1
|
Yang G, Li J, Hu J, Shi JY. Recognition of cyanobacteria promoters via Siamese network-based contrastive learning under novel non-promoter generation. Brief Bioinform 2024; 25:bbae193. [PMID: 38701419 PMCID: PMC11066903 DOI: 10.1093/bib/bbae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/08/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
It is a vital step to recognize cyanobacteria promoters on a genome-wide scale. Computational methods are promising to assist in difficult biological identification. When building recognition models, these methods rely on non-promoter generation to cope with the lack of real non-promoters. Nevertheless, the factitious significant difference between promoters and non-promoters causes over-optimistic prediction. Moreover, designed for E. coli or B. subtilis, existing methods cannot uncover novel, distinct motifs among cyanobacterial promoters. To address these issues, this work first proposes a novel non-promoter generation strategy called phantom sampling, which can eliminate the factitious difference between promoters and generated non-promoters. Furthermore, it elaborates a novel promoter prediction model based on the Siamese network (SiamProm), which can amplify the hidden difference between promoters and non-promoters through a joint characterization of global associations, upstream and downstream contexts, and neighboring associations w.r.t. k-mer tokens. The comparison with state-of-the-art methods demonstrates the superiority of our phantom sampling and SiamProm. Both comprehensive ablation studies and feature space illustrations also validate the effectiveness of the Siamese network and its components. More importantly, SiamProm, upon our phantom sampling, finds a novel cyanobacterial promoter motif ('GCGATCGC'), which is palindrome-patterned, content-conserved, but position-shifted.
Collapse
Affiliation(s)
- Guang Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, 710072, China
| | - Jianing Li
- School of Computer Science, Northwestern Polytechnical University, Xi’an, Shaanxi, 710072, China
| | - Jinlu Hu
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, 710072, China
| | - Jian-Yu Shi
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, 710072, China
| |
Collapse
|
2
|
Manakova E, Mikutenaite M, Golovenko D, Gražulis S, Tamulaitiene G. Crystal structure of restriction endonuclease Kpn2I of CCGG-family. Biochim Biophys Acta Gen Subj 2021; 1865:129926. [PMID: 33965438 DOI: 10.1016/j.bbagen.2021.129926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Restriction endonucleases belong to prokaryotic restriction-modification systems, that protect host cells from invading DNA. Type II restriction endonucleases recognize short 4-8 bp sequences in the target DNA and cut both DNA strands producing double strand breaks. Type II restriction endonuclease Kpn2I cleaves 5'-T/CCGGA DNA sequence ("/" marks the cleavage position). Analysis of protein sequences suggested that Kpn2I belongs to the CCGG-family, which contains ten enzymes that recognize diverse nucleotides outside the conserved 5'-CCGG core and share similar motifs for the 5'-CCGG recognition and cleavage. METHODS We solved a crystal structure of Kpn2I in a DNA-free form at 2.88 Å resolution. From the crystal structure we predicted active center and DNA recognition residues and tested them by mutational analysis. We estimated oligomeric state of Kpn2I by SEC-MALS and performed plasmid DNA cleavage assay to elucidate DNA cleavage mechanism. RESULTS Structure comparison confirmed that Kpn2I shares a conserved active site and structural determinants for the 5'-CCGG tetranucleotide recognition with other restriction endonucleases of the CCGG-family. Guided by structural similarity between Kpn2I and the CCGG-family restriction endonucleases PfoI and AgeI, Kpn2I residues involved in the outer base pair recognition were proposed. CONCLUSIONS Kpn2I is an orthodox Type IIP restriction endonuclease, which acts as a dimer. Kpn2I shares structural similarity to the CCGG-family restriction endonucleases PfoI, AgeI and PspGI. GENERAL SIGNIFICANCE The Kpn2I structure concluded the studies of the CCGG-family, covering detailed structural and biochemical characterization of eleven restriction enzymes and their complexes with DNA.
Collapse
Affiliation(s)
- Elena Manakova
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Migle Mikutenaite
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Dmitrij Golovenko
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Saulius Gražulis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Giedre Tamulaitiene
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
3
|
Artyukh RI, Kachalova GS, Yunusova AK, Fatkhullin BF, Atanasov BP, Perevyazova TA, Popov AN, Gabdulkhakov AG, Zheleznaya LA. The key role of E418 carboxyl group in the formation of Nt.BspD6I nickase active site: Structural and functional properties of Nt.BspD6I E418A mutant. J Struct Biol 2020; 210:107508. [PMID: 32298813 DOI: 10.1016/j.jsb.2020.107508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 11/29/2022]
Abstract
The mutated nickase Nt.BspD6I E418A has been obtained by site-directed mutagenesis. The purified protein has been crystallized, and its spatial structure has been determined at 2.45 Å resolution. An analysis of the crystal structures of the wild-type and mutated nickase have shown that the elimination of a carboxyl group due to the E418A mutation initiates marked conformational changes in both the N-terminal recognition domain and the C-terminal catalytic domain of nickase and insignificantly affects its linker domain. This is supported by changes in the functional properties of mutated nickase: an increase in the oligomerization capacity in the presence of a substrate, a reduction in the capacity to bind a substrate, and complete loss of catalytic activity.
Collapse
Affiliation(s)
- Rimma I Artyukh
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia.
| | - Galina S Kachalova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Alfiya K Yunusova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Bulat F Fatkhullin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Boris P Atanasov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Tatyana A Perevyazova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | | | - Azat G Gabdulkhakov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Ludmila A Zheleznaya
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| |
Collapse
|
4
|
Claeys Bouuaert C, Chalmers R. A single active site in the mariner transposase cleaves DNA strands of opposite polarity. Nucleic Acids Res 2017; 45:11467-11478. [PMID: 29036477 PMCID: PMC5714172 DOI: 10.1093/nar/gkx826] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 09/08/2017] [Indexed: 01/01/2023] Open
Abstract
The RNase H structural fold defines a large family of nucleic acid metabolizing enzymes that catalyze phosphoryl transfer reactions using two divalent metal ions in the active site. Almost all of these reactions involve only one strand of the nucleic acid substrates. In contrast, cut-and-paste transposases cleave two DNA strands of opposite polarity, which is usually achieved via an elegant hairpin mechanism. In the mariner transposons, the hairpin intermediate is absent and key aspects of the mechanism by which the transposon ends are cleaved remained unknown. Here, we characterize complexes involved prior to catalysis, which define an asymmetric pathway for transpososome assembly. Using mixtures of wild-type and catalytically inactive transposases, we show that all the catalytic steps of transposition occur within the context of a dimeric transpososome. Crucially, we find that each active site of a transposase dimer is responsible for two hydrolysis and one transesterification reaction at the same transposon end. These results provide the first strong evidence that a DDE/D active site can hydrolyze DNA strands of opposite polarity, a mechanism that has rarely been observed with any type of nuclease.
