1
|
Adams DW, Jaskólska M, Lemopoulos A, Stutzmann S, Righi L, Bader L, Blokesch M. West African-South American pandemic Vibrio cholerae encodes multiple distinct phage defence systems. Nat Microbiol 2025:10.1038/s41564-025-02004-9. [PMID: 40404828 DOI: 10.1038/s41564-025-02004-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 04/03/2025] [Indexed: 05/24/2025]
Abstract
Our understanding of the factors underlying the evolutionary success of different lineages of pandemic Vibrio cholerae remains incomplete. The West African-South American (WASA) lineage of V. cholerae, responsible for the 1991-2001 Latin American cholera epidemic, is defined by two unique genetic signatures. Here we show that these signatures encode multiple distinct anti-phage defence systems. Firstly, the WASA-1 prophage encodes an abortive-infection system, WonAB, that renders the lineage resistant to the major predatory vibriophage ICP1, which, alongside other phages, is thought to restrict cholera epidemics. Secondly, a unique set of genes on the Vibrio seventh pandemic island II encodes an unusual modification-dependent restriction system targeting phages with modified genomes, and a previously undescribed member of the Shedu defence family that defends against vibriophage X29. We propose that these anti-phage defence systems likely contributed to the success of a major epidemic lineage of the ongoing seventh cholera pandemic.
Collapse
Affiliation(s)
- David W Adams
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Milena Jaskólska
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alexandre Lemopoulos
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sandrine Stutzmann
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laurie Righi
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Loriane Bader
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
2
|
Zheng Z, Zheng L, Arter M, Liu K, Yamada S, Ontoso D, Kim S, Keeney S. Reconstitution of SPO11-dependent double-strand break formation. Nature 2025; 639:784-791. [PMID: 39972129 PMCID: PMC11922745 DOI: 10.1038/s41586-025-08601-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/06/2025] [Indexed: 02/21/2025]
Abstract
Meiotic recombination starts with SPO11 generation of DNA double-strand breaks (DSBs)1. SPO11 is critical for meiosis in most species, but it generates dangerous DSBs with mutagenic2 and gametocidal3 potential. Cells must therefore utilize the beneficial functions of SPO11 while minimizing its risks4-how they do so remains poorly understood. Here we report reconstitution of DNA cleavage in vitro with purified recombinant mouse SPO11 bound to TOP6BL. SPO11-TOP6BL complexes are monomeric (1:1) in solution and bind tightly to DNA, but dimeric (2:2) assemblies cleave DNA to form covalent 5' attachments that require SPO11 active-site residues, divalent metal ions and SPO11 dimerization. SPO11 can also reseal DNA that it has nicked. Structure modelling with AlphaFold 3 suggests that DNA is bent prior to cleavage5. In vitro cleavage displays a sequence bias that partially explains DSB site preferences in vivo. Cleavage is inefficient on complex DNA substrates, partly because SPO11 is readily trapped in DSB-incompetent (presumably monomeric) binding states that exchange slowly. However, cleavage is improved with substrates that favour dimer assembly or by artificially dimerizing SPO11. Our results inform a model in which intrinsically weak dimerization restrains SPO11 activity in vivo, making it exquisitely dependent on accessory proteins that focus and control DSB formation.
