1
|
Yi X, Huang X, Xiong Y, Wu Y. A Highly Efficient and Automated Magnetic Bead Extraction Method Overcomes the Matrix Effect in LC-MS/MS Analysis of Human Serum Steroid Hormones. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:699-712. [PMID: 40040522 DOI: 10.1021/jasms.4c00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Profiling of steroid hormones is incredibly valuable in clinical settings for diagnosing endocrine disorders. However, the presence of matrix effects and labor-intensive manual work in LC-MS/MS analysis has hindered its routine application. In the present study, a highly efficient and automated magnetic bead extraction method was developed to address matrix effects and quantitatively profile 15 steroid hormones in human serum. Octadecyl (C18) and N-vinylpyrrolidone divinylbenzene (HLB) modified magnetic beads were compared for enriching steroids from human serum. Following enrichment, the beads were separated using a magnetic field; the matrix was cleaned, and the steroid hormones were eluted from the beads for LC-MS/MS analysis. This entire process of enrichment, cleanup, and elution was conducted automatically, making it simple, fast, and cost-effective. The results indicated that steroid hormones could be selectively enriched from human serum in just 1 min using C18 magnetic beads. The absolute matrix effect, evaluated as the relative response between human serum matrix and methanol solution, ranged from 89.2% to 113.1% for low levels, from 82.3% to 112.0% for medium levels, and from 91.7% to 111.0% for high levels. The intrabatch coefficients of variation (CVs) and interbatch CVs were between 3.1% and 13.4% and between 3.0% and 13.7%, respectively. Recoveries were between 87.6% and 114.3% for low levels, 94.0% and 105.0% for medium levels, and 91.9% and 111.7% for high levels. The clinical application was demonstrated by profiling steroid hormones in 160 pregnant women at various gestational weeks. The results suggested that the automated magnetic bead extraction method for LC-MS/MS could effectively address matrix effects in profiling steroid hormones. To our knowledge, this is the first automated magnetic bead extraction method for LC-MS/MS profiling of steroid hormones in clinical practice.
Collapse
Affiliation(s)
- Xiaoyi Yi
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Xiaojing Huang
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Yufeng Xiong
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yingsong Wu
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
2
|
Couacault P, Avella D, Londoño‐Osorio S, Lorenzo AS, Gradillas A, Kärkkäinen O, Want E, Witting M. Targeted and untargeted metabolomics and lipidomics in dried blood microsampling: Recent applications and perspectives. ANALYTICAL SCIENCE ADVANCES 2024; 5:e2400002. [PMID: 38948320 PMCID: PMC11210747 DOI: 10.1002/ansa.202400002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 07/02/2024]
Abstract
Blood microsampling (BµS) offers an alternative to conventional methods that use plasma or serum for profiling human health, being minimally invasive and cost effective, especially beneficial for vulnerable populations. We present a non-systematic review that offers a synopsis of the analytical methods, applications and perspectives related to dry blood microsampling in targeted and untargeted metabolomics and lipidomics research in the years 2022 and 2023. BµS shows potential in neonatal and paediatric studies, therapeutic drug monitoring, metabolite screening, biomarker research, sports supervision, clinical disorders studies and forensic toxicology. Notably, dried blood spots and volumetric absorptive microsampling options have been more extensively studied than other volumetric technologies. Therefore, we suggest that a further investigation and application of the volumetric technologies will contribute to the use of BµS as an alternative to conventional methods. Conversely, we support the idea that harmonisation of the analytical methods when using BµS would have a positive impact on its implementation.