Collapse
Affiliation(s)
- Corentin Claeys Bouuaert
- School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Ronald Chalmers
- School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
5
|
Peng Y, Alexov E. Computational investigation of proton transfer, pKa shifts and pH-optimum of protein-DNA and protein-RNA complexes. Proteins 2017; 85:282-295. [PMID: 27936518 PMCID: PMC9843452 DOI: 10.1002/prot.25221] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/24/2016] [Accepted: 11/28/2016] [Indexed: 01/19/2023]
Abstract
Protein-nucleic acid interactions play a crucial role in many biological processes. This work investigates the changes of pKa values and protonation states of ionizable groups (including nucleic acid bases) that may occur at protein-nucleic acid binding. Taking advantage of the recently developed pKa calculation tool DelphiPka, we utilize the large protein-nucleic acid interaction database (NPIDB database) to model pKa shifts caused by binding. It has been found that the protein's interfacial basic residues experience favorable electrostatic interactions while the protein acidic residues undergo proton uptake to reduce the energy cost upon the binding. This is in contrast with observations made for protein-protein complexes. In terms of DNA/RNA, both base groups and phosphate groups of nucleotides are found to participate in binding. Some DNA/RNA bases undergo pKa shifts at complex formation, with the binding process tending to suppress charged states of nucleic acid bases. In addition, a weak correlation is found between the pH-optimum of protein-DNA/RNA binding free energy and the pH-optimum of protein folding free energy. Overall, the pH-dependence of protein-nucleic acid binding is not predicted to be as significant as that of protein-protein association. Proteins 2017; 85:282-295. © 2016 Wiley Periodicals, Inc.
Collapse
|
6
|
Sui L, Gandhi A, Guo HC. Crystal structure of a polypeptide's C-terminus in complex with the regulatory domain of ER aminopeptidase 1. Mol Immunol 2016; 80:41-49. [PMID: 27825049 DOI: 10.1016/j.molimm.2016.10.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/23/2016] [Accepted: 10/24/2016] [Indexed: 11/24/2022]
Abstract
Endoplasmic reticulum aminopeptidase 1 (ERAP1) is involved in the final processing of peptide precursors to generate the N-termini of MHC class I-restricted epitopes. ERAP1 thus influences immunodominance and cytotoxic immune responses by controlling the peptide repertoire available for cell surface presentation by MHC molecules. To enable this critical role in antigen processing, ERAP1 trims peptides by a unique molecular ruler mechanism that turns on/off hydrolysis activity in a peptide-length and -sequence dependent manner. Thus unlike other aminopeptidases, ERAP1 could recognize both the N- and C-termini of peptides in order to read the substrate's length. To exemplify and validate this molecular ruler mechanism, we have carried out crystallographic studies on molecular recognition of antigenic peptide's C-terminus by ERAP1. In this report, we have determined a 2.8Å-resolution crystal structure of an intermolecular complex between the ERAP1 regulatory domain and a natural epitope's C-terminus displayed in a fusion protein. It reveals the structural details of peptide's C-termini recognition by ERAP1. ERAP1 uses specificity pockets on the regulatory domain to bind the peptide's carboxyl end and side chain of the C-terminal anchoring residue. At the same time, flexibility in length and sequence at the middle of peptides is accommodated by a kink with minimal interactions with ERAP1.
Collapse
Affiliation(s)
- Lufei Sui
- Department of Biological Sciences, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| | - Amit Gandhi
- Department of Biological Sciences, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA; Current Address: Brigham and Women's Hospital/Harvard Medical School, 20 Shattuck Street Boston, MA 02115, USA
| | - Hwai-Chen Guo
- Department of Biological Sciences, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA.
| |
Collapse
|
7
|
Zhang C, Lou J, Tu W, Bao J, Dai Z. Ultrasensitive electrochemical biosensing for DNA using quantum dots combined with restriction endonuclease. Analyst 2015; 140:506-11. [DOI: 10.1039/c4an01284d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A sensitive platform using endonuclease and AuNPs as well as environmental Bi film for the detection of DNA has been developed.
Collapse
Affiliation(s)
- Can Zhang
- Jiangsu Key Laboratory of Biofunctional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing
- P. R. China
| | - Jing Lou
- Jiangsu Key Laboratory of Biofunctional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing
- P. R. China
| | - Wenwen Tu
- Jiangsu Key Laboratory of Biofunctional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing
- P. R. China
| | - Jianchun Bao
- Jiangsu Key Laboratory of Biofunctional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing
- P. R. China
| | - Zhihui Dai
- Jiangsu Key Laboratory of Biofunctional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing
- P. R. China
| |
Collapse
|
8
|
Pingoud A, Wilson GG, Wende W. Type II restriction endonucleases--a historical perspective and more. Nucleic Acids Res 2014; 42:7489-527. [PMID: 24878924 PMCID: PMC4081073 DOI: 10.1093/nar/gku447] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 12/17/2022] Open
Abstract
This article continues the series of Surveys and Summaries on restriction endonucleases (REases) begun this year in Nucleic Acids Research. Here we discuss 'Type II' REases, the kind used for DNA analysis and cloning. We focus on their biochemistry: what they are, what they do, and how they do it. Type II REases are produced by prokaryotes to combat bacteriophages. With extreme accuracy, each recognizes a particular sequence in double-stranded DNA and cleaves at a fixed position within or nearby. The discoveries of these enzymes in the 1970s, and of the uses to which they could be put, have since impacted every corner of the life sciences. They became the enabling tools of molecular biology, genetics and biotechnology, and made analysis at the most fundamental levels routine. Hundreds of different REases have been discovered and are available commercially. Their genes have been cloned, sequenced and overexpressed. Most have been characterized to some extent, but few have been studied in depth. Here, we describe the original discoveries in this field, and the properties of the first Type II REases investigated. We discuss the mechanisms of sequence recognition and catalysis, and the varied oligomeric modes in which Type II REases act. We describe the surprising heterogeneity revealed by comparisons of their sequences and structures.
Collapse
Affiliation(s)
- Alfred Pingoud
- Institute of Biochemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| | - Geoffrey G Wilson
- New England Biolabs Inc., 240 County Road, Ipswich, MA 01938-2723, USA
| | - Wolfgang Wende
- Institute of Biochemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| |
Collapse
|
9
|
Schneider B, Černý J, Svozil D, Čech P, Gelly JC, de Brevern AG. Bioinformatic analysis of the protein/DNA interface. Nucleic Acids Res 2014; 42:3381-94. [PMID: 24335080 PMCID: PMC3950675 DOI: 10.1093/nar/gkt1273] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 11/14/2013] [Accepted: 11/14/2013] [Indexed: 01/04/2023] Open
Abstract
To investigate the principles driving recognition between proteins and DNA, we analyzed more than thousand crystal structures of protein/DNA complexes. We classified protein and DNA conformations by structural alphabets, protein blocks [de Brevern, Etchebest and Hazout (2000) (Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks. Prots. Struct. Funct. Genet., 41:271-287)] and dinucleotide conformers [Svozil, Kalina, Omelka and Schneider (2008) (DNA conformations and their sequence preferences. Nucleic Acids Res., 36:3690-3706)], respectively. Assembling the mutually interacting protein blocks and dinucleotide conformers into 'interaction matrices' revealed their correlations and conformer preferences at the interface relative to their occurrence outside the interface. The analyzed data demonstrated important differences between complexes of various types of proteins such as transcription factors and nucleases, distinct interaction patterns for the DNA minor groove relative to the major groove and phosphate and importance of water-mediated contacts. Water molecules mediate proportionally the largest number of contacts in the minor groove and form the largest proportion of contacts in complexes of transcription factors. The generally known induction of A-DNA forms by complexation was more accurately attributed to A-like and intermediate A/B conformers rare in naked DNA molecules.
