1
|
Lyu K, Chow EYC, Mou X, Chan TF, Kwok CK. RNA G-quadruplexes (rG4s): genomics and biological functions. Nucleic Acids Res 2021; 49:5426-5450. [PMID: 33772593 PMCID: PMC8191793 DOI: 10.1093/nar/gkab187] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/02/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
G-quadruplexes (G4s) are non-classical DNA or RNA secondary structures that have been first observed decades ago. Over the years, these four-stranded structural motifs have been demonstrated to have significant regulatory roles in diverse biological processes, but challenges remain in detecting them globally and reliably. Compared to DNA G4s (dG4s), the study of RNA G4s (rG4s) has received less attention until recently. In this review, we will summarize the innovative high-throughput methods recently developed to detect rG4s on a transcriptome-wide scale, highlight the many novel and important functions of rG4 being discovered in vivo across the tree of life, and discuss the key biological questions to be addressed in the near future.
Collapse
Affiliation(s)
- Kaixin Lyu
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Eugene Yui-Ching Chow
- School of Life Sciences, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xi Mou
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Ting-Fung Chan
- School of Life Sciences, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.,Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| |
Collapse
|
2
|
Jana J, Mohr S, Vianney YM, Weisz K. Structural motifs and intramolecular interactions in non-canonical G-quadruplexes. RSC Chem Biol 2021; 2:338-353. [PMID: 34458788 PMCID: PMC8341446 DOI: 10.1039/d0cb00211a] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Guanine(G)-rich DNA or RNA sequences can assemble or intramolecularly fold into G-quadruplexes formed through the stacking of planar G·G·G·G tetrads in the presence of monovalent cations. These secondary nucleic acid structures have convincingly been shown to also exist within a cellular environment exerting important regulatory functions in physiological processes. For identifying nucleic acid segments prone to quadruplex formation, a putative quadruplex sequence motif encompassing closely spaced tracts of three or more guanosines is frequently employed for bioinformatic search algorithms. Depending on the number and type of intervening residues as well as on solution conditions, such sequences may fold into various canonical G4 topologies with continuous G-columns. On the other hand, a growing number of sequences capable of quadruplex formation feature G-deficient guanine tracts, escaping the conservative consensus motif. By folding into non-canonical quadruplex structures, they adopt unique topologies depending on their specific sequence context. These include G-columns with only two guanines, bulges, snapback loops, D- and V-shaped loops as well as interlocked structures. This review focuses on G-quadruplex species carrying such distinct structural motifs. It evaluates characteristic features of their non-conventional scaffold and highlights principles of stabilizing interactions that also allow for their folding into stable G-quadruplex structures.
Collapse
Affiliation(s)
- Jagannath Jana
- Institute of Biochemistry, Universität Greifswald Felix-Hausdorff-Str. 4 D-17487 Greifswald Germany +49 3834 420-4427 +49 3834 420-4426
| | - Swantje Mohr
- Institute of Biochemistry, Universität Greifswald Felix-Hausdorff-Str. 4 D-17487 Greifswald Germany +49 3834 420-4427 +49 3834 420-4426
| | - Yoanes Maria Vianney
- Institute of Biochemistry, Universität Greifswald Felix-Hausdorff-Str. 4 D-17487 Greifswald Germany +49 3834 420-4427 +49 3834 420-4426
| | - Klaus Weisz
- Institute of Biochemistry, Universität Greifswald Felix-Hausdorff-Str. 4 D-17487 Greifswald Germany +49 3834 420-4427 +49 3834 420-4426
| |
Collapse
|
3
|
Das P, Ngo KH, Winnerdy FR, Maity A, Bakalar B, Mechulam Y, Schmitt E, Phan AT. Bulges in left-handed G-quadruplexes. Nucleic Acids Res 2021; 49:1724-1736. [PMID: 33503265 PMCID: PMC7897477 DOI: 10.1093/nar/gkaa1259] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/10/2020] [Accepted: 12/18/2020] [Indexed: 12/03/2022] Open
Abstract
G-quadruplex (G4) DNA structures with a left-handed backbone progression have unique and conserved structural features. Studies on sequence dependency of the structures revealed the prerequisites and some minimal motifs required for left-handed G4 formation. To extend the boundaries, we explore the adaptability of left-handed G4s towards the existence of bulges. Here we present two X-ray crystal structures and an NMR solution structure of left-handed G4s accommodating one, two and three bulges. Bulges in left-handed G4s show distinct characteristics as compared to those in right-handed G4s. The elucidation of intricate structural details will help in understanding the possible roles and limitations of these unique structures.
Collapse
Affiliation(s)
- Poulomi Das
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Khac Huy Ngo
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Fernaldo Richtia Winnerdy
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Arijit Maity
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Blaž Bakalar
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Yves Mechulam
- Laboratoire de Biologie Structurale de la Cellule (BIOC), Ecole Polytechnique, CNRS-UMR7654, Institut Polytechnique de Paris, Palaiseau 91128, France
| | - Emmanuelle Schmitt
- Laboratoire de Biologie Structurale de la Cellule (BIOC), Ecole Polytechnique, CNRS-UMR7654, Institut Polytechnique de Paris, Palaiseau 91128, France
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| |
Collapse
|
4
|
Andrałojć W, Pasternak K, Sarzyńska J, Zielińska K, Kierzek R, Gdaniec Z. The origin of the high stability of 3'-terminal uridine tetrads: contributions of hydrogen bonding, stacking interactions, and steric factors evaluated using modified oligonucleotide analogs. RNA (NEW YORK, N.Y.) 2020; 26:2000-2016. [PMID: 32967936 PMCID: PMC7668245 DOI: 10.1261/rna.076539.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/17/2020] [Indexed: 05/09/2023]
Abstract
RNA G-quadruplexes fold almost exclusively into parallel-stranded structures and thus display much less structural diversity than their DNA counterparts. However, also among RNA G-quadruplexes peculiar structural elements can be found which are capable of reshaping the physico-chemical properties of the folded structure. A striking example is provided by a uridine tetrad (U-tetrad) placed on the 3'-terminus of the tetramolecular G-quadruplex. In this context, the U-tetrad adopts a unique conformation involving chain reversal and is responsible for a tremendous stabilization of the G-quadruplex (ΔTm up to 30°C). In this report, we attempt to rationalize the origin of this stabilizing effect by concurrent structural, thermal stability, and molecular dynamics studies of a series of G-quadruplexes with subtle chemical modifications at their 3'-termini. Our results provide detailed insights into the energetics of the "reversed" U-tetrad motif and the requirements for its formation. They point to the importance of the 2'OH to phosphate hydrogen bond and preferential stacking interactions for the formation propensity and stability of the motif.
Collapse
Affiliation(s)
- Witold Andrałojć
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Karol Pasternak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Joanna Sarzyńska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Karolina Zielińska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Zofia Gdaniec
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| |
Collapse
|
5
|
Fukunaga J, Nomura Y, Tanaka Y, Torigoe H, Nakamura Y, Sakamoto T, Kozu T. A G-quadruplex-forming RNA aptamer binds to the MTG8 TAFH domain and dissociates the leukemic AML1-MTG8 fusion protein from DNA. FEBS Lett 2020; 594:3477-3489. [PMID: 32870501 DOI: 10.1002/1873-3468.13914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 11/11/2022]
Abstract
MTG8 (RUNX1T1) is a fusion partner of AML1 (RUNX1) in the leukemic chromosome translocation t(8;21). The AML1-MTG8 fusion gene encodes a chimeric transcription factor. One of the highly conserved domains of MTG8 is TAFH which possesses homology with human TAF4 [TATA-box binding protein-associated factor]. To obtain specific inhibitors of the AML1-MTG8 fusion protein, we isolated RNA aptamers against the MTG8 TAFH domain using systematic evolution of ligands by exponential enrichment. All TAF aptamers contained guanine-rich sequences. Analyses of a TAF aptamer by NMR, CD, and mutagenesis revealed that it forms a parallel G-quadruplex structure in the presence of K+ . Furthermore, the aptamer could bind to the AML1-MTG8 fusion protein and dissociate the AML1-MTG8/DNA complex, suggesting that it can inhibit the dominant negative effects of AML1-MTG8 against normal AML1 function and serve as a potential therapeutic agent for leukemia.