Collapse
Affiliation(s)
- Pauline Couacault
- Metabolomics and Proteomics CoreHelmholtz Zentrum MünchenNeuherbergGermany
| | - Dennisse Avella
- Afekta Technologies Ltd.KuopioFinland
- School of PharmacyFaculty of Health SciencesUniversity of Eastern FinlandKuopioFinland
| | - Sara Londoño‐Osorio
- Centro de Metabolómica y Bioanálisis (CEMBIO)Facultad de FarmaciaUniversidad San Pablo‐CEUCEU UniversitiesUrbanización MontepríncipeBoadilla del MonteMadridSpain
| | - Ana S. Lorenzo
- Department of MetabolismDigestion and ReproductionImperial College LondonLondonUK
| | - Ana Gradillas
- Centro de Metabolómica y Bioanálisis (CEMBIO)Facultad de FarmaciaUniversidad San Pablo‐CEUCEU UniversitiesUrbanización MontepríncipeBoadilla del MonteMadridSpain
| | - Olli Kärkkäinen
- Afekta Technologies Ltd.KuopioFinland
- School of PharmacyFaculty of Health SciencesUniversity of Eastern FinlandKuopioFinland
| | - Elizabeth Want
- Department of MetabolismDigestion and ReproductionImperial College LondonLondonUK
| | - Michael Witting
- Metabolomics and Proteomics CoreHelmholtz Zentrum MünchenNeuherbergGermany
- Chair of Analytical Food ChemistryTUM School of Life SciencesTechnical University of MunichFreising‐WeihenstephanGermany
| |
Collapse
|
3
|
Therrell BL, Padilla CD, Borrajo GJC, Khneisser I, Schielen PCJI, Knight-Madden J, Malherbe HL, Kase M. Current Status of Newborn Bloodspot Screening Worldwide 2024: A Comprehensive Review of Recent Activities (2020-2023). Int J Neonatal Screen 2024; 10:38. [PMID: 38920845 PMCID: PMC11203842 DOI: 10.3390/ijns10020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 06/27/2024] Open
Abstract
Newborn bloodspot screening (NBS) began in the early 1960s based on the work of Dr. Robert "Bob" Guthrie in Buffalo, NY, USA. His development of a screening test for phenylketonuria on blood absorbed onto a special filter paper and transported to a remote testing laboratory began it all. Expansion of NBS to large numbers of asymptomatic congenital conditions flourishes in many settings while it has not yet been realized in others. The need for NBS as an efficient and effective public health prevention strategy that contributes to lowered morbidity and mortality wherever it is sustained is well known in the medical field but not necessarily by political policy makers. Acknowledging the value of national NBS reports published in 2007, the authors collaborated to create a worldwide NBS update in 2015. In a continuing attempt to review the progress of NBS globally, and to move towards a more harmonized and equitable screening system, we have updated our 2015 report with information available at the beginning of 2024. Reports on sub-Saharan Africa and the Caribbean, missing in 2015, have been included. Tables popular in the previous report have been updated with an eye towards harmonized comparisons. To emphasize areas needing attention globally, we have used regional tables containing similar listings of conditions screened, numbers of screening laboratories, and time at which specimen collection is recommended. Discussions are limited to bloodspot screening.
Collapse
Affiliation(s)
- Bradford L. Therrell
- Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
- National Newborn Screening and Global Resource Center, Austin, TX 78759, USA
| | - Carmencita D. Padilla
- Department of Pediatrics, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines;
| | - Gustavo J. C. Borrajo
- Detección de Errores Congénitos—Fundación Bioquímica Argentina, La Plata 1908, Argentina;
| | - Issam Khneisser
- Jacques LOISELET Genetic and Genomic Medical Center, Faculty of Medicine, Saint Joseph University, Beirut 1104 2020, Lebanon;
| | - Peter C. J. I. Schielen
- Office of the International Society for Neonatal Screening, Reigerskamp 273, 3607 HP Maarssen, The Netherlands;
| | - Jennifer Knight-Madden
- Caribbean Institute for Health Research—Sickle Cell Unit, The University of the West Indies, Mona, Kingston 7, Jamaica;
| | - Helen L. Malherbe
- Centre for Human Metabolomics, North-West University, Potchefstroom 2531, South Africa;
- Rare Diseases South Africa NPC, The Station Office, Bryanston, Sandton 2021, South Africa
| | - Marika Kase
- Strategic Initiatives Reproductive Health, Revvity, PL10, 10101 Turku, Finland;
| |
Collapse
|
4
|
Yu S, Yin Y, Zou Y, Li Q, Yu J, Xie S, Luo W, Ma X, Wang D, Lin L, Qiu L. A comprehensive LC-MS/MS method for the simultaneous measurement of 24 adrenal steroids: From research to clinical practice. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1232:123941. [PMID: 38103306 DOI: 10.1016/j.jchromb.2023.123941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/18/2023] [Accepted: 11/18/2023] [Indexed: 12/19/2023]