Collapse
Affiliation(s)
- Bohdan Schneider
- Institute of Biotechnology AS CR, Videnska 1083, CZ-142 20 Prague, Czech Republic, Laboratory of Informatics and Chemistry, Faculty of Chemical Technology, Institute of Chemical Technology Prague, Technická 5, CZ-166 28 Prague, Czech Republic, INSERM, U665, DSIMB, F-75739 Paris, France, University of Paris Diderot, Sorbonne Paris Cité, UMR_S 665, F-75739 Paris, France, Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France and Laboratoire d’Excellence GR-Ex, F-75739 Paris, France
| | - Jiří Černý
- Institute of Biotechnology AS CR, Videnska 1083, CZ-142 20 Prague, Czech Republic, Laboratory of Informatics and Chemistry, Faculty of Chemical Technology, Institute of Chemical Technology Prague, Technická 5, CZ-166 28 Prague, Czech Republic, INSERM, U665, DSIMB, F-75739 Paris, France, University of Paris Diderot, Sorbonne Paris Cité, UMR_S 665, F-75739 Paris, France, Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France and Laboratoire d’Excellence GR-Ex, F-75739 Paris, France
| | - Daniel Svozil
- Institute of Biotechnology AS CR, Videnska 1083, CZ-142 20 Prague, Czech Republic, Laboratory of Informatics and Chemistry, Faculty of Chemical Technology, Institute of Chemical Technology Prague, Technická 5, CZ-166 28 Prague, Czech Republic, INSERM, U665, DSIMB, F-75739 Paris, France, University of Paris Diderot, Sorbonne Paris Cité, UMR_S 665, F-75739 Paris, France, Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France and Laboratoire d’Excellence GR-Ex, F-75739 Paris, France
| | - Petr Čech
- Institute of Biotechnology AS CR, Videnska 1083, CZ-142 20 Prague, Czech Republic, Laboratory of Informatics and Chemistry, Faculty of Chemical Technology, Institute of Chemical Technology Prague, Technická 5, CZ-166 28 Prague, Czech Republic, INSERM, U665, DSIMB, F-75739 Paris, France, University of Paris Diderot, Sorbonne Paris Cité, UMR_S 665, F-75739 Paris, France, Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France and Laboratoire d’Excellence GR-Ex, F-75739 Paris, France
| | - Jean-Christophe Gelly
- Institute of Biotechnology AS CR, Videnska 1083, CZ-142 20 Prague, Czech Republic, Laboratory of Informatics and Chemistry, Faculty of Chemical Technology, Institute of Chemical Technology Prague, Technická 5, CZ-166 28 Prague, Czech Republic, INSERM, U665, DSIMB, F-75739 Paris, France, University of Paris Diderot, Sorbonne Paris Cité, UMR_S 665, F-75739 Paris, France, Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France and Laboratoire d’Excellence GR-Ex, F-75739 Paris, France
| | - Alexandre G. de Brevern
- Institute of Biotechnology AS CR, Videnska 1083, CZ-142 20 Prague, Czech Republic, Laboratory of Informatics and Chemistry, Faculty of Chemical Technology, Institute of Chemical Technology Prague, Technická 5, CZ-166 28 Prague, Czech Republic, INSERM, U665, DSIMB, F-75739 Paris, France, University of Paris Diderot, Sorbonne Paris Cité, UMR_S 665, F-75739 Paris, France, Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France and Laboratoire d’Excellence GR-Ex, F-75739 Paris, France
| |
Collapse
|
10
|
Crew E, Yan H, Lin L, Yin J, Skeete Z, Kotlyar T, Tchah N, Lee J, Bellavia M, Goodshaw I, Joseph P, Luo J, Gal S, Zhong CJ. DNA assembly and enzymatic cutting in solutions: a gold nanoparticle based SERS detection strategy. Analyst 2013; 138:4941-9. [DOI: 10.1039/c3an00683b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Endonuclease cleavage combined with horseradish peroxidase-assisted signal amplification for electrochemical monitoring of DNA. Electrochem commun 2012. [DOI: 10.1016/j.elecom.2012.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
12
|
Steczkiewicz K, Muszewska A, Knizewski L, Rychlewski L, Ginalski K. Sequence, structure and functional diversity of PD-(D/E)XK phosphodiesterase superfamily. Nucleic Acids Res 2012; 40:7016-45. [PMID: 22638584 PMCID: PMC3424549 DOI: 10.1093/nar/gks382] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Proteins belonging to PD-(D/E)XK phosphodiesterases constitute a functionally diverse superfamily with representatives involved in replication, restriction, DNA repair and tRNA-intron splicing. Their malfunction in humans triggers severe diseases, such as Fanconi anemia and Xeroderma pigmentosum. To date there have been several attempts to identify and classify new PD-(D/E)KK phosphodiesterases using remote homology detection methods. Such efforts are complicated, because the superfamily exhibits extreme sequence and structural divergence. Using advanced homology detection methods supported with superfamily-wide domain architecture and horizontal gene transfer analyses, we provide a comprehensive reclassification of proteins containing a PD-(D/E)XK domain. The PD-(D/E)XK phosphodiesterases span over 21,900 proteins, which can be classified into 121 groups of various families. Eleven of them, including DUF4420, DUF3883, DUF4263, COG5482, COG1395, Tsp45I, HaeII, Eco47II, ScaI, HpaII and Replic_Relax, are newly assigned to the PD-(D/E)XK superfamily. Some groups of PD-(D/E)XK proteins are present in all domains of life, whereas others occur within small numbers of organisms. We observed multiple horizontal gene transfers even between human pathogenic bacteria or from Prokaryota to Eukaryota. Uncommon domain arrangements greatly elaborate the PD-(D/E)XK world. These include domain architectures suggesting regulatory roles in Eukaryotes, like stress sensing and cell-cycle regulation. Our results may inspire further experimental studies aimed at identification of exact biological functions, specific substrates and molecular mechanisms of reactions performed by these highly diverse proteins.
Collapse
Affiliation(s)
- Kamil Steczkiewicz
- Laboratory of Bioinformatics and Systems Biology, CENT, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | | | | | | | | |
Collapse
|
13
|
Zhukhlistova NE, Balaev VV, Lyashenko AV, Lashkov AA. Structural aspects of catalytic mechanisms of endonucleases and their binding to nucleic acids. CRYSTALLOGR REP+ 2012. [DOI: 10.1134/s1063774512030236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Pershina AG, Serebrov VY, Sazonov AE. Specific interaction between nucleases and plasmid DNA-CoFe2O4 nanoparticle complex. ACTA ACUST UNITED AC 2011. [DOI: 10.1134/s1995078011040100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Sasnauskas G, Kostiuk G, Tamulaitis G, Siksnys V. Target site cleavage by the monomeric restriction enzyme BcnI requires translocation to a random DNA sequence and a switch in enzyme orientation. Nucleic Acids Res 2011; 39:8844-56. [PMID: 21771860 PMCID: PMC3203586 DOI: 10.1093/nar/gkr588] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Endonucleases that generate double-strand breaks in DNA often possess two identical subunits related by rotational symmetry, arranged so that the active sites from each subunit act on opposite DNA strands. In contrast to many endonucleases, Type IIP restriction enzyme BcnI, which recognizes the pseudopalindromic sequence 5′-CCSGG-3′ (where S stands for C or G) and cuts both DNA strands after the second C, is a monomer and possesses a single catalytic center. We show here that to generate a double-strand break BcnI nicks one DNA strand, switches its orientation on DNA to match the polarity of the second strand and then cuts the phosphodiester bond on the second DNA strand. Surprisingly, we find that an enzyme flip required for the second DNA strand cleavage occurs without an excursion into bulk solution, as the same BcnI molecule acts processively on both DNA strands. We provide evidence that after cleavage of the first DNA strand, BcnI remains associated with the nicked intermediate and relocates to the opposite strand by a short range diffusive hopping on DNA.