Collapse
Affiliation(s)
- Junichi Fukunaga
- Research Institute for Clinical Oncology, Saitama Cancer Center, Ina, Japan
| | - Yusuke Nomura
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, Narashino, Japan.,Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Japan
| | - Yoichiro Tanaka
- Research Institute for Clinical Oncology, Saitama Cancer Center, Ina, Japan.,Facility for RI Research and Education, Instrumental Analysis Center, Research Initiatives and Promotion Organization, Yokohama National University, Hodogaya-ku, Japan
| | - Hidetaka Torigoe
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Japan
| | - Yoshikazu Nakamura
- Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, Minato-ku, Japan.,Ribomic Inc., Minato-ku, Japan
| | - Taiichi Sakamoto
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, Narashino, Japan
| | - Tomoko Kozu
- Research Institute for Clinical Oncology, Saitama Cancer Center, Ina, Japan
| |
Collapse
|
6
|
Ekimoto T, Kokabu Y, Oroguchi T, Ikeguchi M. Combination of coarse-grained molecular dynamics simulations and small-angle X-ray scattering experiments. Biophys Physicobiol 2019; 16:377-390. [PMID: 31984192 PMCID: PMC6976007 DOI: 10.2142/biophysico.16.0_377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/11/2019] [Indexed: 12/01/2022] Open
Abstract
The combination of molecular dynamics (MD) simulations and small-angle X-ray scattering (SAXS), called the MD-SAXS method, is efficient for investigating protein dynamics. To overcome the time-scale limitation of all-atom MD simulations, coarse-grained (CG) representations are often utilized for biomolecular simulations. In this study, we propose a method to combine CG MD simulations with SAXS, termed the CG-MD-SAXS method. In the CG-MD-SAXS method, the scattering factors of CG particles for proteins and nucleic acids are evaluated using high-resolution structural data in the Protein Data Bank, and the excluded volume and the hydration shell are modeled using two adjustable parameters to incorporate solvent effects. To avoid overfitting, only the two parameters are adjusted for an entire structure ensemble. To verify the developed method, theoretical SAXS profiles for various proteins, DNA/RNA, and a protein-RNA complex are compared with both experimental profiles and theoretical profiles obtained by the all-atom representation. In the present study, we applied the CG-MD-SAXS method to the Swi5-Sfr1 complex and three types of nucleosomes to obtain reliable ensemble models consistent with the experimental SAXS data.
Collapse
Affiliation(s)
- Toru Ekimoto
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Yuichi Kokabu
- Bioscience Department, Mitsui Knowledge Industry Co., Ltd., Minato-ku, Tokyo 105-6215, Japan
| | - Tomotaka Oroguchi
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan.,Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan.,Medical Sciences Innovation Hub Program RIKEN, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
7
|
Lightfoot HL, Hagen T, Tatum NJ, Hall J. The diverse structural landscape of quadruplexes. FEBS Lett 2019; 593:2083-2102. [PMID: 31325371 DOI: 10.1002/1873-3468.13547] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 12/15/2022]
Abstract
G-quadruplexes are secondary structures formed in G-rich sequences in DNA and RNA. Considerable research over the past three decades has led to in-depth insight into these unusual structures in DNA. Since the more recent exploration into RNA G-quadruplexes, such structures have demonstrated their in cellulo existence, function and roles in pathology. In comparison to Watson-Crick-based secondary structures, most G-quadruplexes display highly redundant structural characteristics. However, numerous reports of G-quadruplex motifs/structures with unique features (e.g. bulges, long loops, vacancy) have recently surfaced, expanding the repertoire of G-quadruplex scaffolds. This review addresses G-quadruplex formation and structure, including recent reports of non-canonical G-quadruplex structures. Improved methods of detection will likely further expand this collection of novel structures and ultimately change the face of quadruplex-RNA targeting as a therapeutic strategy.
Collapse
Affiliation(s)
- Helen L Lightfoot
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland
| | - Timo Hagen
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland
| | - Natalie J Tatum
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland
| |
Collapse
|
8
|
Abstract
The application of X-ray crystallographic methods toward a structural understanding of G-quadruplex (G4) motifs at atomic level resolution can provide researchers with exciting opportunities to explore new structural arrangements of putative G4 forming sequences and investigate their recognition by small molecule compounds. The crowded and ordered crystalline environment requires the self-assembly of stable G4 motifs, allowing for an understanding of their inter- and intramolecular interactions in a packed environment, revealing thermodynamically stable topologies. Additionally, crystallographic data derived from these experiments in the form of electron density provides valuable opportunities to visualize various solvent molecules associated with G4s along with the geometries of the metal ions associated within the central channel-elements critical to the understanding G4 stability and topology. Now, with the advent of affordable, commercially sourced and purified synthetic DNA and RNA molecules suitable for immediate crystallization trials, and combined with the availability of specialized and validated crystallization screens, researchers can now undertake in-house crystallization trials without the need for local expertise. When this is combined with access to modern synchrotron platforms that offer complete automation of the data collection process-from the receipt of crystals to delivery of merged and scaled data for the visualization of electron density-the application of X-ray crystallographic techniques is made open to nonspecialist researchers. In this chapter we aim to provide a simple how-to guide to enable the reader to undertake crystallographic experiments involving G4s, encompassing the design of oligonucleotide sequences, fundamentals of the crystallization process and modern strategies used in setting up successful crystallization trials. We will also describe data collection strategies, phasing, electron density visualization, and model building. We will draw on our own experiences in the laboratory and hopefully build an appreciation of the utility of the X-ray crystallographic approaches to investigating G4s.
Collapse
Affiliation(s)
| | - Gavin W Collie
- UCL School of Pharmacy, University College London, London, UK.,Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
9
|
Andrałojć W, Małgowska M, Sarzyńska J, Pasternak K, Szpotkowski K, Kierzek R, Gdaniec Z. Unraveling the structural basis for the exceptional stability of RNA G-quadruplexes capped by a uridine tetrad at the 3' terminus. RNA (NEW YORK, N.Y.) 2019; 25:121-134. [PMID: 30341177 PMCID: PMC6298561 DOI: 10.1261/rna.068163.118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/16/2018] [Indexed: 05/24/2023]
Abstract
Uridine tetrads (U-tetrads) are a structural element encountered in RNA G-quadruplexes, for example, in the structures formed by the biologically relevant human telomeric repeat RNA. For these molecules, an unexpectedly strong stabilizing influence of a U-tetrad forming at the 3' terminus of a quadruplex was reported. Here we present the high-resolution solution NMR structure of the r(UGGUGGU)4 quadruplex which, in our opinion, provides an explanation for this stabilization. Our structure features a distinctive, abrupt chain reversal just prior to the 3' uridine tetrad. Similar "reversed U-tetrads" were already observed in the crystalline phase. However, our NMR structure coupled with extensive explicit solvent molecular dynamics (MD) simulations identifies some key features of this motif that up to now remained overlooked. These include the presence of an exceptionally stable 2'OH to phosphate hydrogen bond, as well as the formation of an additional K+ binding pocket in the quadruplex groove.