Collapse
Affiliation(s)
- Zhi Zheng
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lyuqin Zheng
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Meret Arter
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kaixian Liu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shintaro Yamada
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- The HAKUBI Center for Advanced Research and Department of Aging Science and Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - David Ontoso
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Soonjoung Kim
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Scott Keeney
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
3
|
Fendler NL, Ly J, Welp L, Lu D, Schulte F, Urlaub H, Vos SM. Identification and characterization of a human MORC2 DNA binding region that is required for gene silencing. Nucleic Acids Res 2025; 53:gkae1273. [PMID: 39739841 PMCID: PMC11879086 DOI: 10.1093/nar/gkae1273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 11/06/2024] [Accepted: 12/12/2024] [Indexed: 01/02/2025] Open
Abstract
The eukaryotic microrchidia (MORC) protein family are DNA gyrase, Hsp90, histidine kinase, MutL (GHKL)-type ATPases involved in gene expression regulation and chromatin compaction. The molecular mechanisms underlying these activities are incompletely understood. Here, we studied the full-length human MORC2 protein biochemically. We identified a DNA binding site in the C-terminus of the protein, and we observe that this region can be phosphorylated in cells. DNA binding by MORC2 reduces its ATPase activity and MORC2 can entrap multiple DNA substrates between its N-terminal GHKL and C-terminal coiled coil 3 dimerization domains. Finally, we observe that the MORC2 C-terminal DNA binding region is required for gene silencing in cells. Together, our data provide a model to understand how MORC2 engages with DNA substrates to mediate gene silencing.
Collapse
Affiliation(s)
- Nikole L Fendler
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139, USA
| | - Jimmy Ly
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139, USA
- Whitehead Institute for Biomedical Research, 455 Main St, Cambridge, MA 02139, USA
| | - Luisa Welp
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
- Department of Clinical Chemistry, Bioanalytics Group, University Medical Center Göttingen, Robert-Koch-Straße 40 37075 Göttingen, Germany
| | - Dan Lu
- Department of Systems Biology, Harvard Medical School, 210 Longwood Avenue, Boston, MA 02115, USA
| | - Fabian Schulte
- Whitehead Institute for Biomedical Research, Quantitative Proteomics Core, 455 Main St, Cambridge, MA 02139, USA
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
- Department of Clinical Chemistry, Bioanalytics Group, University Medical Center Göttingen, Robert-Koch-Straße 40 37075 Göttingen, Germany
| | - Seychelle M Vos
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Rd, Chevy Chase, MD 20815, USA
| |
Collapse
|
4
|
Yu Y, Wang J, Liu K, Zheng Z, Arter M, Claeys Bouuaert C, Pu S, Patel DJ, Keeney S. Cryo-EM structures of the Spo11 core complex bound to DNA. Nat Struct Mol Biol 2025; 32:113-124. [PMID: 39304764 PMCID: PMC11746154 DOI: 10.1038/s41594-024-01382-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 08/01/2024] [Indexed: 09/22/2024]
Abstract
DNA double-strand breaks that initiate meiotic recombination are formed by the topoisomerase-relative enzyme Spo11, supported by conserved auxiliary factors. Because high-resolution structural data have not been available, many questions remain about the architecture of Spo11 and its partners and how they engage with DNA. We report cryo-electron microscopy structures at up to 3.3-Å resolution of DNA-bound core complexes of Saccharomyces cerevisiae Spo11 with Rec102, Rec104 and Ski8. In these structures, monomeric core complexes make extensive contacts with the DNA backbone and with the recessed 3'-OH and first 5' overhanging nucleotide, establishing the molecular determinants of DNA end-binding specificity and providing insight into DNA cleavage preferences in vivo. The structures of individual subunits and their interfaces, supported by functional data in yeast, provide insight into the role of metal ions in DNA binding and uncover unexpected structural variation in homologs of the Top6BL component of the core complex.