Collapse
Affiliation(s)
- Giedrius Sasnauskas
- Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | | | | | | |
Collapse
|
16
|
Kostiuk G, Sasnauskas G, Tamulaitiene G, Siksnys V. Degenerate sequence recognition by the monomeric restriction enzyme: single mutation converts BcnI into a strand-specific nicking endonuclease. Nucleic Acids Res 2011; 39:3744-53. [PMID: 21227928 PMCID: PMC3089477 DOI: 10.1093/nar/gkq1351] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Unlike orthodox Type II restriction endonucleases that are homodimers and interact with the palindromic 4–8-bp DNA sequences, BcnI is a monomer which has a single active site but cuts both DNA strands within the 5′-CC↓CGG-3′/3′-GGG↓CC-5′ target site (‘↓’ designates the cleavage position). Therefore, after cutting the first strand, the BcnI monomer must re-bind to the target site in the opposite orientation; but in this case, it runs into a different central base because of the broken symmetry of the recognition site. Crystal-structure analysis shows that to accept both the C:G and G:C base pairs at the center of its target site, BcnI employs two symmetrically positioned histidines H77 and H219 that presumably change their protonation state depending on the binding mode. We show here that a single mutation of BcnI H77 or H219 residues restricts the cleavage activity of the enzyme to either the 5′-CCCGG-3′ or the 5′-CCGGG-3′ strand, thereby converting BcnI into a strand-specific nicking endonuclease. This is a novel approach for engineering of monomeric restriction enzymes into strand-specific nucleases.
Collapse
Affiliation(s)
- Georgij Kostiuk
- Institute of Biotechnology, Vilnius University, Graiciuno 8, LT 02241, Vilnius, Lithuania
| | | | | | | |
Collapse
|
17
|
Firczuk M, Wojciechowski M, Czapinska H, Bochtler M. DNA intercalation without flipping in the specific ThaI-DNA complex. Nucleic Acids Res 2010; 39:744-54. [PMID: 20861000 PMCID: PMC3025569 DOI: 10.1093/nar/gkq834] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The PD-(D/E)XK type II restriction endonuclease ThaI cuts the target sequence CG/CG with blunt ends. Here, we report the 1.3 Å resolution structure of the enzyme in complex with substrate DNA and a sodium or calcium ion taking the place of a catalytic magnesium ion. The structure identifies Glu54, Asp82 and Lys93 as the active site residues. This agrees with earlier bioinformatic predictions and implies that the PD and (D/E)XK motifs in the sequence are incidental. DNA recognition is very unusual: the two Met47 residues of the ThaI dimer intercalate symmetrically into the CG steps of the target sequence. They approach the DNA from the minor groove side and penetrate the base stack entirely. The DNA accommodates the intercalating residues without nucleotide flipping by a doubling of the CG step rise to twice its usual value, which is accompanied by drastic unwinding. Displacement of the Met47 side chains from the base pair midlines toward the downstream CG steps leads to large and compensating tilts of the first and second CG steps. DNA intercalation by ThaI is unlike intercalation by HincII, HinP1I or proteins that bend or repair DNA.
Collapse
|
18
|
Vanamee ES, Viadiu H, Chan SH, Ummat A, Hartline AM, Xu SY, Aggarwal AK. Asymmetric DNA recognition by the OkrAI endonuclease, an isoschizomer of BamHI. Nucleic Acids Res 2010; 39:712-9. [PMID: 20833632 PMCID: PMC3025578 DOI: 10.1093/nar/gkq779] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Restriction enzymes share little or no sequence homology with the exception of isoschizomers, or enzymes that recognize and cleave the same DNA sequence. We present here the structure of a BamHI isoschizomer, OkrAI, bound to the same DNA sequence (TATGGATCCATA) as that cocrystallized with BamHI. We show that OkrAI is a more minimal version of BamHI, lacking not only the N- and C-terminal helices but also an internal 310 helix and containing β-strands that are shorter than those in BamHI. Despite these structural differences, OkrAI recognizes the DNA in a remarkably similar manner to BamHI, including asymmetric contacts via C-terminal ‘arms’ that appear to ‘compete’ for the minor groove. However, the arms are shorter than in BamHI. We observe similar DNA-binding affinities between OkrAI and BamHI but OkrAI has higher star activity (at 37°C) compared to BamHI. Together, the OkrAI and BamHI structures offer a rare opportunity to compare two restriction enzymes that work on exactly the same DNA substrate.
Collapse
Affiliation(s)
- Eva Scheuring Vanamee
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
The MvaI restriction endonuclease cuts 5′-CC↓AGG-3′/5′-CC↑TGG-3′ sites as indicated by the arrows. N4-methylation of the inner cytosines (Cm4CAGG/Cm4CTGG) protects the site against MvaI cleavage. Here, we show that MvaI nicks the G-strand of the related sequence (CCGGG/CCCGG, BcnI site) if the inner cytosines are C5-methylated: Cm5C↓GGG/CCm5CGG. At M.SssI-methylated SmaI sites, where two oppositely oriented methylated BcnI sites partially overlap, double-nicking leads to double-strand cleavage (CCm5C↓GGG/CCm5C↑GGG) generating fragments with blunt ends. The double-strand cleavage rate and the stringency of substrate site recognition is lower at the methylation-dependent site than at the canonical target site. MvaI is the first restriction endonuclease shown to possess, besides the ‘normal’ activity on its unmethylated recognition site, also a methylation-directed activity on a different sequence.
Collapse
Affiliation(s)
- Ildikó Stier
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, 6726 Szeged, Temesvári krt. 62, Hungary
| | | |
Collapse
|
20
|
Raskó T, Dér A, Klement E, Slaska-Kiss K, Pósfai E, Medzihradszky KF, Marshak DR, Roberts RJ, Kiss A. BspRI restriction endonuclease: cloning, expression in Escherichia coli and sequential cleavage mechanism. Nucleic Acids Res 2010; 38:7155-66. [PMID: 20587501 PMCID: PMC2978348 DOI: 10.1093/nar/gkq567] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The GGCC-specific restriction endonuclease BspRI is one of the few Type IIP restriction endonucleases, which were suggested to be a monomer. Amino acid sequence information obtained by Edman sequencing and mass spectrometry analysis was used to clone the gene encoding BspRI. The bspRIR gene is located adjacently to the gene of the cognate modification methyltransferase and encodes a 304 aa protein. Expression of the bspRIR gene in Escherichia coli was dependent on the replacement of the native TTG initiation codon with an ATG codon, explaining previous failures in cloning the gene using functional selection. A plasmid containing a single BspRI recognition site was used to analyze kinetically nicking and second-strand cleavage under steady-state conditions. Cleavage of the supercoiled plasmid went through a relaxed intermediate indicating sequential hydrolysis of the two strands. Results of the kinetic analysis of the first- and second-strand cleavage are consistent with cutting the double-stranded substrate site in two independent binding events. A database search identified eight putative restriction-modification systems in which the predicted endonucleases as well as the methyltransferases share high sequence similarity with the corresponding protein of the BspRI system. BspRI and the related putative restriction endonucleases belong to the PD-(D/E)XK nuclease superfamily.