Collapse
Affiliation(s)
- Witold Andrałojć
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Magdalena Małgowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Joanna Sarzyńska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Karol Pasternak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Kamil Szpotkowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Zofia Gdaniec
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| |
Collapse
|
10
|
Zaccaria F, Fonseca Guerra C. RNA versus DNA G-Quadruplex: The Origin of Increased Stability. Chemistry 2018; 24:16315-16322. [PMID: 30215872 PMCID: PMC6282516 DOI: 10.1002/chem.201803530] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Indexed: 01/11/2023]
Abstract
DNA quadruplexes have been the subject of investigation because of their biological relevance and because of their potential application in supramolecular chemistry. Similarly, RNA quadruplexes are now gaining increasing attention. Although DNA and RNA quadruplexes are structurally very similar, the latter show higher stability. In this study we report dispersion‐corrected density functional theory (DFT‐D) quantum chemical calculations that were undertaken to understand the difference in stabilities of RNA and DNA quadruplexes. The smallest meaningful model of a stack of quartets, interacting with alkali metal cations, was simulated in an aqueous environment. The energy decomposition analysis allows for in‐depth examination of the interaction energies, emphasising the role of noncovalent interactions and better electrostatics in determining RNA‐GQs higher stabilities, particularly pinpointing the role of the extra 2′‐OH groups. Furthermore, our computations present new insights on why the cation is required for self‐assembly: unexpectedly the cation is not necessary to relieve the repulsion between the oxygen atoms in the central cavity, but it is needed to overcome the entropic penalty.
Collapse
Affiliation(s)
- Francesco Zaccaria
- Department of Theoretical Chemistry and, Amsterdam Center for Multiscale Modeling, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081, HV, Amsterdam, The Netherlands
| | - Célia Fonseca Guerra
- Department of Theoretical Chemistry and, Amsterdam Center for Multiscale Modeling, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081, HV, Amsterdam, The Netherlands.,Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300, RA, Leiden, The Netherlands
| |
Collapse
|
11
|
Meier M, Moya-Torres A, Krahn NJ, McDougall MD, Orriss GL, McRae EK, Booy EP, McEleney K, Patel TR, McKenna SA, Stetefeld J. Structure and hydrodynamics of a DNA G-quadruplex with a cytosine bulge. Nucleic Acids Res 2018; 46:5319-5331. [PMID: 29718405 PMCID: PMC6007744 DOI: 10.1093/nar/gky307] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 04/05/2018] [Accepted: 04/12/2018] [Indexed: 12/27/2022] Open
Abstract
The identification of four-stranded G-quadruplexes (G4s) has highlighted the fact that DNA has additional spatial organisations at its disposal other than double-stranded helices. Recently, it became clear that the formation of G4s is not limited to the traditional G3+NL1G3+NL2G3+NL3G3+ sequence motif. Instead, the G3 triplets can be interrupted by deoxythymidylate (DNA) or uridylate (RNA) where the base forms a bulge that loops out from the G-quadruplex core. Here, we report the first high-resolution X-ray structure of a unique unimolecular DNA G4 with a cytosine bulge. The G4 forms a dimer that is stacked via its 5'-tetrads. Analytical ultracentrifugation, static light scattering and small angle X-ray scattering confirmed that the G4 adapts a predominantly dimeric structure in solution. We provide a comprehensive comparison of previously published G4 structures containing bulges and report a special γ torsion angle range preferentially populated by the G4 core guanylates adjacent to bulges. Since the penalty for introducing bulges appears to be negligible, it should be possible to functionalize G4s by introducing artificial or modified nucleotides at such positions. The presence of the bulge alters the surface of the DNA, providing an opportunity to develop drugs that can specifically target individual G4s.
Collapse
Affiliation(s)
- Markus Meier
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Aniel Moya-Torres
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Natalie J Krahn
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Matthew D McDougall
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - George L Orriss
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Ewan K S McRae
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Evan P Booy
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Kevin McEleney
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Trushar R Patel
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
- DiscoveryLab, Medical Sciences Building, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary T2N 1N4, Alberta, Canada
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Jörg Stetefeld
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
12
|
Watkins AM, Geniesse C, Kladwang W, Zakrevsky P, Jaeger L, Das R. Blind prediction of noncanonical RNA structure at atomic accuracy. SCIENCE ADVANCES 2018; 4:eaar5316. [PMID: 29806027 PMCID: PMC5969821 DOI: 10.1126/sciadv.aar5316] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 04/17/2018] [Indexed: 05/26/2023]
Abstract
Prediction of RNA structure from nucleotide sequence remains an unsolved grand challenge of biochemistry and requires distinct concepts from protein structure prediction. Despite extensive algorithmic development in recent years, modeling of noncanonical base pairs of new RNA structural motifs has not been achieved in blind challenges. We report a stepwise Monte Carlo (SWM) method with a unique add-and-delete move set that enables predictions of noncanonical base pairs of complex RNA structures. A benchmark of 82 diverse motifs establishes the method's general ability to recover noncanonical pairs ab initio, including multistrand motifs that have been refractory to prior approaches. In a blind challenge, SWM models predicted nucleotide-resolution chemical mapping and compensatory mutagenesis experiments for three in vitro selected tetraloop/receptors with previously unsolved structures (C7.2, C7.10, and R1). As a final test, SWM blindly and correctly predicted all noncanonical pairs of a Zika virus double pseudoknot during a recent community-wide RNA-Puzzle. Stepwise structure formation, as encoded in the SWM method, enables modeling of noncanonical RNA structure in a variety of previously intractable problems.
Collapse
Affiliation(s)
- Andrew M. Watkins
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caleb Geniesse
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Wipapat Kladwang
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Paul Zakrevsky
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - Luc Jaeger
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - Rhiju Das
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
- Department of Physics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
13
|
Esposito V, Pepe A, Filosa R, Mayol L, Virgilio A, Galeone A. A novel pyrimidine tetrad contributing to stabilize tetramolecular G-quadruplex structures. Org Biomol Chem 2016; 14:2938-43. [DOI: 10.1039/c5ob02358k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
5-Amino-2′-deoxyuridine forms an eight hydrogen-bonded tetrad stabilizing a parallel G-quadruplex structure more efficiently than tetrads formed by 5-bromo-2′-deoxyuridine and thymidine.
Collapse
Affiliation(s)
- V. Esposito
- Department of Pharmacy
- University of Naples “Federico II”
- 80131 Naples
- Italy
| | - A. Pepe
- Department of Science
- University of Basilicata
- Potenza
- Italy
| | - R. Filosa
- Department of Experimental Medicine
- Second University of Naples
- 80138 Napoli
- Italy
| | - L. Mayol
- Department of Pharmacy
- University of Naples “Federico II”
- 80131 Naples
- Italy
| | - A. Virgilio
- Department of Pharmacy
- University of Naples “Federico II”
- 80131 Naples
- Italy
| | - A. Galeone
- Department of Pharmacy
- University of Naples “Federico II”
- 80131 Naples
- Italy
| |
Collapse
|
14
|
Largy E, Mergny JL, Gabelica V. Role of Alkali Metal Ions in G-Quadruplex Nucleic Acid Structure and Stability. Met Ions Life Sci 2016; 16:203-58. [PMID: 26860303 DOI: 10.1007/978-3-319-21756-7_7] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
G-quadruplexes are guanine-rich nucleic acids that fold by forming successive quartets of guanines (the G-tetrads), stabilized by intra-quartet hydrogen bonds, inter-quartet stacking, and cation coordination. This specific although highly polymorphic type of secondary structure deviates significantly from the classical B-DNA duplex. G-quadruplexes are detectable in human cells and are strongly suspected to be involved in a number of biological processes at the DNA and RNA levels. The vast structural polymorphism exhibited by G-quadruplexes, together with their putative biological relevance, makes them attractive therapeutic targets compared to canonical duplex DNA. This chapter focuses on the essential and specific coordination of alkali metal cations by G-quadruplex nucleic acids, and most notably on studies highlighting cation-dependent dissimilarities in their stability, structure, formation, and interconversion. Section 1 surveys G-quadruplex structures and their interactions with alkali metal ions while Section 2 presents analytical methods used to study G-quadruplexes. The influence of alkali cations on the stability, structure, and kinetics of formation of G-quadruplex structures of quadruplexes will be discussed in Sections 3 and 4. Section 5 focuses on the cation-induced interconversion of G-quadruplex structures. In Sections 3 to 5, we will particularly emphasize the comparisons between cations, most often K(+) and Na(+) because of their prevalence in the literature and in cells.