Collapse
Affiliation(s)
- You Yu
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Centre for Infection Immunity and Cancer (IIC), Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Juncheng Wang
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kaixian Liu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zhi Zheng
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Meret Arter
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Corentin Claeys Bouuaert
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Stephen Pu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- WaypointBio, New York, NY, USA
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Louis V. Gerstner Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Louis V. Gerstner Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
5
|
Michalczyk E, Pakosz-Stępień Z, Liston JD, Gittins O, Pabis M, Heddle JG, Ghilarov D. Structural basis of chiral wrap and T-segment capture by Escherichia coli DNA gyrase. Proc Natl Acad Sci U S A 2024; 121:e2407398121. [PMID: 39589884 PMCID: PMC11626157 DOI: 10.1073/pnas.2407398121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024] Open
Abstract
Type II topoisomerase DNA gyrase transduces the energy of ATP hydrolysis into the negative supercoiling of DNA. The postulated catalytic mechanism involves stabilization of a chiral DNA loop followed by the passage of the T-segment through the temporarily cleaved G-segment resulting in sign inversion. The molecular basis for this is poorly understood as the chiral loop has never been directly observed. We have obtained high-resolution cryoEM structures of Escherichia coli gyrase with chirally wrapped 217 bp DNA with and without the fluoroquinolone moxifloxacin (MFX). Each structure constrains a positively supercoiled figure-of-eight DNA loop stabilized by a GyrA β-pinwheel domain which has the structure of a flat disc. By comparing the catalytic site of the native drug-free and MFX-bound gyrase structures both of which contain a single metal ion, we demonstrate that the enzyme is observed in a native precatalytic state. Our data imply that T-segment trapping is not dependent on the dimerization of the ATPase domains which appears to only be possible after strand passage has taken place.
Collapse
Affiliation(s)
- Elizabeth Michalczyk
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków30-348, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków30-387, Poland
| | - Zuzanna Pakosz-Stępień
- Centre for Programmable Biological Matter, School of Biological and Biomedical Sciences, Durham University, DurhamDH1 3LE, United Kingdom
| | - Jonathon D. Liston
- Centre for Programmable Biological Matter, School of Biological and Biomedical Sciences, Durham University, DurhamDH1 3LE, United Kingdom
| | - Olivia Gittins
- Centre for Programmable Biological Matter, School of Biological and Biomedical Sciences, Durham University, DurhamDH1 3LE, United Kingdom
| | - Marta Pabis
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków30-387, Poland
| | - Jonathan G. Heddle
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków30-387, Poland
- Centre for Programmable Biological Matter, School of Biological and Biomedical Sciences, Durham University, DurhamDH1 3LE, United Kingdom
| | - Dmitry Ghilarov
- Department of Molecular Microbiology, John Innes Centre, NorwichNR4 7UH, United Kingdom
| |
Collapse
|
6
|
Zheng Z, Zheng L, Arter M, Liu K, Yamada S, Ontoso D, Kim S, Keeney S. Reconstitution of SPO11-dependent double-strand break formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.624382. [PMID: 39605552 PMCID: PMC11601517 DOI: 10.1101/2024.11.20.624382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Homologous meiotic recombination starts with DNA double-strand breaks (DSBs) generated by SPO11 protein1. SPO11 is critical for meiosis in most species but the DSBs it makes are also dangerous because of their mutagenic2 and gametocidal3 potential, so cells must foster SPO11's beneficial functions while minimizing its risks4. SPO11 mechanism and regulation remain poorly understood. Here we report reconstitution of DNA cleavage in vitro with purified recombinant mouse SPO11 bound to its essential partner TOP6BL. Similar to their yeast orthologs5,6, SPO11-TOP6BL complexes are monomeric (1:1) in solution and bind tightly to DNA. Unlike in yeast, however, dimeric (2:2) assemblies of mouse SPO11-TOP6BL cleave DNA to form covalent 5´ attachments requiring SPO11 active site residues, divalent metal ions, and SPO11 dimerization. Surprisingly, SPO11 can also manifest topoisomerase activity by relaxing supercoils and resealing DNA that it has nicked. Structure modeling with AlphaFold37 illuminates the protein-DNA interface and suggests that DNA is bent prior to cleavage. Deep sequencing of in vitro cleavage products reveals a rotationally symmetric base composition bias that partially explains DSB site preferences in vivo. Cleavage is inefficient on complex DNA substrates, partly because SPO11 is readily trapped in DSB-incompetent (presumably monomeric) binding states that exchange slowly. However, cleavage is improved by using substrates that favor DSB-competent dimer assembly, or by fusing SPO11 to an artificial dimerization module. Our results inform a model in which intrinsically feeble dimerization restrains SPO11 activity in vivo, making it exquisitely dependent on accessory proteins that focus and control DSB formation so that it happens only at the right time and the right places.
