1
|
Asiatic acid as a leading structure for derivatives combining sub-nanomolar cytotoxicity, high selectivity, and the ability to overcome drug resistance in human preclinical tumor models. Eur J Med Chem 2023; 250:115189. [PMID: 36780832 DOI: 10.1016/j.ejmech.2023.115189] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Amides and rhodamine B conjugates of different pentacyclic triterpene acids have been shown outstanding cytotoxicity for human tumor cells. Starting from asiatic acid, a new rhodamine B hybrid has been synthesized, and its cytotoxic activity was investigated employing several human tumor cell lines (A375 (melanoma), HT29 (colorectal carcinoma), MCF7 (breast adenocarcinoma), A2780 (ovarian carcinoma), HeLa (cervical carcinoma), (NIH 3T3 (non-malignant murine fibroblasts). For these conjugates of this kind it has been established that the spacer attached to the carboxyl group at ring E governs the magnitude of the cytotoxicity. These asiatic acid - rhodamine B conjugates were highly cytotoxic for human tumor cell lines but also selective. For example, 7, an acetylated homopiperazinyl spacered rhodamine B conjugate, held an EC50 = 0.8 nM for A2780 ovarian carcinoma cells. Additional staining experiments showed the rhodamine B conjugates to act as mitocans and to effect apoptosis. In further tests using 3D spheroid models of colorectal- and mamma carcinoma, 7 demonstrated activity in the lower nanomolar range and the ability to overcome resistance to clinically used standard chemotherapeutic drugs. Therefore 7 induces cytotoxic effects leading to an equal response in the chemotherapy of both sensitive and resistant tumor models. Analyses of mitochondrial function and glycolysis and respiration derived ATP production confirmed compound 7 to act as mitocan but also revealed a rapid perturbation of the cellular energy metabolism as the primary mechanism of action, which is completely different to conventional chemotherapeutic drugs and thereby explains the ability of compound 7 to overcome chemotherapeutic drug resistance.
Collapse
|
2
|
Brandes B, Hoenke S, Schultz C, Deigner HP, Csuk R. Converting bile acids into mitocans. Steroids 2023; 189:109148. [PMID: 36414156 DOI: 10.1016/j.steroids.2022.109148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022]
Abstract
Cholic acid (1, CD), deoxycholic (3, DCA), chenodeoxycholic acid (5, CDCA), ursodeoxycholic acid (7, UDCA), and lithocholic acid (9, LCA) were acetylated and converted into their piperazinyl spacered rhodamine B conjugates 16-20. While the parent bile acids showed almost no cytotoxic effects for several human tumor cell lines, the piperazinyl amides were cytostatic but an even superior effect was observed for the rhodamine B conjugates. Extra staining experiments showed these compounds as mitocans; they led to a cell arrest in the G1 phase.
Collapse
Affiliation(s)
- Benjamin Brandes
- Martin-Luther University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Sophie Hoenke
- Martin-Luther University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Christian Schultz
- Martin-Luther University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Hans-Peter Deigner
- Furtwangen University, Institute of Precision Medicine, Medical and Life Science Faculty, Jakob-Kienzle-Str. 17, D-78054 Villingen-Schwenningen, Germany
| | - René Csuk
- Martin-Luther University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany.
| |
Collapse
|
3
|
Yang YH, Dai SY, Deng FH, Peng LH, Li C, Pei YH. Recent advances in medicinal chemistry of oleanolic acid derivatives. PHYTOCHEMISTRY 2022; 203:113397. [PMID: 36029846 DOI: 10.1016/j.phytochem.2022.113397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Oleanolic acid (OA), a ubiquitous pentacyclic oleanane-type triterpene isolated from edible and medicinal plants, exhibits a wide spectrum of pharmacological activities and tremendous therapeutic potential. However, the undesirable pharmacokinetic properties limit its application and development. Numerous researches on structural modifications of OA have been carried out to overcome this limitation and improve its pharmacokinetic and therapeutic properties. This review aims to compile and summarize the recent progresses in the medicinal chemistry of OA derivatives, especially on structure-activity relationship in the last few years (2010-2021). It gives insights into the rational design of bioactive derivatives from OA scaffold as promising therapeutic agents.