Collapse
Affiliation(s)
- Tamás Raskó
- Institute of Biochemistry, Proteomics Research Group, Biological Research Center of the Hungarian Academy of Sciences, Temesvári krt. 62, 6726 Szeged, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Jakubauskas A, Sasnauskas G, Giedriene J, Janulaitis A. Domain organization and functional analysis of type IIS restriction endonuclease Eco31I. Biochemistry 2008; 47:8546-56. [PMID: 18642930 DOI: 10.1021/bi800660u] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Type IIS restriction endonuclease Eco31I harbors a single HNH active site and cleaves both DNA strands close to its recognition sequence, 5'-GGTCTC(1/5). A two-domain organization of Eco31I was determined by limited proteolysis. Analysis of proteolytic fragments revealed that the N-terminal domain of Eco31I is responsible for the specific DNA binding, while the C-terminal domain contains the HNH nuclease-like active site. Gel-shift and gel-filtration experiments revealed that a monomer of the N-terminal domain of Eco31I is able to bind a single copy of cognate DNA. However, in contrast to other studied type IIS enzymes, the isolated catalytic domain of Eco31I was inactive. Steady-state and transient kinetic analysis of Eco31I reactions was inconsistent with dimerization of Eco31I on DNA. Thus, we propose that Eco31I interacts with individual copies of its recognition sequence in its monomeric form and presumably remains a monomer as it cleaves both strands of double-stranded DNA. The domain organization and reaction mechanism established for Eco31I should be common for a group of evolutionary related type IIS restriction endonucleases Alw26I, BsaI, BsmAI, BsmBI and Esp3I that recognize DNA sequences bearing the common pentanucleotide 5'-GTCTC.
Collapse
|
22
|
Orlowski J, Bujnicki JM. Structural and evolutionary classification of Type II restriction enzymes based on theoretical and experimental analyses. Nucleic Acids Res 2008; 36:3552-69. [PMID: 18456708 PMCID: PMC2441816 DOI: 10.1093/nar/gkn175] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
For a very long time, Type II restriction enzymes (REases) have been a paradigm of ORFans: proteins with no detectable similarity to each other and to any other protein in the database, despite common cellular and biochemical function. Crystallographic analyses published until January 2008 provided high-resolution structures for only 28 of 1637 Type II REase sequences available in the Restriction Enzyme database (REBASE). Among these structures, all but two possess catalytic domains with the common PD-(D/E)XK nuclease fold. Two structures are unrelated to the others: R.BfiI exhibits the phospholipase D (PLD) fold, while R.PabI has a new fold termed 'half-pipe'. Thus far, bioinformatic studies supported by site-directed mutagenesis have extended the number of tentatively assigned REase folds to five (now including also GIY-YIG and HNH folds identified earlier in homing endonucleases) and provided structural predictions for dozens of REase sequences without experimentally solved structures. Here, we present a comprehensive study of all Type II REase sequences available in REBASE together with their homologs detectable in the nonredundant and environmental samples databases at the NCBI. We present the summary and critical evaluation of structural assignments and predictions reported earlier, new classification of all REase sequences into families, domain architecture analysis and new predictions of three-dimensional folds. Among 289 experimentally characterized (not putative) Type II REases, whose apparently full-length sequences are available in REBASE, we assign 199 (69%) to contain the PD-(D/E)XK domain. The HNH domain is the second most common, with 24 (8%) members. When putative REases are taken into account, the fraction of PD-(D/E)XK and HNH folds changes to 48% and 30%, respectively. Fifty-six characterized (and 521 predicted) REases remain unassigned to any of the five REase folds identified so far, and may exhibit new architectures. These enzymes are proposed as the most interesting targets for structure determination by high-resolution experimental methods. Our analysis provides the first comprehensive map of sequence-structure relationships among Type II REases and will help to focus the efforts of structural and functional genomics of this large and biotechnologically important class of enzymes.
Collapse
Affiliation(s)
- Jerzy Orlowski
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | | |
Collapse
|
23
|
Lambert AR, Sussman D, Shen B, Maunus R, Nix J, Samuelson J, Xu SY, Stoddard BL. Structures of the rare-cutting restriction endonuclease NotI reveal a unique metal binding fold involved in DNA binding. Structure 2008; 16:558-69. [PMID: 18400177 PMCID: PMC2390919 DOI: 10.1016/j.str.2008.01.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 01/07/2008] [Accepted: 01/12/2008] [Indexed: 11/19/2022]
Abstract
The structure of the rare-cutting restriction endonuclease NotI, which recognizes the 8 bp target 5'-GCGGCCGC-3', has been solved with and without bound DNA. Because of its specificity (recognizing a site that occurs once per 65 kb), NotI is used to generate large genomic fragments and to map DNA methylation status. NotI contains a unique metal binding fold, found in a variety of putative endonucleases, occupied by an iron atom coordinated within a tetrahedral Cys4 motif. This domain positions nearby protein elements for DNA recognition, and serves a structural role. While recognition of the central six base pairs of the target is accomplished via a saturated hydrogen bond network typical of restriction enzymes, the most peripheral base pairs are engaged in a single direct contact in the major groove, reflecting reduced pressure to recognize those positions. NotI may represent an evolutionary intermediate between mobile endonucleases (which recognize longer target sites) and canonical restriction endonucleases.
Collapse
Affiliation(s)
- Abigail R. Lambert
- Graduate Program in Biomolecular Structure and Design, University of Washington Seattle, WA
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N. A3-025 Seattle, WA 98109
| | - Django Sussman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N. A3-025 Seattle, WA 98109
| | - Betty Shen
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N. A3-025 Seattle, WA 98109
| | - Robert Maunus
- New England Biolabs, 240 County Road Ipswitch, MA 01938
| | - Jay Nix
- Advanced Light Source, Lawrence Berkeley Laboratory, University of California, 1 Cyclotron Road Berkeley, CA 94720
| | | | | | - Barry L. Stoddard
- Graduate Program in Biomolecular Structure and Design, University of Washington Seattle, WA
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N. A3-025 Seattle, WA 98109
| |
Collapse
|
24
|
Kosinski J, Kubareva E, Bujnicki JM. A model of restriction endonuclease MvaI in complex with DNA: a template for interpretation of experimental data and a guide for specificity engineering. Proteins 2007; 68:324-36. [PMID: 17407166 DOI: 10.1002/prot.21460] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
R.MvaI is a Type II restriction enzyme (REase), which specifically recognizes the pentanucleotide DNA sequence 5'-CCWGG-3' (W indicates A or T). It belongs to a family of enzymes, which recognize related sequences, including 5'-CCSGG-3' (S indicates G or C) in the case of R.BcnI, or 5'-CCNGG-3' (where N indicates any nucleoside) in the case of R.ScrFI. REases from this family hydrolyze the phosphodiester bond in the DNA between the 2nd and 3rd base in both strands, thereby generating a double strand break with 5'-protruding single nucleotides. So far, no crystal structures of REases with similar cleavage patterns have been solved. Characterization of sequence-structure-function relationships in this family would facilitate understanding of evolution of sequence specificity among REases and could aid in engineering of enzymes with new specificities. However, sequences of R.MvaI or its homologs show no significant similarity to any proteins with known structures, thus precluding straightforward comparative modeling. We used a fold recognition approach to identify a remote relationship between R.MvaI and the structure of DNA repair enzyme MutH, which belongs to the PD-(D/E)XK superfamily together with many other REases. We constructed a homology model of R.MvaI and used it to predict functionally important amino acid residues and the mode of interaction with the DNA. In particular, we predict that only one active site of R.MvaI interacts with the DNA target at a time, and the cleavage of both strands (5'-CCAGG-3' and 5'-CCTGG-3') is achieved by two independent catalytic events. The model is in good agreement with the available experimental data and will serve as a template for further analyses of R.MvaI, R.BcnI, R.ScrFI and other related enzymes.