Collapse
Affiliation(s)
- Zhi Zheng
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, New York, NY 10065
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Lyuqin Zheng
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Meret Arter
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Kaixian Liu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Shintaro Yamada
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- The HAKUBI Center for Advanced Research, and Department of Aging Science and Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - David Ontoso
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Soonjoung Kim
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Scott Keeney
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, New York, NY 10065
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
7
|
Fendler NL, Ly J, Welp L, Urlaub H, Vos SM. Identification and characterization of a human MORC2 DNA binding region that is required for gene silencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597643. [PMID: 38895295 PMCID: PMC11185635 DOI: 10.1101/2024.06.05.597643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The eukaryotic microrchidia (MORC) protein family are DNA gyrase, Hsp90, histidine kinase, MutL (GHKL)-type ATPases involved in gene expression regulation and chromatin compaction. The molecular mechanisms underlying these activities are incompletely understood. Here we studied the full-length human MORC2 protein biochemically. We identified a DNA binding site in the C-terminus of the protein, and we observe that this region is heavily phosphorylated in cells. Phosphorylation of MORC2 reduces its affinity for DNA and appears to exclude the protein from the nucleus. We observe that DNA binding by MORC2 reduces its ATPase activity and that MORC2 can topologically entrap multiple DNA substrates between its N-terminal GHKL and C-terminal coiled coil 3 dimerization domains. Finally, we observe that the MORC2 C-terminal DNA binding region is required for gene silencing in cells. Together, our data provide a model to understand how MORC2 engages with DNA substrates to mediate gene silencing.
Collapse
Affiliation(s)
- Nikole L. Fendler
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139
| | - Jimmy Ly
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139
| | - Luisa Welp
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Bioanalytics Group, University Medical Center Göttingen, Department of Clinical Chemistry, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Bioanalytics Group, University Medical Center Göttingen, Department of Clinical Chemistry, Göttingen, Germany
| | - Seychelle M. Vos
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139
- Howard Hughes Medical Institute
| |
Collapse
|
8
|
Chen HW, Yeh HY, Chang CC, Kuo WC, Lin SW, Vrielynck N, Grelon M, Chan NL, Chi P. Biochemical characterization of the meiosis-essential yet evolutionarily divergent topoisomerase VIB-like protein MTOPVIB from Arabidopsis thaliana. Nucleic Acids Res 2024; 52:4541-4555. [PMID: 38499490 PMCID: PMC11077084 DOI: 10.1093/nar/gkae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/20/2024] Open
Abstract
Formation of programmed DNA double-strand breaks is essential for initiating meiotic recombination. Genetic studies on Arabidopsis thaliana and Mus musculus have revealed that assembly of a type IIB topoisomerase VI (Topo VI)-like complex, composed of SPO11 and MTOPVIB, is a prerequisite for generating DNA breaks. However, it remains enigmatic if MTOPVIB resembles its Topo VI subunit B (VIB) ortholog in possessing robust ATPase activity, ability to undergo ATP-dependent dimerization, and activation of SPO11-mediated DNA cleavage. Here, we successfully prepared highly pure A. thaliana MTOPVIB and MTOPVIB-SPO11 complex. Contrary to expectations, our findings highlight that MTOPVIB differs from orthologous Topo VIB by lacking ATP-binding activity and independently forming dimers without ATP. Most significantly, our study reveals that while MTOPVIB lacks the capability to stimulate SPO11-mediated DNA cleavage, it functions as a bona fide DNA-binding protein and plays a substantial role in facilitating the dsDNA binding capacity of the MOTOVIB-SPO11 complex. Thus, we illustrate mechanistic divergence between the MTOPVIB-SPO11 complex and classical type IIB topoisomerases.