Abstract
Steroids are essential in the differential diagnosis of congenital adrenal hyperplasia (CAH) subtypes; however, they may confuse physicians with multifarious results. In this study, we established a liquid chromatography tandem mass spectrometry (LC-MS/MS) method for the simultaneous measurement of 24 steroids and developed a steroid metabolite pathway-based report to aid physicians in understanding these results. Solid-phase extraction was used to concentrate and purify target plasma steroids. The linearity, precision, recovery, and matrix effects were thoroughly evaluated. PowerBuilder was used to transfer the results from LC-MS/MS to the graphic report in a laboratory information management system (LIS) and was applied to different subtypes of CAH. Twenty-four steroids were separated and analyzed in one sample preparation and two injections using LC-MS/MS. The linearity of the steroids was excellent, with coefficients of linear regression greater than 0.99. The relative recovery ranged from 90.0 to 107.1 %, whereas the intra- and total coefficient variations were 1.6 ∼ 8.7 % and 2.0 ∼ 9.9 %, respectively. Matrix effects were compensated after internal standard correction. A graphic combination report mode was established and used to effectively identify CAH subtypes. In conclusion, a useful LC-MS/MS method and graphic combination report of 24 steroids based on their metabolite pathways were established.
Collapse
Affiliation(s)
- Songlin Yu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yicong Yin
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yutong Zou
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Qianqian Li
- Waters Technologies (Shanghai) Co., Ltd., Shanghai, China
| | - Jialei Yu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Shaowei Xie
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Wei Luo
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiaoli Ma
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Danchen Wang
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Liling Lin
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ling Qiu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China; Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
5
|
Duan Y, Zheng W, Xia Y, Zhang H, Liang L, Wang R, Yang Y, Zhang K, Lu D, Sun Y, Han L, Yu Y, Gu X, Sun Y, Xiao B, Qiu W. Genetic and phenotypic spectrum of non-21-hydroxylase-deficiency primary adrenal insufficiency in childhood: data from 111 Chinese patients. J Med Genet 2023; 61:27-35. [PMID: 37586839 DOI: 10.1136/jmg-2022-108952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 07/04/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Primary adrenal insufficiency (PAI) is a rare but life-threatening condition. Differential diagnosis of numerous causes of PAI requires a thorough understanding of the condition. METHODS To describe the genetic composition and presentations of PAI. The following data were collected retrospectively from 111 patients with non-21OHD with defined genetic diagnoses: demographic information, onset age, clinical manifestations, laboratory findings and genetic results. Patients were divided into four groups based on the underlying pathogenesis: (1) impaired steroidogenesis, (2) adrenal hypoplasia, (3) resistance to adrenocorticotropic hormone (ACTH) and (4) adrenal destruction. The age of onset was compared within the groups. RESULTS Mutations in the following genes were identified: NR0B1 (n=39), STAR (n=33), CYP11B1 (n=12), ABCD1 (n=8), CYP17A1 (n=5), HSD3B2 (n=4), POR (n=4), MRAP (n=2), MC2R (n=1), CYP11A1 (n=1), LIPA (n=1) and SAMD9 (n=1). Frequent clinical manifestations included hyperpigmentation (73.0%), dehydration (49.5%), vomiting (37.8%) and abnormal external genitalia (23.4%). Patients with adrenal hypoplasia typically presented manifestations earlier than those with adrenal destruction but later than those with impaired steroidogenesis (both p<0.01). The elevated ACTH (92.6%) and decreased cortisol (73.5%) were the most common laboratory findings. We generated a differential diagnosis flowchart for PAI using the following clinical features: 17-hydroxyprogesterone, very-long-chain fatty acid, external genitalia, hypertension and skeletal malformation. This flowchart identified 84.8% of patients with PAI before next-generation DNA sequencing. CONCLUSIONS STAR and NR0B1 were the most frequently mutated genes in patients with non-21OHD PAI. Age of onset and clinical characteristics were dependent on aetiology. Combining clinical features and molecular tests facilitates accurate diagnosis.