Collapse
Affiliation(s)
- Jan Kosinski
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland.
| | | | | |
Collapse
|
25
|
Gasiunas G, Sasnauskas G, Tamulaitis G, Urbanke C, Razaniene D, Siksnys V. Tetrameric restriction enzymes: expansion to the GIY-YIG nuclease family. Nucleic Acids Res 2007; 36:938-49. [PMID: 18086711 PMCID: PMC2241918 DOI: 10.1093/nar/gkm1090] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The GIY-YIG nuclease domain was originally identified in homing endonucleases and enzymes involved in DNA repair and recombination. Many of the GIY-YIG family enzymes are functional as monomers. We show here that the Cfr42I restriction endonuclease which belongs to the GIY-YIG family and recognizes the symmetric sequence 5′-CCGC/GG-3′ (‘/’ indicates the cleavage site) is a tetramer in solution. Moreover, biochemical and kinetic studies provided here demonstrate that the Cfr42I tetramer is catalytically active only upon simultaneous binding of two copies of its recognition sequence. In that respect Cfr42I resembles the homotetrameric Type IIF restriction enzymes that belong to the distinct PD-(E/D)XK nuclease superfamily. Unlike the PD-(E/D)XK enzymes, the GIY-YIG nuclease Cfr42I accommodates an extremely wide selection of metal-ion cofactors, including Mg2+, Mn2+, Co2+, Zn2+, Ni2+, Cu2+ and Ca2+. To our knowledge, Cfr42I is the first tetrameric GIY-YIG family enzyme. Similar structural arrangement and phenotypes displayed by restriction enzymes of the PD-(E/D)XK and GIY-YIG nuclease families point to the functional significance of tetramerization.
Collapse
Affiliation(s)
- Giedrius Gasiunas
- Institute of Biotechnology, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | | | | | | | | | | |
Collapse
|
26
|
Sokolowska M, Kaus-Drobek M, Czapinska H, Tamulaitis G, Szczepanowski RH, Urbanke C, Siksnys V, Bochtler M. Monomeric restriction endonuclease BcnI in the apo form and in an asymmetric complex with target DNA. J Mol Biol 2007; 369:722-34. [PMID: 17445830 DOI: 10.1016/j.jmb.2007.03.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 03/01/2007] [Accepted: 03/06/2007] [Indexed: 11/20/2022]
Abstract
Restriction endonuclease BcnI cleaves duplex DNA containing the sequence CC/SGG (S stands for C or G, / designates a cleavage position) to generate staggered products with single nucleotide 5'-overhangs. Here, we show that BcnI functions as a monomer that interacts with its target DNA in 1:1 molar ratio and report crystal structures of BcnI in the absence and in the presence of DNA. In the complex with DNA, BcnI makes specific contacts with all five bases of the target sequence and not just with a half-site, as the protomer of a typical dimeric restriction endonuclease. Our data are inconsistent with BcnI dimerization and suggest that the enzyme introduces double-strand breaks by sequentially nicking individual DNA strands, although this remains to be confirmed by kinetic experiments. BcnI is remotely similar to the DNA repair protein MutH and shares approximately 20% sequence identity with the restriction endonuclease MvaI, which is specific for the related sequence CC/WGG (W stands for A or T). As expected, BcnI is structurally similar to MvaI and recognizes conserved bases in the target sequence similarly but not identically. BcnI has a unique machinery for the recognition of the central base-pair.
Collapse
Affiliation(s)
- Monika Sokolowska
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Kaus-Drobek M, Czapinska H, Sokołowska M, Tamulaitis G, Szczepanowski RH, Urbanke C, Siksnys V, Bochtler M. Restriction endonuclease MvaI is a monomer that recognizes its target sequence asymmetrically. Nucleic Acids Res 2007; 35:2035-46. [PMID: 17344322 PMCID: PMC1874612 DOI: 10.1093/nar/gkm064] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Restriction endonuclease MvaI recognizes the sequence CC/WGG (W stands for A or T, '/' designates the cleavage site) and generates products with single nucleotide 5'-overhangs. The enzyme has been noted for its tolerance towards DNA modifications. Here, we report a biochemical characterization and crystal structures of MvaI in an apo-form and in a complex with target DNA at 1.5 A resolution. Our results show that MvaI is a monomer and recognizes its pseudosymmetric target sequence asymmetrically. The enzyme consists of two lobes. The catalytic lobe anchors the active site residues Glu36, Asp50, Glu55 and Lys57 and contacts the bases from the minor grove side. The recognition lobe mediates all major grove interactions with the bases. The enzyme in the crystal is bound to the strand with T at the center of the recognition sequence. The crystal structure with calcium ions and DNA mimics the prereactive state. MvaI shows structural similarities to BcnI, which cleaves the related sequence CC/SGG and to MutH enzyme, which is a component of the DNA repair machinery, and nicks one DNA strand instead of making a double-strand break.
Collapse
Affiliation(s)
- Magdalena Kaus-Drobek
- International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland, Max-Planck-Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01309 Dresden, Germany, Institute of Biotechnology, Graiciuno 8, LT-02241, Vilnius, Lithuania and Medizinische Hochschule, Abteilung Strukturanalyse OE 8830, Carl Neuberg Str. 1, 30625 Hannover, Germany
| | - Honorata Czapinska
- International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland, Max-Planck-Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01309 Dresden, Germany, Institute of Biotechnology, Graiciuno 8, LT-02241, Vilnius, Lithuania and Medizinische Hochschule, Abteilung Strukturanalyse OE 8830, Carl Neuberg Str. 1, 30625 Hannover, Germany
| | - Monika Sokołowska
- International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland, Max-Planck-Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01309 Dresden, Germany, Institute of Biotechnology, Graiciuno 8, LT-02241, Vilnius, Lithuania and Medizinische Hochschule, Abteilung Strukturanalyse OE 8830, Carl Neuberg Str. 1, 30625 Hannover, Germany
| | - Gintautas Tamulaitis
- International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland, Max-Planck-Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01309 Dresden, Germany, Institute of Biotechnology, Graiciuno 8, LT-02241, Vilnius, Lithuania and Medizinische Hochschule, Abteilung Strukturanalyse OE 8830, Carl Neuberg Str. 1, 30625 Hannover, Germany
| | - Roman H. Szczepanowski
- International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland, Max-Planck-Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01309 Dresden, Germany, Institute of Biotechnology, Graiciuno 8, LT-02241, Vilnius, Lithuania and Medizinische Hochschule, Abteilung Strukturanalyse OE 8830, Carl Neuberg Str. 1, 30625 Hannover, Germany
| | - Claus Urbanke
- International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland, Max-Planck-Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01309 Dresden, Germany, Institute of Biotechnology, Graiciuno 8, LT-02241, Vilnius, Lithuania and Medizinische Hochschule, Abteilung Strukturanalyse OE 8830, Carl Neuberg Str. 1, 30625 Hannover, Germany
| | - Virginijus Siksnys
- International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland, Max-Planck-Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01309 Dresden, Germany, Institute of Biotechnology, Graiciuno 8, LT-02241, Vilnius, Lithuania and Medizinische Hochschule, Abteilung Strukturanalyse OE 8830, Carl Neuberg Str. 1, 30625 Hannover, Germany
| | - Matthias Bochtler
- International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland, Max-Planck-Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01309 Dresden, Germany, Institute of Biotechnology, Graiciuno 8, LT-02241, Vilnius, Lithuania and Medizinische Hochschule, Abteilung Strukturanalyse OE 8830, Carl Neuberg Str. 1, 30625 Hannover, Germany
- *To whom correspondence should be addressed. 0048 22 59707320048 22 5970715
| |
Collapse
|
28
|
Tamulaitiene G, Jakubauskas A, Urbanke C, Huber R, Grazulis S, Siksnys V. The crystal structure of the rare-cutting restriction enzyme SdaI reveals unexpected domain architecture. Structure 2006; 14:1389-400. [PMID: 16962970 DOI: 10.1016/j.str.2006.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 07/04/2006] [Accepted: 07/05/2006] [Indexed: 01/31/2023]
Abstract
Rare-cutting restriction enzymes are important tools in genome analysis. We report here the crystal structure of SdaI restriction endonuclease, which is specific for the 8 bp sequence CCTGCA/GG ("/" designates the cleavage site). Unlike orthodox Type IIP enzymes, which are single domain proteins, the SdaI monomer is composed of two structural domains. The N domain contains a classical winged helix-turn-helix (wHTH) DNA binding motif, while the C domain shows a typical restriction endonuclease fold. The active site of SdaI is located within the C domain and represents a variant of the canonical PD-(D/E)XK motif. SdaI determinants of sequence specificity are clustered on the recognition helix of the wHTH motif at the N domain. The modular architecture of SdaI, wherein one domain mediates DNA binding while the other domain is predicted to catalyze hydrolysis, distinguishes SdaI from previously characterized restriction enzymes interacting with symmetric recognition sequences.