Collapse
Affiliation(s)
- Hsin-Wen Chen
- Institute of Biochemical Sciences, National Taiwan University, 10617 Taipei, Taiwan
| | - Hsin-Yi Yeh
- Institute of Biochemical Sciences, National Taiwan University, 10617 Taipei, Taiwan
| | - Chih-Chiang Chang
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, 100233 Taipei, Taiwan
| | - Wei-Chen Kuo
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, 100233 Taipei, Taiwan
| | - Sheng-Wei Lin
- Institute of Biological Chemistry, Academia Sinica, 11529 Taipei, Taiwan
| | - Nathalie Vrielynck
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000,Versailles, France
| | - Mathilde Grelon
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000,Versailles, France
| | - Nei-Li Chan
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, 100233 Taipei, Taiwan
| | - Peter Chi
- Institute of Biochemical Sciences, National Taiwan University, 10617 Taipei, Taiwan
- Institute of Biological Chemistry, Academia Sinica, 11529 Taipei, Taiwan
| |
Collapse
|
9
|
Shein M, Hitzenberger M, Cheng TC, Rout SR, Leitl KD, Sato Y, Zacharias M, Sakata E, Schütz AK. Characterizing ATP processing by the AAA+ protein p97 at the atomic level. Nat Chem 2024; 16:363-372. [PMID: 38326645 PMCID: PMC10914628 DOI: 10.1038/s41557-024-01440-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024]
Abstract
The human enzyme p97 regulates various cellular pathways by unfolding hundreds of protein substrates in an ATP-dependent manner, making it an essential component of protein homeostasis and an impactful pharmacological target. The hexameric complex undergoes substantial conformational changes throughout its catalytic cycle. Here we elucidate the molecular motions that occur at the active site in the temporal window immediately before and after ATP hydrolysis by merging cryo-EM, NMR spectroscopy and molecular dynamics simulations. p97 populates a metastable reaction intermediate, the ADP·Pi state, which is poised between hydrolysis and product release. Detailed snapshots reveal that the active site is finely tuned to trap and eventually discharge the cleaved phosphate. Signalling pathways originating at the active site coordinate the action of the hexamer subunits and couple hydrolysis with allosteric conformational changes. Our multidisciplinary approach enables a glimpse into the sophisticated spatial and temporal orchestration of ATP handling by a prototype AAA+ protein.
Collapse
Affiliation(s)
- Mikhail Shein
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, München, Germany
- Bavarian NMR Center, Technical University of Munich, Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Manuel Hitzenberger
- Physics Department and Center of Protein Assemblies, Technical University of Munich, Garching, Germany.
| | - Tat Cheung Cheng
- Institute for Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC), University of Göttingen, Göttingen, Germany
| | - Smruti R Rout
- Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC), University of Göttingen, Göttingen, Germany
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
| | - Kira D Leitl
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, München, Germany
- Bavarian NMR Center, Technical University of Munich, Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Yusuke Sato
- Center for Research on Green Sustainable Chemistry, Graduate School of Engineering, Tottori University, Tottori, Japan
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Martin Zacharias
- Physics Department and Center of Protein Assemblies, Technical University of Munich, Garching, Germany.
| | - Eri Sakata
- Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC), University of Göttingen, Göttingen, Germany.
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany.
| | - Anne K Schütz
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, München, Germany.
- Bavarian NMR Center, Technical University of Munich, Garching, Germany.
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
10
|
Yu Y, Wang J, Liu K, Zheng Z, Arter M, Bouuaert CC, Pu S, Patel DJ, Keeney S. Cryo-EM structure of the Spo11 core complex bound to DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.564985. [PMID: 37961437 PMCID: PMC10634984 DOI: 10.1101/2023.10.31.564985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The DNA double-strand breaks that initiate meiotic recombination are formed by topoisomerase relative Spo11, supported by conserved auxiliary factors. Because high-resolution structural data are lacking, many questions remain about the architecture of Spo11 and its partners and how they engage with DNA. We report cryo-EM structures at up to 3.3 Å resolution of DNA-bound core complexes of Saccharomyces cerevisiae Spo11 with Rec102, Rec104, and Ski8. In these structures, monomeric core complexes make extensive contacts with the DNA backbone and with the recessed 3'-OH and first 5' overhanging nucleotide, definitively establishing the molecular determinants of DNA end-binding specificity and providing insight into DNA cleavage preferences in vivo. The structures of individual subunits and their interfaces, supported by functional data in yeast, provide insight into the role of metal ions in DNA binding and uncover unexpected structural variation in homologs of the Top6BL component of the core complex.