Collapse
Affiliation(s)
- Eric Largy
- ARNA Laboratory, Université Bordeaux, IECB, 2, rue Robert Escarpit, F-33600, Pessac, France.,ARNA Laboratory, INSERM, U869, F-33000, Bordeaux, France
| | - Jean-Louis Mergny
- ARNA Laboratory, Université Bordeaux, IECB, 2, rue Robert Escarpit, F-33600, Pessac, France. .,ARNA Laboratory, INSERM, U869, F-33000, Bordeaux, France.
| | - Valérie Gabelica
- ARNA Laboratory, Université Bordeaux, IECB, 2, rue Robert Escarpit, F-33600, Pessac, France. .,ARNA Laboratory, INSERM, U869, F-33000, Bordeaux, France.
| |
Collapse
|
15
|
Zhang D, Huang T, Lukeman PS, Paukstelis PJ. Crystal structure of a DNA/Ba2+ G-quadruplex containing a water-mediated C-tetrad. Nucleic Acids Res 2014; 42:13422-9. [PMID: 25389267 PMCID: PMC4245957 DOI: 10.1093/nar/gku1122] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We have determined the 1.50 Å crystal structure of the DNA decamer, d(CCA(CNV)KGCGTGG) ((CNV)K, 3-cyanovinylcarbazole), which forms a G-quadruplex structure in the presence of Ba(2+). The structure contains several unique features including a bulged nucleotide and the first crystal structure observation of a C-tetrad. The structure reveals that water molecules mediate contacts between the divalent cations and the C-tetrad, allowing Ba(2+) ions to occupy adjacent steps in the central ion channel. One ordered Mg(2+) facilitates 3'-3' stacking of two quadruplexes in the asymmetric unit, while the bulged nucleotide mediates crystal contacts. Despite the high diffraction limit, the first four nucleotides including the (CNV)K nucleoside are disordered though they are still involved in crystal packing. This work suggests that the bulky hydrophobic groups may locally influence the formation of non-Watson-Crick structures from otherwise complementary sequences. These observations lead to the intriguing possibility that certain types of DNA damage may act as modulators of G-quadruplex formation.
Collapse
Affiliation(s)
- Diana Zhang
- Department of Chemistry & Biochemistry, Center for Biomolecular Structure and Organization, Maryland NanoCenter, University of Maryland, College Park, MD 20742, USA
| | - Terry Huang
- Chemistry and Biochemistry Department, California State Polytechnic University, 3801 West Temple Avenue, Pomona, CA 91768, USA
| | - Philip S. Lukeman
- Chemistry Department, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Paul J. Paukstelis
- Department of Chemistry & Biochemistry, Center for Biomolecular Structure and Organization, Maryland NanoCenter, University of Maryland, College Park, MD 20742, USA,To whom correspondence should be addressed. Tel: 301.405.9933; Fax: 301.314.0386;
| |
Collapse
|
16
|
Malgowska M, Gudanis D, Kierzek R, Wyszko E, Gabelica V, Gdaniec Z. Distinctive structural motifs of RNA G-quadruplexes composed of AGG, CGG and UGG trinucleotide repeats. Nucleic Acids Res 2014; 42:10196-207. [PMID: 25081212 PMCID: PMC4150804 DOI: 10.1093/nar/gku710] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Trinucleotide repeats are microsatellite sequences that are polymorphic in length. Their expansion in specific genes underlies a number of neurodegenerative disorders. Using ultraviolet-visible, circular dichroism, nuclear magnetic resonance (NMR) spectroscopies and electrospray ionization mass spectrometry, the structural preferences of RNA molecules composed of two and four repeats of AGG, CGG and UGG in the presence of K+, Na+ and NH4+ were analysed. (AGG)2A, (AGG)4A, p(UGG)2U and p(UGG)4U strongly prefer folding into G-quadruplexes, whereas CGG-containing sequences can adopt different types of structure depending on the cation and on the number of repeats. In particular, the two-repeat CGG sequence folds into a G-quadruplex in potassium buffer. We also found that each G-quadruplex fold is different: A:(G:G:G:G)A hexads were found for (AGG)2A, whereas mixed G:C:G:C tetrads and U-tetrads were observed in the NMR spectra of G(CGG)2C and p(UGG)2U, respectively. Finally, our NMR study highlights the influence of the strand sequence on the structure formed, and the influence of the intracellular environment on the folding. Importantly, we highlight that although potassium ions are prevalent in cells, the structures observed in the HeLa cell extract are not always the same as those prevailing in biophysical studies in the presence of K+ ions.
Collapse
Affiliation(s)
- Magdalena Malgowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland
| | - Dorota Gudanis
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland
| | - Eliza Wyszko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland
| | - Valérie Gabelica
- Laboratoire de Spectrométrie de Masse, Institut de Chimie, Bat. B6c, Université de Liège, B-4000 Liège, Belgium Inserm, U869 ARNA Laboratory, F-33000 Bordeaux, France University of Bordeaux, IECB, ARNA Laboratory, F-33600 Pessac, France
| | - Zofia Gdaniec
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland
| |
Collapse
|
17
|
Martadinata H, Phan AT. Formation of a stacked dimeric G-quadruplex containing bulges by the 5'-terminal region of human telomerase RNA (hTERC). Biochemistry 2014; 53:1595-600. [PMID: 24601523 DOI: 10.1021/bi4015727] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigate the structure formed by the first 18-nt of the 5'-terminal region of the human telomerase RNA (hTERC or hTR) using gel electrophoresis and UV, CD, and NMR spectroscopy. Our data suggest that this 18-nt sequence, r(GGGUUGCGGAGGGUGGGC), can form a stacked dimeric G-quadruplex in potassium solution. The two subunits, each being a three-layer parallel-stranded G-quadruplex with a cytosine bulge, are stacked at their 5'-end. The formation of this stacked dimeric G-quadruplex containing bulges could be biologically relevant for the dimerization and other interactions of the active human telomerase.
Collapse
Affiliation(s)
- Herry Martadinata
- School of Physical and Mathematical Sciences, Nanyang Technological University , Singapore 637371
| | | |
Collapse
|
18
|
Mukundan VT, Phan AT. Bulges in G-Quadruplexes: Broadening the Definition of G-Quadruplex-Forming Sequences. J Am Chem Soc 2013; 135:5017-28. [DOI: 10.1021/ja310251r] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Anh Tuân Phan
- School of
Physical and Mathematical Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
19
|
Campbell N, Collie GW, Neidle S. Crystallography of DNA and RNA G-quadruplex nucleic acids and their ligand complexes. ACTA ACUST UNITED AC 2013; Chapter 17:Unit17.6. [PMID: 22956455 DOI: 10.1002/0471142700.nc1706s50] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Quadruplexes are higher-order structures formed by natural guanine-rich nucleic acid sequences. They may play a role in gene regulation and in telomere function. This article focuses on the crystallization of quadruplexes and their complexes with small-molecule ligands. Protocols for successful crystallization, as used in the author's laboratory, are described in detail.