Collapse
|
29
|
Horton JR, Zhang X, Maunus R, Yang Z, Wilson GG, Roberts RJ, Cheng X. DNA nicking by HinP1I endonuclease: bending, base flipping and minor groove expansion. Nucleic Acids Res 2006; 34:939-48. [PMID: 16473850 PMCID: PMC1363774 DOI: 10.1093/nar/gkj484] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
HinP1I recognizes and cleaves the palindromic tetranucleotide sequence G downward arrowCGC in DNA. We report three structures of HinP1I-DNA complexes: in the presence of Ca(2+) (pre-reactive complex), in the absence of metal ion (binary complex) and in the presence of Mg(2+) (post-reactive complex). HinP1I forms a back-to-back dimer with two active sites and two DNA duplexes bound on the outer surfaces of the dimer facing away from each other. The 10 bp DNA duplexes undergo protein-induced distortions exhibiting features of A-, B- and Z-conformations: bending on one side (by intercalation of a phenylalanine side chain into the major groove), base flipping on the other side of the recognition site (by expanding the step rise distance of the local base pair to Z-form) and a local A-form conformation between the two central C:G base pairs of the recognition site (by binding of the N-terminal helix in the minor groove). In the pre- and post-reactive complexes, two metals (Ca(2+) or Mg(2+)) are found in the active site. The enzyme appears to cleave DNA sequentially, hydrolyzing first one DNA strand, as seen in the post-reactive complex in the crystalline state, and then the other, as supported by the observation that, in solution, a nicked DNA intermediate accumulates before linearization.
Collapse
Affiliation(s)
| | | | - Robert Maunus
- New England Biolabs, Inc.240 County Road, Ipswich, MA 01938-2723, USA
| | | | | | | | - Xiaodong Cheng
- To whom correspondence should be addressed. Tel: +1 404 727 8491; Fax: +1 404 727 3746;
| |
Collapse
|
30
|
Xu QS, Roberts RJ, Guo HC. Two crystal forms of the restriction enzyme MspI-DNA complex show the same novel structure. Protein Sci 2005; 14:2590-600. [PMID: 16195548 PMCID: PMC2253285 DOI: 10.1110/ps.051565105] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The crystal structure of the Type IIP restriction endonuclease MspI bound to DNA containing its cognate recognition sequence has been determined in both monoclinic and orthorhombic space groups. Significantly, these two independent crystal forms present an identical structure of a novel monomer-DNA complex, suggesting a functional role for this novel enzyme-DNA complex. In both crystals, MspI interacts with the CCGG DNA recognition sequence as a monomer, using an asymmetric mode of recognition by two different structural motifs in a single polypeptide. In the crystallographic asymmetric unit, the two DNA molecules in the two MspI-DNA complexes appear to stack with each other forming an end-to-end pseudo-continuous 19-mer duplex. They are primarily B-form and no major bends or kinks are observed. For DNA recognition, most of the specific contacts between the enzyme and the DNA are preserved in the orthorhombic structure compared with the monoclinic structure. A cation is observed near the catalytic center in the monoclinic structure at a position homologous to the 74/45 metal site of EcoRV, and the orthorhombic structure also shows signs of this same cation. However, the coordination ligands of the metal are somewhat different from those of the 74/45 metal site of EcoRV. Combined with structural information from other solved structures of Type II restriction enzymes, the possible relationship between the structures of the enzymes and their cleavage behaviors is discussed.
Collapse
Affiliation(s)
- Qian Steven Xu
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | |
Collapse
|
31
|
Vanamee ÉS, Viadiu H, Kucera R, Dorner L, Picone S, Schildkraut I, Aggarwal AK. A view of consecutive binding events from structures of tetrameric endonuclease SfiI bound to DNA. EMBO J 2005; 24:4198-208. [PMID: 16308566 PMCID: PMC1356319 DOI: 10.1038/sj.emboj.7600880] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 10/28/2005] [Indexed: 11/09/2022] Open
Abstract
Many reactions in cells proceed via the sequestration of two DNA molecules in a synaptic complex. SfiI is a member of a growing family of restriction enzymes that can bind and cleave two DNA sites simultaneously. We present here the structures of tetrameric SfiI in complex with cognate DNA. The structures reveal two different binding states of SfiI: one with both DNA-binding sites fully occupied and the other with fully and partially occupied sites. These two states provide details on how SfiI recognizes and cleaves its target DNA sites, and gives insight into sequential binding events. The SfiI recognition sequence (GGCCNNNN[downward arrow]NGGCC) is a subset of the recognition sequence of BglI (GCCNNNN[downward arrow]NGGC), and both enzymes cleave their target DNAs to leave 3-base 3' overhangs. We show that even though SfiI is a tetramer and BglI is a dimer, and there is little sequence similarity between the two enzymes, their modes of DNA recognition are unusually similar.