Collapse
Affiliation(s)
- You Yu
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Juncheng Wang
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Kaixian Liu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Zhi Zheng
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Louis V. Gerstner Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Meret Arter
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Corentin Claeys Bouuaert
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Stephen Pu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Dinshaw J. Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Louis V. Gerstner Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Louis V. Gerstner Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
11
|
Paredes A, Iheacho C, Smith AT. Metal Messengers: Communication in the Bacterial World through Transition-Metal-Sensing Two-Component Systems. Biochemistry 2023; 62:2339-2357. [PMID: 37539997 PMCID: PMC10530140 DOI: 10.1021/acs.biochem.3c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Bacteria survive in highly dynamic and complex environments due, in part, to the presence of systems that allow the rapid control of gene expression in the presence of changing environmental stimuli. The crosstalk between intra- and extracellular bacterial environments is often facilitated by two-component signal transduction systems that are typically composed of a transmembrane histidine kinase and a cytosolic response regulator. Sensor histidine kinases and response regulators work in tandem with their modular domains containing highly conserved structural features to control a diverse array of genes that respond to changing environments. Bacterial two-component systems are widespread and play crucial roles in many important processes, such as motility, virulence, chemotaxis, and even transition metal homeostasis. Transition metals are essential for normal prokaryotic physiological processes, and the presence of these metal ions may also influence pathogenic virulence if their levels are appropriately controlled. To do so, bacteria use transition-metal-sensing two-component systems that bind and respond to rapid fluctuations in extracytosolic concentrations of transition metals. This perspective summarizes the structural and metal-binding features of bacterial transition-metal-sensing two-component systems and places a special emphasis on understanding how these systems are used by pathogens to establish infection in host cells and how these systems may be targeted for future therapeutic developments.
Collapse
Affiliation(s)
- Alexander Paredes
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Chioma Iheacho
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Aaron T Smith
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
12
|
Brinkmeier J, Coelho S, de Massy B, Bourbon HM. Evolution and Diversity of the TopoVI and TopoVI-like Subunits With Extensive Divergence of the TOPOVIBL subunit. Mol Biol Evol 2022; 39:msac227. [PMID: 36256608 PMCID: PMC9665070 DOI: 10.1093/molbev/msac227] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Type II DNA topoisomerases regulate topology by double-stranded DNA cleavage and ligation. The TopoVI family of DNA topoisomerase, first identified and biochemically characterized in Archaea, represents, with TopoVIII and mini-A, the type IIB family. TopoVI has several intriguing features in terms of function and evolution. TopoVI has been identified in some eukaryotes, and a global view is lacking to understand its evolutionary pattern. In addition, in eukaryotes, the two TopoVI subunits (TopoVIA and TopoVIB) have been duplicated and have evolved to give rise to Spo11 and TopoVIBL, forming TopoVI-like (TopoVIL), a complex essential for generating DNA breaks that initiate homologous recombination during meiosis. TopoVIL is essential for sexual reproduction. How the TopoVI subunits have evolved to ensure this meiotic function is unclear. Here, we investigated the phylogenetic conservation of TopoVI and TopoVIL. We demonstrate that BIN4 and RHL1, potentially interacting with TopoVIB, have co-evolved with TopoVI. Based on model structures, this observation supports the hypothesis for a role of TopoVI in decatenation of replicated chromatids and predicts that in eukaryotes the TopoVI catalytic complex includes BIN4 and RHL1. For TopoVIL, the phylogenetic analysis of Spo11, which is highly conserved among Eukarya, highlighted a eukaryal-specific N-terminal domain that may be important for its regulation. Conversely, TopoVIBL was poorly conserved, giving rise to ATP hydrolysis-mutated or -truncated protein variants, or was undetected in some species. This remarkable plasticity of TopoVIBL provides important information for the activity and function of TopoVIL during meiosis.