Collapse
Affiliation(s)
- Nancy Campbell
- Cancer Research UK Biomolecular Structure Group, The UCL School of Pharmacy, London, United Kingdom
| | | | | |
Collapse
|
20
|
Abstract
G-quadruplexes constitute a class of nucleic acid structures defined by stacked guanine tetrads (or G-tetrads) with guanine bases from neighboring tetrads stacking with one another within the G-tetrad core. Individual G-quadruplexes can also stack with one another at their G-tetrad interface leading to higher-order structures as observed in telomeric repeat-containing DNA and RNA. In this study, we investigate how guanine base stacking influences the stability of G-quadruplexes and their stacked higher-order structures. A structural survey of the Protein Data Bank is conducted to characterize experimentally observed guanine base stacking geometries within the core of G-quadruplexes and at the interface between stacked G-quadruplex structures. We couple this survey with a systematic computational examination of stacked G-tetrad energy landscapes using quantum mechanical computations. Energy calculations of stacked G-tetrads reveal large energy differences of up to 12 kcal/mol between experimentally observed geometries at the interface of stacked G-quadruplexes. Energy landscapes are also computed using an AMBER molecular mechanics description of stacking energy and are shown to agree quite well with quantum mechanical calculated landscapes. Molecular dynamics simulations provide a structural explanation for the experimentally observed preference of parallel G-quadruplexes to stack in a 5′–5′ manner based on different accessible tetrad stacking modes at the stacking interfaces of 5′–5′ and 3′–3′ stacked G-quadruplexes.
Collapse
Affiliation(s)
- Christopher Jacques Lech
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | | | | |
Collapse
|
21
|
Adrian M, Heddi B, Phan AT. NMR spectroscopy of G-quadruplexes. Methods 2012; 57:11-24. [DOI: 10.1016/j.ymeth.2012.05.003] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 05/15/2012] [Accepted: 05/16/2012] [Indexed: 12/24/2022] Open
|
22
|
Collie GW, Parkinson GN. The application of DNA and RNA G-quadruplexes to therapeutic medicines. Chem Soc Rev 2011; 40:5867-92. [PMID: 21789296 DOI: 10.1039/c1cs15067g] [Citation(s) in RCA: 481] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The intriguing structural diversity in folded topologies available to guanine-rich nucleic acid repeat sequences have made four-stranded G-quadruplex structures the focus of both basic and applied research, from cancer biology and novel therapeutics through to nanoelectronics. Distributed widely in the human genome as targets for regulating gene expression and chromosomal maintenance, they offer unique avenues for future cancer drug development. In particular, the recent advances in chemical and structural biology have enabled the construction of bespoke selective DNA based aptamers to be used as novel therapeutic agents and access to detailed structural models for structure based drug discovery. In this critical review, we will explore the important underlying characteristics of G-quadruplexes that make them functional, stable, and predictable nanoscaffolds. We will review the current structural database of folding topologies, molecular interfaces and novel interaction surfaces, with a consideration to their future exploitation in drug discovery, molecular biology, supermolecular assembly and aptamer design. In recent years the number of potential applications for G-quadruplex motifs has rapidly grown, so in this review we aim to explore the many future challenges and highlight where possible successes may lie. We will highlight the similarities and differences between DNA and RNA folded G-quadruplexes in terms of stability, distribution, and exploitability as small molecule targets. Finally, we will provide a detailed review of basic G-quadruplex geometry, experimental tools used, and a critical evaluation of the application of high-resolution structural biology and its ability to provide meaningful and valid models for future applications (255 references).
Collapse
Affiliation(s)
- Gavin W Collie
- CRUK Biomolecular Structure Group, The School of Pharmacy, University of London, London, UK WC1N 1AX
| | | |
Collapse
|
23
|
Mukundan VT, Do NQ, Phan AT. HIV-1 integrase inhibitor T30177 forms a stacked dimeric G-quadruplex structure containing bulges. Nucleic Acids Res 2011; 39:8984-91. [PMID: 21771859 PMCID: PMC3203613 DOI: 10.1093/nar/gkr540] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
T30177 is a G-rich oligonucleotide with the sequence (GTGGTGGGTGGGTGGGT) which inhibits the HIV-1 integrase activity at nanomolar concentrations. Here we show that this DNA sequence forms in K(+) solution a dimeric G-quadruplex structure comprising a total of six G-tetrad layers through the stacking of two propeller-type parallel-stranded G-quadruplex subunits at their 5'-end. All twelve guanines in the sequence participate in the G-tetrad formation, despite the interruption in the first G-tract by a thymine, which forms a bulge between two adjacent G-tetrads. In this work, we also propose a simple analytical approach to stoichiometry determination using concentration-dependent melting curves.
Collapse
Affiliation(s)
- Vineeth Thachappilly Mukundan
- School of Physical and Mathematical Sciences and School of Biological Sciences, Nanyang Technological University, Singapore
| | | | | |
Collapse
|
24
|
Abstract
Opposed to DNA quadruplex sequences, RNA quadruplexes are still less well characterized. On the other hand, RNA quadruplexes are found to be at least as stable as their DNA counterparts. They show the same dependence on metal ions but seem to be much more restricted with respect to the adopted conformations. Other than DNA, which is mostly found to be double-stranded inside cells, RNAs are produced during transcription without its complementary sequence. The absence of a second strand that is able to hybridize and form a duplex makes the folding of RNA quadruplexes a likely event of intramolecular structure formation. Consequently, the formation of RNA quadruplexes in cellular RNAs has recently been suggested and the study of their influence and potential roles in cellular processes has just started. Here we give an overview of the RNA quadruplex field, summarizing issues such as structures, stabilities, and anticipated roles of these interesting four-stranded, guanosine-rich sequences.
Collapse
Affiliation(s)
- Kangkan Halder
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, D-78457 Konstanz, Germany
| | | |
Collapse
|
25
|
Collie GW, Haider SM, Neidle S, Parkinson GN. A crystallographic and modelling study of a human telomeric RNA (TERRA) quadruplex. Nucleic Acids Res 2010; 38:5569-80. [PMID: 20413582 PMCID: PMC2938214 DOI: 10.1093/nar/gkq259] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
DNA telomeric repeats in mammalian cells are transcribed to guanine-rich RNA sequences, which adopt parallel-stranded G-quadruplexes with a propeller-like fold. The successful crystallization and structure analysis of a bimolecular human telomeric RNA G-quadruplex, folded into the same crystalline environment as an equivalent DNA oligonucleotide sequence, is reported here. The structural basis of the increased stability of RNA telomeric quadruplexes over DNA ones and their preference for parallel topologies is described here. Our findings suggest that the 2′-OH hydroxyl groups in the RNA quadruplex play a significant role in redefining hydration structure in the grooves and the hydrogen bonding networks. The preference for specific nucleotides to populate the C3′-endo sugar pucker domain is accommodated by alterations in the phosphate backbone, which leads to greater stability through enhanced hydrogen bonding networks. Molecular dynamics simulations on the DNA and RNA quadruplexes are consistent with these findings. The computations, based on the native crystal structure, provide an explanation for RNA G-quadruplex ligand binding selectivity for a group of naphthalene diimide ligands as compared to the DNA G-quadruplex.