Collapse
Affiliation(s)
- Éva Scheuring Vanamee
- Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York, NY, USA
| | - Hector Viadiu
- Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | | - Aneel K Aggarwal
- Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York, NY, USA
- Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York, NY 10029, USA. Tel.: +1 212 659 8647; Fax: +1 212 849 2456; E-mail:
| |
Collapse
|
32
|
Armalyte E, Bujnicki JM, Giedriene J, Gasiunas G, Kosiński J, Lubys A. Mva1269I: a monomeric type IIS restriction endonuclease from Micrococcus varians with two EcoRI- and FokI-like catalytic domains. J Biol Chem 2005; 280:41584-94. [PMID: 16223716 DOI: 10.1074/jbc.m506775200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Type II restriction endonuclease Mva1269I recognizes an asymmetric DNA sequence 5'-GAATGCN / -3'/5'-NG / CATTC-3' and cuts top and bottom DNA strands at positions, indicated by the "/" symbol. Most restriction endonucleases require dimerization to cleave both strands of DNA. We found that Mva1269I is a monomer both in solution and upon binding of cognate DNA. Protein fold-recognition analysis revealed that Mva1269I comprises two "PD-(D/E)XK" domains. The N-terminal domain is related to the 5'-GAATTC-3'-specific restriction endonuclease EcoRI, whereas the C-terminal one resembles the nonspecific nuclease domain of restriction endonuclease FokI. Inactivation of the C-terminal catalytic site transformed Mva1269I into a very active bottom strand-nicking enzyme, whereas mutants in the N-terminal domain nicked the top strand, but only at elevated enzyme concentrations. We found that the cleavage of the bottom strand is a prerequisite for the cleavage of the top strand. We suggest that Mva1269I evolved the ability to recognize and to cleave its asymmetrical target by a fusion of an EcoRI-like domain, which incises the bottom strand within the target, and a FokI-like domain that completes the cleavage within the nonspecific region outside the target sequence. Our results have implications for the molecular evolution of restriction endonucleases, as well as for perspectives of engineering new restriction and nicking enzymes with asymmetric target sites.
Collapse
Affiliation(s)
- Elena Armalyte
- Institute of Biotechnology, Graiciuno 8, Vilnius LT-02241, Lithuania
| | | | | | | | | | | |
Collapse
|
33
|
Lee JY, Chang J, Joseph N, Ghirlando R, Rao DN, Yang W. MutH Complexed with Hemi- and Unmethylated DNAs: Coupling Base Recognition and DNA Cleavage. Mol Cell 2005; 20:155-66. [PMID: 16209953 DOI: 10.1016/j.molcel.2005.08.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 06/29/2005] [Accepted: 08/17/2005] [Indexed: 11/24/2022]
Abstract
MutH initiates mismatch repair by nicking the transiently unmethylated daughter strand 5' to a GATC sequence. Here, we report crystal structures of MutH complexed with hemimethylated and unmethylated GATC substrates. Both structures contain two Ca2+ ions jointly coordinated by a conserved aspartate and the scissile phosphate, as observed in the restriction endonucleases BamHI and BglI. In the hemimethylated complexes, the active site is more compact and DNA cleavage is more efficient. The Lys residue in the conserved DEK motif coordinates the nucleophilic water in conjunction with the phosphate 3' to the scissile bond; the same Lys is also hydrogen bonded with a carbonyl oxygen in the DNA binding module. We propose that this Lys, which is conserved in many restriction endonucleases and is replaced by Glu or Gln in BamHI and BglII, is a sensor for DNA binding and the linchpin that couples base recognition and DNA cleavage.
Collapse
Affiliation(s)
- Jae Young Lee
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
34
|
Nikolajewa S, Beyer A, Friedel M, Hollunder J, Wilhelm T. Common patterns in type II restriction enzyme binding sites. Nucleic Acids Res 2005; 33:2726-33. [PMID: 15888729 PMCID: PMC1097771 DOI: 10.1093/nar/gki575] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Restriction enzymes are among the best studied examples of DNA binding proteins. In order to find general patterns in DNA recognition sites, which may reflect important properties of protein–DNA interaction, we analyse the binding sites of all known type II restriction endonucleases. We find a significantly enhanced GC content and discuss three explanations for this phenomenon. Moreover, we study patterns of nucleotide order in recognition sites. Our analysis reveals a striking accumulation of adjacent purines (R) or pyrimidines (Y). We discuss three possible reasons: RR/YY dinucleotides are characterized by (i) stronger H-bond donor and acceptor clusters, (ii) specific geometrical properties and (iii) a low stacking energy. These features make RR/YY steps particularly accessible for specific protein–DNA interactions. Finally, we show that the recognition sites of type II restriction enzymes are underrepresented in host genomes and in phage genomes.
Collapse
Affiliation(s)
| | | | | | | | - Thomas Wilhelm
- To whom correspondence should be addressed. Tel: +49 3641 65 6208; Fax: +49 3641 65 6191;
| |
Collapse
|
35
|
Heiter DF, Lunnen KD, Wilson GG. Site-Specific DNA-nicking Mutants of the Heterodimeric Restriction Endonuclease R.BbvCI. J Mol Biol 2005; 348:631-40. [PMID: 15826660 DOI: 10.1016/j.jmb.2005.02.034] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 02/12/2005] [Accepted: 02/18/2005] [Indexed: 10/25/2022]
Abstract
The restriction enzyme R.BbvCI cleaves duplex DNA within a seven base-pair asymmetric recognition sequence, thus: CCTCAGC/GCTGAGG-->CC--TCAGC/GC--TGAGG. We show that R.BbvCI comprises two different subunits, R(1) and R(2); that each subunit contains a catalytic site for DNA strand hydrolysis; and that these sites act independently and strand-specifically. In turn, each catalytic site was inactivated by mutagenesis to form dimeric enzymes in which only one site remained functional. The altered enzymes hydrolyzed just one strand of the recognition sequence, nicking the DNA rather than cleaving it. Enzymes in which the catalytic site in the R(1) subunit remained functional nicked the bottom strand of the sequence, producing CCTCAGC/GC--TGAGG, while those in which the catalytic site in the R(2) subunit remained functional nicked the top strand, producing CC--TCAGC/GCTGAGG. These DNA-nicking enzymes could prove useful for investigation of DNA repair, recombination, and replication, and for laboratory procedures that initiate from nicks, such as DNA degradation, synthesis, and amplification.
Collapse
Affiliation(s)
- Daniel F Heiter
- New England Biolabs Inc., 32 Tozer Road, Beverly, MA 01915, USA
| | | | | |
Collapse
|
36
|
Yang Z, Horton JR, Maunus R, Wilson GG, Roberts RJ, Cheng X. Structure of HinP1I endonuclease reveals a striking similarity to the monomeric restriction enzyme MspI. Nucleic Acids Res 2005; 33:1892-901. [PMID: 15805123 PMCID: PMC1074309 DOI: 10.1093/nar/gki337] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
HinP1I, a type II restriction endonuclease, recognizes and cleaves a palindromic tetranucleotide sequence (G↓CGC) in double-stranded DNA, producing 2 nt 5′ overhanging ends. Here, we report the structure of HinP1I crystallized as one protein monomer in the crystallographic asymmetric unit. HinP1I displays an elongated shape, with a conserved catalytic core domain containing an active-site motif of SDX18QXK and a putative DNA-binding domain. Without significant sequence homology, HinP1I displays striking structural similarity to MspI, an endonuclease that cleaves a similar palindromic DNA sequence (C↓CGG) and binds to that sequence crystallographically as a monomer. Almost all the structural elements of MspI can be matched in HinP1I, including both the DNA recognition and catalytic elements. Examining the protein–protein interactions in the crystal lattice, HinP1I could be dimerized through two helices located on the opposite side of the protein to the active site, generating a molecule with two active sites and two DNA-binding surfaces opposite one another on the outer surfaces of the dimer. A possible functional link between this unusual dimerization mode and the tetrameric restriction enzymes is discussed.
Collapse
Affiliation(s)
| | | | - Robert Maunus
- New England Biolabs32 Tozer Road, Beverly, MA 01915, USA
| | | | | | - Xiaodong Cheng
- To whom correspondence should be addressed. Tel: +1 404 727 8491; Fax: +1 404 727 3746;
| |
Collapse
|