Collapse
Affiliation(s)
- Julia Brinkmeier
- Institut de Génétique Humaine (IGH), Centre National de la Recherche Scientifique, Univ Montpellier, Montpellier 34396, France
| | - Susana Coelho
- Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Bernard de Massy
- Institut de Génétique Humaine (IGH), Centre National de la Recherche Scientifique, Univ Montpellier, Montpellier 34396, France
| | - Henri-Marc Bourbon
- Centre de Biologie Intégrative, CNRS, Université de Toulouse, Toulouse 31400, France
| |
Collapse
|
13
|
D'Arcy BM, Arrington J, Weisman J, McClellan SB, Vandana , Yang Z, Deivanayagam C, Blount J, Prakash A. PMS2 variant results in loss of ATPase activity without compromising mismatch repair. Mol Genet Genomic Med 2022; 10:e1908. [PMID: 35189042 PMCID: PMC9034662 DOI: 10.1002/mgg3.1908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Hereditary cancer syndromes account for approximately 5%-10% of all diagnosed cancer cases. Lynch syndrome (LS) is an autosomal dominant hereditary cancer condition that predisposes individuals to an elevated lifetime risk for developing colorectal, endometrial, and other cancers. LS results from a pathogenic mutation in one of four mismatch repair (MMR) genes (MSH2, MSH6, MLH1, and PMS2). The diagnosis of LS is often challenged by the identification of missense mutations, termed variants of uncertain significance, whose functional effect on the protein is not known. Of the eight PMS2 variants initially selected for this study, we identified a variant within the N-terminal domain where asparagine 335 is mutated to serine, p.Asn335Ser, which lacked ATPase activity, yet appears to be proficient in MMR. To expand our understanding of this functional dichotomy, we performed biophysical and structural studies, and noted that p.Asn335Ser binds to ATP but is unable to hydrolyze it to ADP. To examine the impact of p.Asn335Ser on MMR, we developed a novel in-cell fluorescent-based microsatellite instability reporter that revealed p.Asn335Ser maintained genomic stability. We conclude that in the absence of gross structural changes, PMS2 ATP hydrolysis is not necessary for proficient MMR and that the ATPase deficient p.Asn335Ser variant is likely benign.
Collapse
Affiliation(s)
- Brandon M. D'Arcy
- Mitchell Cancer InstituteUniversity of South Alabama HealthMobileAlabamaUSA
- Department of Biochemistry and Molecular BiologyUniversity of South AlabamaMobileAlabamaUSA
| | - Jennifer Arrington
- Mitchell Cancer InstituteUniversity of South Alabama HealthMobileAlabamaUSA
- Department of Biochemistry and Molecular BiologyUniversity of South AlabamaMobileAlabamaUSA
| | - Justin Weisman
- Mitchell Cancer InstituteUniversity of South Alabama HealthMobileAlabamaUSA
- Department of Biochemistry and Molecular BiologyUniversity of South AlabamaMobileAlabamaUSA
| | - Steven B. McClellan
- Mitchell Cancer InstituteUniversity of South Alabama HealthMobileAlabamaUSA
- Flow Cytometry Shared Resource LabMitchell Cancer InstituteMobileAlabamaUSA
| | - Vandana
- Mitchell Cancer InstituteUniversity of South Alabama HealthMobileAlabamaUSA
- Department of Biochemistry and Molecular BiologyUniversity of South AlabamaMobileAlabamaUSA
| | - Zhengrong Yang
- Department of Biochemistry and Molecular GeneticsSchool of Medicine University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Champion Deivanayagam
- Department of Biochemistry and Molecular GeneticsSchool of Medicine University of Alabama at BirminghamBirminghamAlabamaUSA
| | | | - Aishwarya Prakash
- Mitchell Cancer InstituteUniversity of South Alabama HealthMobileAlabamaUSA
- Department of Biochemistry and Molecular BiologyUniversity of South AlabamaMobileAlabamaUSA
| |
Collapse
|
14
|
SMCHD1's ubiquitin-like domain is required for N-terminal dimerization and chromatin localization. Biochem J 2021; 478:2555-2569. [PMID: 34109974 PMCID: PMC8286825 DOI: 10.1042/bcj20210278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/28/2021] [Accepted: 06/10/2021] [Indexed: 11/17/2022]