Collapse
Affiliation(s)
- Yi-Hui Yang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Si-Yang Dai
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Fu-Hua Deng
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Li-Huan Peng
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Chang Li
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China.
| | - Yue-Hu Pei
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China.
| |
Collapse
|
4
|
Rhodamine 101 Conjugates of Triterpenoic Amides Are of Comparable Cytotoxicity as Their Rhodamine B Analogs. Molecules 2022; 27:molecules27072220. [PMID: 35408619 PMCID: PMC9000871 DOI: 10.3390/molecules27072220] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/31/2022] Open
Abstract
Pentacyclic triterpenoic acids (betulinic, oleanolic, ursolic, and platanic acid) were selected and subjected to acetylation followed by the formation of amides derived from either piperazine or homopiperazine. These amides were coupled with either rhodamine B or rhodamine 101. All of these compounds were screened for their cytotoxic activity in SRB assays. As a result, the cytotoxicity of the parent acids was low but increased slightly upon their acetylation while a significant increase in cytotoxicity was observed for piperazinyl and homopiperazinyl amides. A tremendous improvement in cytotoxicity was observed; however, for the rhodamine B and rhodamine 101 conjugates, and compound 27, an ursolic acid derived homopiperazinyl amide holding a rhodamine 101 residue showed an EC50 = 0.05 µM for A2780 ovarian cancer cells while being less cytotoxic for non-malignant fibroblasts. To date, the rhodamine 101 derivatives presented here are the first examples of triterpene derivatives holding a rhodamine residue different from rhodamine B.
Collapse
|
5
|
Heise NV, Ströhl D, Schmidt T, Csuk R. Stable triterpenoid iminium salts and their activity as inhibitors of butyrylcholinesterase. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Heise N, Friedrich S, Temml V, Schuster D, Siewert B, Csuk R. N-methylated diazabicyclo[3.2.2]nonane substituted triterpenoic acids are excellent, hyperbolic and selective inhibitors for butyrylcholinesterase. Eur J Med Chem 2022; 227:113947. [PMID: 34731766 DOI: 10.1016/j.ejmech.2021.113947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 11/19/2022]
Abstract
Triterpenoic acids (oleanolic, ursolic, betulinic, platanic and glycyrrhetinic acid) were acetylated and coupled with 1,3- or 1,4-diazabicyclo[3.2.2]nonanes to yield amides. Reaction of these amides with methyl iodide at the distal nitrogen of the bicyclic system gave the corresponding quaternary ammonium salts. These compounds were shown to act as excellent inhibitors of the enzyme butyrylcholinesterase (BChE) while being only weak inhibitors for acetylcholinesterase (AChE). Evaluation of the enzyme kinetics revealed these compounds to act as hyperbolic inhibitors for BChE while the results from molecular modeling gave an explanation for their selectivity between AChE and BChE.
Collapse
Affiliation(s)
- Niels Heise
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120, Halle (Saale), Germany
| | - Sander Friedrich
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120, Halle (Saale), Germany
| | - Veronika Temml
- Pharmacy/ Pharmaceutical and Medicinal Chemistry Institute, Paracelsus Medical University Salzburg, Stubergasse 21, A-5020, Salzburg, Austria
| | - Daniela Schuster
- Pharmacy/ Pharmaceutical and Medicinal Chemistry Institute, Paracelsus Medical University Salzburg, Stubergasse 21, A-5020, Salzburg, Austria
| | - Bianka Siewert
- Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, A-6020, Innsbruck, Austria
| | - René Csuk
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120, Halle (Saale), Germany.