Collapse
Affiliation(s)
- Gavin W Collie
- Cancer Research UK Biomolecular Structure Group, The School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | | | | | | |
Collapse
|
26
|
Joachimi A, Benz A, Hartig JS. A comparison of DNA and RNA quadruplex structures and stabilities. Bioorg Med Chem 2009; 17:6811-5. [PMID: 19736017 DOI: 10.1016/j.bmc.2009.08.043] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 08/18/2009] [Accepted: 08/19/2009] [Indexed: 11/30/2022]
Abstract
Guanosine-rich sequences are prone to fold into four-stranded nucleic acid structures. Such quadruplex sequences have long been suspected to play important roles in regulatory processes within cells. Although DNA quadruplexes have been studied in great detail, four-stranded structures made up from RNA have received only minor attention, although it is known that RNA is able to form stable quadruplexes as well. Here, we compare quadruplex structures and stabilities of a variety of DNA and RNA sequences. We focus on well established DNA sequences and determine the topologies and stabilities of the corresponding RNA sequences by CD spectroscopy and CD thermal melting experiments. We find that the RNA sequences exclusively fold into the all-parallel conformation in contrast to the diverse topologies adopted by DNA quadruplexes. The thermal stabilities of the RNA structures rival those of the corresponding DNA sequences, often displaying enhanced stabilities compared to their DNA counterparts. Especially thermodynamically less stable sequences show a strong preference for potassium, with the RNA quadruplexes exhibiting much higher stabilities than the corresponding DNAs. The latter finding suggests that quadruplexes formed at critical positions in mRNAs might perturb gene expression to a larger extend than previously anticipated.
Collapse
Affiliation(s)
- Astrid Joachimi
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | | | | |
Collapse
|
27
|
Lipay JM, Mihailescu MR. NMR spectroscopy and kinetic studies of the quadruplex forming RNA r(UGGAGGU). MOLECULAR BIOSYSTEMS 2009; 5:1347-55. [DOI: 10.1039/b911555b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
28
|
Kumari S, Bugaut A, Balasubramanian S. Position and stability are determining factors for translation repression by an RNA G-quadruplex-forming sequence within the 5' UTR of the NRAS proto-oncogene. Biochemistry 2008; 47:12664-9. [PMID: 18991403 PMCID: PMC2746962 DOI: 10.1021/bi8010797] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nucleic acid secondary structures in the 5' untranslated regions (UTRs) of mRNAs have been shown to play a critical role in translation regulation. We recently demonstrated that a naturally occurring, conserved, and stable RNA G-quadruplex element (5'-GGGAGGGGCGGGUCUGGG-3'), located close to the 5' cap within the 5' UTR of the NRAS proto-oncogene mRNA, modulates gene expression at the translational level. Herein, we show that the translational effect of this G-quadruplex motif in NRAS 5' UTR is not uniform, but rather depends on the location of the G-quadruplex-forming sequence. The RNA G-quadruplex-forming sequence represses translation when situated relatively proximal to the 5' end, within the first 50 nt, in the 5' UTR of the NRAS proto-oncogene, whereas it has no significant effect on translation if located comparatively away from the 5' end. We have also demonstrated that the thermodynamic stability of the RNA G-quadruplex at its natural position within the NRAS 5' UTR is an important factor contributing toward its ability to repress translation.
Collapse
Affiliation(s)
- Sunita Kumari
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Anthony Bugaut
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Shankar Balasubramanian
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
29
|
Huppert JL, Bugaut A, Kumari S, Balasubramanian S. G-quadruplexes: the beginning and end of UTRs. Nucleic Acids Res 2008; 36:6260-8. [PMID: 18832370 PMCID: PMC2577360 DOI: 10.1093/nar/gkn511] [Citation(s) in RCA: 329] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 07/20/2008] [Accepted: 07/25/2008] [Indexed: 01/17/2023] Open
Abstract
Molecular mechanisms that regulate gene expression can occur either before or after transcription. The information for post-transcriptional regulation can lie within the sequence or structure of the RNA transcript and it has been proposed that G-quadruplex nucleic acid sequence motifs may regulate translation as well as transcription. Here, we have explored the incidence of G-quadruplex motifs in and around the untranslated regions (UTRs) of mRNA. We observed a significant strand asymmetry, consistent with a general depletion of G-quadruplex-forming RNA. We also observed a positional bias in two distinct regions, each suggestive of a specific function. We observed an excess of G-quadruplex motifs towards the 5'-ends of 5'-UTRs, supportive of a hypothesis linking 5'-UTR RNA G-quadruplexes to translational control. We then analysed the vicinity of 3'-UTRs and observed an over-representation of G-quadruplex motifs immediately after the 3'-end of genes, especially in those cases where another gene is in close proximity, suggesting that G-quadruplexes may be involved in the termination of gene transcription.
Collapse
Affiliation(s)
- Julian Leon Huppert
- Cavendish Laboratory, University of Cambridge, JJ Thompson Ave, Cambridge CB3 0HE and University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Anthony Bugaut
- Cavendish Laboratory, University of Cambridge, JJ Thompson Ave, Cambridge CB3 0HE and University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Sunita Kumari
- Cavendish Laboratory, University of Cambridge, JJ Thompson Ave, Cambridge CB3 0HE and University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Shankar Balasubramanian
- Cavendish Laboratory, University of Cambridge, JJ Thompson Ave, Cambridge CB3 0HE and University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
30
|
Gros J, Rosu F, Amrane S, De Cian A, Gabelica V, Lacroix L, Mergny JL. Guanines are a quartet's best friend: impact of base substitutions on the kinetics and stability of tetramolecular quadruplexes. Nucleic Acids Res 2007; 35:3064-75. [PMID: 17452368 PMCID: PMC1888817 DOI: 10.1093/nar/gkm111] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Parallel tetramolecular quadruplexes may be formed with short oligodeoxynucleotides bearing a block of three or more guanines. We analyze the properties of sequence variants of parallel quadruplexes in which each guanine of the central block was systematically substituted with a different base. Twelve types of substitutions were assessed in more than 100 different sequences. We conducted a comparative kinetic analysis of all tetramers. Electrospray mass spectrometry was used to count the number of inner cations, which is an indicator of the number of effective tetrads. In general, the presence of a single substitution has a strong deleterious impact on quadruplex stability, resulting in reduced quadruplex lifetime/thermal stability and in decreased association rate constants. We demonstrate extremely large differences in the association rate constants of these quadruplexes depending on modification position and type. These results demonstrate that most guanine substitutions are deleterious to tetramolecular quadruplex structure. Despite the presence of well-defined non-guanine base quartets in a number of NMR and X-ray structures, our data suggest that most non-guanine quartets do not participate favorably in structural stability, and that these quartets are formed only by virtue of the docking platform provided by neighboring G-quartets. Two notable exceptions were found with 8-bromo-guanine (X) and 6-methyl-isoxanthopterin (P) substitutions, which accelerate quadruplex formation by a factor of 10 when present at the 5′ end. The thermodynamic and kinetic data compiled here are highly valuable for the design of DNA quadruplex assemblies with tunable association/dissociation properties.
