, the stress ameliorating effect of WSRE in reducing apoptosis mediated by ir-Caspase-3 and ir-p53 in the testes is clearly evident in Japanese quail.
Collapse
|
14
|
Baghel K, Srivastava R. Effect of estrogen and stress on estrogen receptor 1 in the HPG axis of immature male Gallus gallus domesticus: Involvement of anti-oxidant system. Theriogenology 2020; 155:98-113. [PMID: 32645509 DOI: 10.1016/j.theriogenology.2020.05.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 05/10/2020] [Accepted: 05/31/2020] [Indexed: 10/24/2022]
Abstract
Estrogen plays a key role in the regulation of reproductive behavior and control of the neuroendocrine system in both males and females. However, excessive quantity of exogenous estrogen produces a deleterious effect on the male reproductive system. To elucidate the mechanism by which estrogen modulates its receptor alpha (ESR1) in immature chicken during stress the study has been undertaken. The experiment investigated the physiological changes in the abundance of ESR1 in brain, pituitary and testes of immature male chickens after stress like water restriction. Twenty four immature male chickens were randomly assigned into four groups. The control group was provided with food and water ad libitum, second was water restricted 9 h each day for seven days (WR), third was treated with estradiol benzoate (EB) and fourth group was treated with EB followed by water restriction during last seven days of treatment (EB + WR). EB was administered at a dose of 0.5 mg/100 g/day for 12 days. EB administration as well as WR increases both the H2O2 and Malondialdehyde levels indicating oxidative stress in brain as well as in testis. Plasma corticosterone significantly increased in all groups while estradiol significantly decreased after water restriction. ESR1 protein was detected by immuno-fluorescence predominantly in the pre-optic area of the hypothalamus, pituitary and testes after EB administration. EB administration increases ESR1 proteins abundantly in the Sertoli cells, Leydig cells, spermatogonia and spermatids while WR decreases it. The decline in ESR1 proteins after EB administration during stress appears to be mediated by interaction of estrogen with hypothalamo-pituitary-adrenal (HPA) axis. Therefore, the findings substantiate the fact that WR and EB treatment increase the stress and alter the anti-oxidant enzymes via its receptor ESR1 in the brain, pituitary and testis of immature chicks. Moreover, these findings highlight the effect of estradiol in male chicks causing stress which is disrupting the normal physiological feedback mechanism in hormone release and the expression of receptor ESR1 along the hypothalamo-pituitary-gonadal (HPG) axis.
Collapse
Affiliation(s)
- Kalpana Baghel
- Department of Zoology, Dr. H. S. Gour Central University, Sagar, M.P, 470003, India
| | - Rashmi Srivastava
- Department of Zoology, Dr. H. S. Gour Central University, Sagar, M.P, 470003, India.
| |
Collapse
|
15
|
Baghel K, Niranjan MK, Srivastava R. Water and Food restriction decreases immunoreactivity of oestrogen receptor alpha and antioxidant activity in testes of sexually mature Coturnix coturnix japonica. J Anim Physiol Anim Nutr (Berl) 2020; 104:1738-1747. [PMID: 32483881 DOI: 10.1111/jpn.13394] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 01/13/2023]
Abstract
Food and water are closely associated with reproductive willingness in vertebrates. These are important for animals and their non-availability act as stressors which decrease sex steroid secretion suppressing reproductive behaviour. Oestrogen plays a crucial role in reproduction via its receptors alpha (ERα) and beta (ERβ). This study tested the hypothesis that ERα in testes of male Japanese quail is regulated during water and food deprivations. The present study reveals that both water and food deprivations cause oxidative stress and subsequently decrease catalase and superoxide dismutase activity, while these increase malondialdehyde and hydrogen peroxide. Both deprivations reduce plasma oestradiol whereas elevate corticosterone level. The immunofluorescent localization of ERα in the testes occurs predominantly in the seminiferous tubules of control while reduces after both food and water deprivations. All types of spermatogenic cells were seen in control testis, while after water and food deprivations size of seminiferous tubules and spermatogenic cells population decreased. Scanning electron microscopic study exhibited fully mature sperms in clusters with head and elongated flagellum, whereas after water deprivation maximum sperms were distorted, scattered with highly reduced head. On food deprivation, only few sperms were seen with head and tail. Thus, taking into account the localization of ERα in testis, it is obvious that oestrogens produced locally are involved in regulation of spermatogenesis and spermiogenesis during stress.
Collapse
Affiliation(s)
- Kalpana Baghel
- Avian Reproductive Physiology and Endocrinology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, India
| | - Mukesh K Niranjan
- Avian Reproductive Physiology and Endocrinology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, India
| | - Rashmi Srivastava
- Avian Reproductive Physiology and Endocrinology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, India
| |
Collapse
|