| |
Collapse
|
7
|
Heise N, Hoenke S, Simon V, Deigner HP, Al-Harrasi A, Csuk R. Type and position of linkage govern the cytotoxicity of oleanolic acid rhodamine B hybrids. Steroids 2021; 172:108876. [PMID: 34129861 DOI: 10.1016/j.steroids.2021.108876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/17/2021] [Accepted: 05/25/2021] [Indexed: 12/22/2022]
Abstract
Oleanolic acid/rhodamine B hybrids exhibit different cytotoxicity depending on the way these two structural elements are linked. While a hybrid holding a piperazinyl spacer at C-28 proved to be cytotoxic in the nano-molar concentration range, hybrids with a direct linkage of the Rho B residue to C-3 of the triterpenoid skeleton are cytotoxic only in the low micro-molar concentration range without any selectivity. This once again underlines the importance of selecting the right spacer and the most appropriate position on the skeleton of the triterpene to achieve the most cytotoxic hybrids possible.
Collapse
Affiliation(s)
- Niels Heise
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle, Saale, Germany
| | - Sophie Hoenke
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle, Saale, Germany
| | - Vivienne Simon
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle, Saale, Germany
| | - Hans-Peter Deigner
- Furtwangen University, Medical and Life Sciences Faculty, Jakob-Kienzle Str. 17, D-78054 Villingen-Schwenningen, Germany
| | - Ahmed Al-Harrasi
- University of Nizwa, Chair of Oman's Medicinal Plants and Marine Natural Products, P.O. Box 33, PC 616, Birkat Al-Mauz, Nizwa, Oman
| | - René Csuk
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle, Saale, Germany.
| |
Collapse
|
8
|
|
9
|
Hoenke S, Christoph MA, Friedrich S, Heise N, Brandes B, Deigner HP, Al-Harrasi A, Csuk R. The Presence of a Cyclohexyldiamine Moiety Confers Cytotoxicity to Pentacyclic Triterpenoids. Molecules 2021; 26:molecules26072102. [PMID: 33917636 PMCID: PMC8038856 DOI: 10.3390/molecules26072102] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/29/2021] [Accepted: 04/04/2021] [Indexed: 11/16/2022] Open
Abstract
Pentacyclic triterpenoids oleanolic acid, ursolic acid, betulinic acid, and platanic acid were acetylated and converted into several amides 9-31; the cytotoxicity of which has been determined in sulforhodamine B assays employing seral human tumor cell lines and nonmalignant fibroblasts. Thereby, a betulinic acid/trans-1,4-cyclohexyldiamine amide showed excellent cytotoxicity (for example, EC50 = 0.6 μM for HT29 colon adenocarcinoma cells).
Collapse
Affiliation(s)
- Sophie Hoenke
- Organic Chemistry, Martin–Luther University Halle–Wittenberg, Kurt–Mothes, Str. 2, D-06120 Halle (Saale), Germany; (S.H.); (M.A.C.); (S.F.); (N.H.); (B.B.)
| | - Martin A. Christoph
- Organic Chemistry, Martin–Luther University Halle–Wittenberg, Kurt–Mothes, Str. 2, D-06120 Halle (Saale), Germany; (S.H.); (M.A.C.); (S.F.); (N.H.); (B.B.)
| | - Sander Friedrich
- Organic Chemistry, Martin–Luther University Halle–Wittenberg, Kurt–Mothes, Str. 2, D-06120 Halle (Saale), Germany; (S.H.); (M.A.C.); (S.F.); (N.H.); (B.B.)
| | - Niels Heise
- Organic Chemistry, Martin–Luther University Halle–Wittenberg, Kurt–Mothes, Str. 2, D-06120 Halle (Saale), Germany; (S.H.); (M.A.C.); (S.F.); (N.H.); (B.B.)
| | - Benjamin Brandes
- Organic Chemistry, Martin–Luther University Halle–Wittenberg, Kurt–Mothes, Str. 2, D-06120 Halle (Saale), Germany; (S.H.); (M.A.C.); (S.F.); (N.H.); (B.B.)