Collapse
Affiliation(s)
- Ying Duan
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Yangpu, Shanghai, China
| | - Wanqi Zheng
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Yangpu, Shanghai, China
| | - Yu Xia
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Yangpu, Shanghai, China
| | - Huiwen Zhang
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Yangpu, Shanghai, China
| | - Lili Liang
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Yangpu, Shanghai, China
| | - Ruifang Wang
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Yangpu, Shanghai, China
| | - Yi Yang
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Yangpu, Shanghai, China
| | - Kaichuang Zhang
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Yangpu, Shanghai, China
| | - Deyun Lu
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Yangpu, Shanghai, China
| | - Yuning Sun
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Yangpu, Shanghai, China
| | - Lianshu Han
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Yangpu, Shanghai, China
| | - Yongguo Yu
- Department of Pediatric Endocrinology and Genetic Metabolism, Clinical Genetics Center, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Yangpu, Shanghai, China
| | - Xuefan Gu
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Yangpu, Shanghai, China
| | - Yu Sun
- Department of Pediatric Endocrinology and Genetic Metabolism, Clinical Genetics Center, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Yangpu, Shanghai, China
| | - Bing Xiao
- Department of Pediatric Endocrinology and Genetic Metabolism, Clinical Genetics Center, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Yangpu, Shanghai, China
| | - Wenjuan Qiu
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Yangpu, Shanghai, China
| |
Collapse
|
6
|
de Hora M, Heather N, Webster D, Albert B, Hofman P. The use of liquid chromatography-tandem mass spectrometry in newborn screening for congenital adrenal hyperplasia: improvements and future perspectives. Front Endocrinol (Lausanne) 2023; 14:1226284. [PMID: 37850096 PMCID: PMC10578435 DOI: 10.3389/fendo.2023.1226284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/12/2023] [Indexed: 10/19/2023] Open
Abstract
Newborn screening for congenital adrenal hyperplasia using 17-hydroxyprogesterone by immunoassay remains controversial despite screening been available for almost 40 years. Screening is confounded by poor immunoassay specificity, fetal adrenal physiology, stress, and illness which can result in a large number of false positive screening tests. Screening programmes apply higher screening thresholds based on co-variates such as birthweight or gestational age but the false positive rate using immunoassay remains high. Mass spectrometry was first applied to newborn screening for congenital adrenal hyperplasia over 15 years ago. Elevated 17-hydroxprogesterone by immunoassay can be retested with a specific liquid chromatography tandem mass spectrometry assay that may include additional steroid markers. Laboratories register with quality assurance programme providers to ensure accurate steroid measurements. This has led to improvements in screening but there are additional costs and added laboratory workload. The search for novel steroid markers may inform further improvements to screening. Studies have shown that 11-oxygenated androgens are elevated in untreated patients and that the adrenal steroidogenesis backdoor pathway is more active in babies with congenital adrenal hyperplasia. There is continual interest in 21-deoxycortisol, a specific marker of 21-hydroxylase deficiency. The measurement of androgenic steroids and their precursors by liquid chromatography tandem mass spectrometry in bloodspots may inform improvements for screening, diagnosis, and treatment monitoring. In this review, we describe how liquid chromatography tandem mass spectrometry has improved newborn screening for congenital adrenal hyperplasia and explore how future developments may inform further improvements to screening and diagnosis.
Collapse
Affiliation(s)
- Mark de Hora
- Newborn Screening, Specialist Chemical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Natasha Heather
- Newborn Screening, Specialist Chemical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Dianne Webster
- Newborn Screening, Specialist Chemical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Benjamin Albert
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Paul Hofman
- Clinical Research Unit, Liggins Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|