Collapse
Affiliation(s)
- Julien Gros
- Laboratoire de Biophysique, Muséum National d’Histoire Naturelle USM503, INSERM U565, CNRS UMR 5153, 43 rue Cuvier, 75231 Paris cedex 05, France and Laboratoire de Spectrométrie de Masse, Université de Liège, Institut de Chimie, Bat. B6c, B-4000 Liège, Belgium
| | - Frédéric Rosu
- Laboratoire de Biophysique, Muséum National d’Histoire Naturelle USM503, INSERM U565, CNRS UMR 5153, 43 rue Cuvier, 75231 Paris cedex 05, France and Laboratoire de Spectrométrie de Masse, Université de Liège, Institut de Chimie, Bat. B6c, B-4000 Liège, Belgium
| | - Samir Amrane
- Laboratoire de Biophysique, Muséum National d’Histoire Naturelle USM503, INSERM U565, CNRS UMR 5153, 43 rue Cuvier, 75231 Paris cedex 05, France and Laboratoire de Spectrométrie de Masse, Université de Liège, Institut de Chimie, Bat. B6c, B-4000 Liège, Belgium
| | - Anne De Cian
- Laboratoire de Biophysique, Muséum National d’Histoire Naturelle USM503, INSERM U565, CNRS UMR 5153, 43 rue Cuvier, 75231 Paris cedex 05, France and Laboratoire de Spectrométrie de Masse, Université de Liège, Institut de Chimie, Bat. B6c, B-4000 Liège, Belgium
| | - Valérie Gabelica
- Laboratoire de Biophysique, Muséum National d’Histoire Naturelle USM503, INSERM U565, CNRS UMR 5153, 43 rue Cuvier, 75231 Paris cedex 05, France and Laboratoire de Spectrométrie de Masse, Université de Liège, Institut de Chimie, Bat. B6c, B-4000 Liège, Belgium
| | - Laurent Lacroix
- Laboratoire de Biophysique, Muséum National d’Histoire Naturelle USM503, INSERM U565, CNRS UMR 5153, 43 rue Cuvier, 75231 Paris cedex 05, France and Laboratoire de Spectrométrie de Masse, Université de Liège, Institut de Chimie, Bat. B6c, B-4000 Liège, Belgium
| | - Jean-Louis Mergny
- Laboratoire de Biophysique, Muséum National d’Histoire Naturelle USM503, INSERM U565, CNRS UMR 5153, 43 rue Cuvier, 75231 Paris cedex 05, France and Laboratoire de Spectrométrie de Masse, Université de Liège, Institut de Chimie, Bat. B6c, B-4000 Liège, Belgium
- *To whom correspondence should be addressed. +33-1 40 79 36 89+33-1 40 79 37 05
| |
Collapse
|
31
|
Wieland M, Hartig JS. Turning inhibitors into activators: a hammerhead ribozyme controlled by a guanine quadruplex. Angew Chem Int Ed Engl 2006; 45:5875-8. [PMID: 16871639 DOI: 10.1002/anie.200600909] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Markus Wieland
- University of Konstanz, Department of Chemistry, Universitätsstrasse 10, 78457 Konstanz, Germany
| | | |
Collapse
|
32
|
Wieland M, Hartig JS. Vom Inhibitor zum Aktivator: ein Hammerhead-Ribozym unter der Kontrolle eines G-Quartetts. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200600909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Pan B, Shi K, Sundaralingam M. Crystal structure of an RNA quadruplex containing inosine tetrad: implications for the roles of NH2 group in purine tetrads. J Mol Biol 2006; 363:451-9. [PMID: 16978642 DOI: 10.1016/j.jmb.2006.08.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 07/07/2006] [Accepted: 08/10/2006] [Indexed: 11/22/2022]
Abstract
Polyinosinic acid has been known to adopt the four-stranded helical structure but its basic unit, inosine tetrad (I tetrad), has not been determined at the atomic level. Here we report the crystal structure of an RNA quadruplex containing an I tetrad at 1.4 A resolution. The I tetrad has one cyclic hydrogen bond N1...O6 with the bond length of 2.7 A. A water bridge is observed in the minor groove side of the base tetrad. Even though it is sandwiched by guanine tetrads (G tetrads), the I tetrad is buckled towards the 3' side of the tetrad plane, which results from the different interaction strength with K ions on two sides of the tetrad plane. Comparison with both G tetrad and adenine tetrad indicates that lack of NH2 in the C2 position makes the I tetrad prone to buckle for interactions with ligands. Two U*(G-G-G-G) base pentads are observed at the junction of the 5' termini of two quadruplexes. The uridine residue in the base pentad is engaged in two hydrogen bonding interactions (N2(G)-H...O2(U) and O2'(G)-H...O4(U)) and a water-mediated interaction (N3(G) and N3(U)) with the G tetrad. We also discuss the roles of amino group in purine tetrads and the inter-quadruplex interactions in RNA molecules. These quadruplexes may interact with each other by stacking, groove binding and intercalation.
Collapse
Affiliation(s)
- Baocheng Pan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| | | | | |
Collapse
|
34
|
Pan B, Shi K, Sundaralingam M. Base-tetrad swapping results in dimerization of RNA quadruplexes: implications for formation of the i-motif RNA octaplex. Proc Natl Acad Sci U S A 2006; 103:3130-4. [PMID: 16492787 PMCID: PMC1413875 DOI: 10.1073/pnas.0507730103] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2005] [Indexed: 11/18/2022] Open
Abstract
Nucleic acids adopt different multistranded helical architectures to perform various biological functions. Here, we report a crystal structure of an RNA quadruplex containing "base-tetrad swapping" and bulged nucleotide at 2.1-Angstroms resolution. The base-tetrad swapping results in a dimer of quadruplexes with an intercalated octaplex fragment at the 5' end junction. The intercalated base tetrads provide the basic repeat unit for constructing a model of intercalated RNA octaplex. The model we obtained shows fundamentally different characteristics from duplex, triplex, and quadruplex. We also observed two different orientations of bulged uridine residues that are related to the interaction with surroundings. This structural evidence reflects the conformational flexibility of bulged nucleotides in RNA quadruplexes and implies the potential roles of bulged nucleotides as recognition and interaction sites in RNA-protein and RNA-RNA interactions.
Collapse
Affiliation(s)
- Baocheng Pan
- Departments of Chemistry and Biochemistry, Ohio State University, 200 Johnston Laboratory, 176 West 19th Avenue, Columbus, OH 43210-1002; and
| | - Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street Southeast, Minneapolis, MN 55455
| | - Muttaiya Sundaralingam
- Departments of Chemistry and Biochemistry, Ohio State University, 200 Johnston Laboratory, 176 West 19th Avenue, Columbus, OH 43210-1002; and
| |
Collapse
|
35
|
Stefan LR, Zhang R, Levitan AG, Hendrix DK, Brenner SE, Holbrook SR. MeRNA: a database of metal ion binding sites in RNA structures. Nucleic Acids Res 2006; 34:D131-4. [PMID: 16381830 PMCID: PMC1347421 DOI: 10.1093/nar/gkj058] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Metal ions are essential for the folding of RNA into stable tertiary structures and for the catalytic activity of some RNA enzymes. To aid in the study of the roles of metal ions in RNA structural biology, we have created MeRNA (Metals in RNA), a comprehensive compilation of all metal binding sites identified in RNA 3D structures available from the PDB and Nucleic Acid Database. Currently, our database contains information relating to binding of 9764 metal ions corresponding to 23 distinct elements, in 256 RNA structures. The metal ion locations were confirmed and ligands characterized using original literature references. MeRNA includes eight manually identified metal-ion binding motifs, which are described in the literature. MeRNA is searchable by PDB identifier, metal ion, method of structure determination, resolution and R-values for X-ray structure and distance from metal to any RNA atom or to water. New structures with their respective binding motifs will be added to the database as they become available. The MeRNA database will further our understanding of the roles of metal ions in RNA folding and catalysis and have applications in structural and functional analysis, RNA design and engineering. The MeRNA database is accessible at .
Collapse
Affiliation(s)
- Liliana R. Stefan
- Department of Structural Biology, Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA 94720, USA
| | - Rui Zhang
- Department of Structural Biology, Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA 94720, USA
| | - Aaron G. Levitan
- Department of Structural Biology, Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA 94720, USA
| | - Donna K. Hendrix
- Department of Structural Biology, Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA 94720, USA
- Department of Plant and Microbial Biology111 Koshland Hall #3102University of California at BerkeleyBerkeley, CA 94720-3102, USA
| | - Steven E. Brenner
- Department of Structural Biology, Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA 94720, USA
- Department of Plant and Microbial Biology111 Koshland Hall #3102University of California at BerkeleyBerkeley, CA 94720-3102, USA
| | - Stephen R. Holbrook
- Department of Structural Biology, Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA 94720, USA
- To whom correspondence should be addressed. Tel: +1 510 486 4304; Fax: +1 510 486 6798;
| |
Collapse
|
36
|
Abstract
Guanine-rich DNA sequences of a particular form have the ability to fold into four-stranded structures called G-quadruplexes. In this paper, we present a working rule to predict which primary sequences can form this structure, and describe a search algorithm to identify such sequences in genomic DNA. We count the number of quadruplexes found in the human genome and compare that with the figure predicted by modelling DNA as a Bernoulli stream or as a Markov chain, using windows of various sizes. We demonstrate that the distribution of loop lengths is significantly different from what would be expected in a random case, providing an indication of the number of potentially relevant quadruplex-forming sequences. In particular, we show that there is a significant repression of quadruplexes in the coding strand of exonic regions, which suggests that quadruplex-forming patterns are disfavoured in sequences that will form RNA.