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Medical and Life Science Faculty, Furtwangen University, Jakob–Kienzle–Str. 17, D-78054 Villigen–Schwenningen, Germany;
| | - Ahmed Al-Harrasi
- Chair of Oman’s Medicinal Plants and Marine Natural Products, University of Nizwa, P.O. Box 33, Birkat Al-Mauz, PC 616 Nizwa, Oman;
| | - René Csuk
- Organic Chemistry, Martin–Luther University Halle–Wittenberg, Kurt–Mothes, Str. 2, D-06120 Halle (Saale), Germany; (S.H.); (M.A.C.); (S.F.); (N.H.); (B.B.)
- Correspondence: ; Tel.: +49-345-5525660
| |
Collapse
|
10
|
Hoenke S, Serbian I, Deigner HP, Csuk R. Mitocanic Di- and Triterpenoid Rhodamine B Conjugates. Molecules 2020; 25:molecules25225443. [PMID: 33233650 PMCID: PMC7699795 DOI: 10.3390/molecules25225443] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
The combination of the “correct” triterpenoid, the “correct” spacer and rhodamine B (RhoB) seems to be decisive for the ability of the conjugate to accumulate in mitochondria. So far, several triterpenoid rhodamine B conjugates have been prepared and screened for their cytotoxic activity. To obtain cytotoxic compounds with EC50 values in a low nano-molar range combined with good tumor/non-tumor selectivity, the Rho B unit has to be attached via an amine spacer to the terpenoid skeleton. To avoid spirolactamization, secondary amines have to be used. First results indicate that a homopiperazinyl spacer is superior to a piperazinyl spacer. Hybrids derived from maslinic acid or tormentic acid are superior to those from oleanolic, ursolic, glycyrrhetinic or euscaphic acid. Thus, a tormentic acid-derived RhoB conjugate 32, holding a homopiperazinyl spacer can be regarded, at present, as the most promising candidate for further biological studies.
Collapse
Affiliation(s)
- Sophie Hoenke
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes Street 2, D-06120 Halle, Germany; (S.H.); (I.S.)
| | - Immo Serbian
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes Street 2, D-06120 Halle, Germany; (S.H.); (I.S.)
| | - Hans-Peter Deigner
- Medical and Life Science Faculty, Institute of Precision Medicine, Furtwangen University, Jakob–Kienzle–Street 17, D-78054 Villigen–Schwenningen, Germany;
| | - René Csuk
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes Street 2, D-06120 Halle, Germany; (S.H.); (I.S.)
- Correspondence: ; Tel.: +49-345-5525660
| |
Collapse
|
11
|
Cytotoxic triterpenoid-safirinium conjugates target the endoplasmic reticulum. Eur J Med Chem 2020; 209:112920. [PMID: 33049606 DOI: 10.1016/j.ejmech.2020.112920] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/04/2020] [Accepted: 10/04/2020] [Indexed: 11/23/2022]
Abstract
Safirinium P and Q fluorescence labels were synthesized and conjugated with spacered triterpenoic acids to access hybrid structures. While the parent safirinium compounds were not cytotoxic at all, many triterpenoid safirinium P and Q conjugates showed moderate cytotoxicity. An exception, however, was safirinium P derived compound 30 holding low EC50 = 5.4 μM (for A375 cells) to EC50 = 7.5 μM (for FaDu cells) as well as EC50 = 6.6 μM for non-malignant fibroblasts NIH 3T3. Fluorescence imaging showed that the safirinium core structures cannot enter the cells (not even after a prolonged incubation time of 24 h), while the conjugates (as exemplified for 30) are accumulating in the endoplasmic reticulum but not in the mitochondria. The development of safirinium-hybrids targeting the endoplasmic reticulum can be regarded as a promising strategy in the development of cytotoxic agents.
Collapse
|