Collapse
|
37
|
Meyer M, Hocquet A, Sühnel J. Interaction of sodium and potassium ions with sandwiched cytosine-, guanine-, thymine-, and uracil-base tetrads. J Comput Chem 2005; 26:352-64. [PMID: 15648098 DOI: 10.1002/jcc.20176] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nucleic acid tetraplexes and lipophilic self-assembling G-quadruplexes contain stacked base tetrads with intercalated metal ions as basic building blocks. Thus far, quantum-chemical studies have been used to explore the geometric and energetic properties of base tetrads with and without metal ions. Recently, for the first time, work on a sandwiched G-tetrad complex has been studied. We report here results of a systematic B3LYP density functional study on sandwiched G-, C-, U-, and T-tetrads with Na+ and K+ at different symmetries that substantially extend the recent work. The results include detailed information on total energies as well as on metal ion tetrad and base-base interaction energies. The geometrical parameters of the sandwiched metal ion complexes are compared to both experimental structures and to calculated geometries of complexes of single tetrads with metal ions. A microsolvation model explains the ion selectivity preference of K+ over Na+ in a qualitative sense.
Collapse
Affiliation(s)
- Michael Meyer
- Revotar Biopharmaceuticals AG, Neuendorfstrasse 24a, D-16761 Hennigsdorf, Germany.
| | | | | |
Collapse
|
38
|
Robertson MP, Igel H, Baertsch R, Haussler D, Ares M, Scott WG. The structure of a rigorously conserved RNA element within the SARS virus genome. PLoS Biol 2004; 3:e5. [PMID: 15630477 PMCID: PMC539059 DOI: 10.1371/journal.pbio.0030005] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Accepted: 10/13/2004] [Indexed: 11/19/2022] Open
Abstract
We have solved the three-dimensional crystal structure of the stem-loop II motif (s2m) RNA element of the SARS virus genome to 2.7-Å resolution. SARS and related coronaviruses and astroviruses all possess a motif at the 3′ end of their RNA genomes, called the s2m, whose pathogenic importance is inferred from its rigorous sequence conservation in an otherwise rapidly mutable RNA genome. We find that this extreme conservation is clearly explained by the requirement to form a highly structured RNA whose unique tertiary structure includes a sharp 90° kink of the helix axis and several novel longer-range tertiary interactions. The tertiary base interactions create a tunnel that runs perpendicular to the main helical axis whose interior is negatively charged and binds two magnesium ions. These unusual features likely form interaction surfaces with conserved host cell components or other reactive sites required for virus function. Based on its conservation in viral pathogen genomes and its absence in the human genome, we suggest that these unusual structural features in the s2m RNA element are attractive targets for the design of anti-viral therapeutic agents. Structural genomics has sought to deduce protein function based on three-dimensional homology. Here we have extended this approach to RNA by proposing potential functions for a rigorously conserved set of RNA tertiary structural interactions that occur within the SARS RNA genome itself. Based on tertiary structural comparisons, we propose the s2m RNA binds one or more proteins possessing an oligomer-binding-like fold, and we suggest a possible mechanism for SARS viral RNA hijacking of host protein synthesis, both based upon observed s2m RNA macromolecular mimicry of a relevant ribosomal RNA fold. The SARS RNA genome contains a unique structure that resembles a portion of ribosomal RNA; this may allow the virus to hijack its hosts protein synthesis machinery
Collapse
Affiliation(s)
- Michael P Robertson
- 1The Center for the Molecular Biology of RNA, University of CaliforniaSanta Cruz, CaliforniaUnited States of America
- 2Department of Chemistry and Biochemistry, University of CaliforniaSanta Cruz, CaliforniaUnited States of America
| | - Haller Igel
- 1The Center for the Molecular Biology of RNA, University of CaliforniaSanta Cruz, CaliforniaUnited States of America
- 3Department of Molecular, Celland Developmental Biology, University of California, Santa Cruz, CaliforniaUnited States of America
| | - Robert Baertsch
- 1The Center for the Molecular Biology of RNA, University of CaliforniaSanta Cruz, CaliforniaUnited States of America
- 4Howard Hughes Medical Institute and Department of Biomolecular Engineering, University of CaliforniaSanta Cruz, CaliforniaUnited States of America
| | - David Haussler
- 1The Center for the Molecular Biology of RNA, University of CaliforniaSanta Cruz, CaliforniaUnited States of America
- 4Howard Hughes Medical Institute and Department of Biomolecular Engineering, University of CaliforniaSanta Cruz, CaliforniaUnited States of America
| | - Manuel Ares
- 1The Center for the Molecular Biology of RNA, University of CaliforniaSanta Cruz, CaliforniaUnited States of America
- 3Department of Molecular, Celland Developmental Biology, University of California, Santa Cruz, CaliforniaUnited States of America
| | - William G Scott
- 1The Center for the Molecular Biology of RNA, University of CaliforniaSanta Cruz, CaliforniaUnited States of America
- 2Department of Chemistry and Biochemistry, University of CaliforniaSanta Cruz, CaliforniaUnited States of America
| |
Collapse
|
39
|
Pan B, Shi K, Sundaralingam M. Synthesis, Purification and Crystallization of Guanine-rich RNA Oligonucleotides. Biol Proced Online 2004; 6:257-262. [PMID: 15562298 PMCID: PMC531606 DOI: 10.1251/bpo96] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Revised: 10/22/2004] [Accepted: 11/02/2004] [Indexed: 11/23/2022] Open
Abstract
Guanine-rich RNA oligonucleotides display many novel structural motifs in recent crystal structures. Here we describe the procedures of the chemical synthesis and the purification of such RNA molecules that are suitable for X-ray crystallographic studies. Modifications of the previous purification methods allow us to obtain better yields in shorter time. We also provide 24 screening conditions that are very effective in crystallization of the guanine-rich RNA oligonucleotides. Optimal crystallization conditions are usually achieved by adjustment of the concentration of the metal ions and pH of the buffer. Crystals obtained by this method usually diffract to high resolution.
Collapse
Affiliation(s)
- Baocheng Pan
- Departments of Chemistry and Biochemistry, The Ohio State University. 200 Johnston Laboratory, Columbus, OH 43210. USA
| | - Ke Shi
- Departments of Chemistry and Biochemistry, The Ohio State University. 200 Johnston Laboratory, Columbus, OH 43210. USA
| | - Muttaiya Sundaralingam
- Departments of Chemistry and Biochemistry, The Ohio State University. 200 Johnston Laboratory, Columbus, OH 43210. USA
| |
Collapse
|
40
|
Berglund JA. Expanding the structural repertoire of g-quadruplexes. Structure 2004; 11:1315-6. [PMID: 14604520 DOI: 10.1016/j.str.2003.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A crystal structure in this issue by Pan and colleagues adds a new dimension to nucleic acid quadruplex structural biology by revealing an RNA quadruplex with bulged uridines.
Collapse
Affiliation(s)
- J Andrew Berglund
- Department of Chemistry, Institute of Molecular Biology, University of Oregon, Eugene, OR 94703, USA
| |
Collapse
|