Abstract
Structural maintenance of chromosomes flexible hinge domain-containing 1 (SMCHD1) is an epigenetic regulator that mediates gene expression silencing at targeted sites across the genome. Our current understanding of SMCHD1's molecular mechanism, and how substitutions within SMCHD1 lead to the diseases, facioscapulohumeral muscular dystrophy (FSHD) and Bosma arhinia microphthalmia syndrome (BAMS), are only emerging. Recent structural studies of its two component domains - the N-terminal ATPase and C-terminal SMC hinge - suggest that dimerization of each domain plays a central role in SMCHD1 function. Here, using biophysical techniques, we demonstrate that the SMCHD1 ATPase undergoes dimerization in a process that is dependent on both the N-terminal UBL (Ubiquitin-like) domain and ATP binding. We show that neither the dimerization event, nor the presence of a C-terminal extension past the transducer domain, affect SMCHD1's in vitro catalytic activity as the rate of ATP turnover remains comparable to the monomeric protein. We further examined the functional importance of the N-terminal UBL domain in cells, revealing that its targeted deletion disrupts the localization of full-length SMCHD1 to chromatin. These findings implicate UBL-mediated SMCHD1 dimerization as a crucial step for chromatin interaction, and thereby for promoting SMCHD1-mediated gene silencing.
Collapse
|
15
|
Relating SMCHD1 structure to its function in epigenetic silencing. Biochem Soc Trans 2021; 48:1751-1763. [PMID: 32779700 PMCID: PMC7458401 DOI: 10.1042/bst20200242] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
Abstract
The structural maintenance of chromosomes hinge domain containing protein 1 (SMCHD1) is a large multidomain protein involved in epigenetic gene silencing. Variations in the SMCHD1 gene are associated with two debilitating human disorders, facioscapulohumeral muscular dystrophy (FSHD) and Bosma arhinia microphthalmia syndrome (BAMS). Failure of SMCHD1 to silence the D4Z4 macro-repeat array causes FSHD, yet the consequences on gene silencing of SMCHD1 variations associated with BAMS are currently unknown. Despite the interest due to these roles, our understanding of the SMCHD1 protein is in its infancy. Most knowledge of SMCHD1 function is based on its similarity to the structural maintenance of chromosomes (SMC) proteins, such as cohesin and condensin. SMC proteins and SMCHD1 share similar domain organisation and affect chromatin conformation. However, there are important differences between the domain architectures of SMC proteins and SMCHD1, which distinguish SMCHD1 as a non-canonical member of the family. In the last year, the crystal structures of the two key domains crucial to SMCHD1 function, the ATPase and hinge domains, have emerged. These structures reveal new insights into how SMCHD1 may bind and regulate chromatin structure, and address how amino acid variations in SMCHD1 may contribute to BAMS and FSHD. Here, we contrast SMCHD1 with canonical SMC proteins, and relate the ATPase and hinge domain structures to their roles in SMCHD1-mediated epigenetic silencing and disease.
Collapse
|
16
|
McKie SJ, Neuman KC, Maxwell A. DNA topoisomerases: Advances in understanding of cellular roles and multi-protein complexes via structure-function analysis. Bioessays 2021; 43:e2000286. [PMID: 33480441 PMCID: PMC7614492 DOI: 10.1002/bies.202000286] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/06/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022]
Abstract
DNA topoisomerases, capable of manipulating DNA topology, are ubiquitous and indispensable for cellular survival due to the numerous roles they play during DNA metabolism. As we review here, current structural approaches have revealed unprecedented insights into the complex DNA-topoisomerase interaction and strand passage mechanism, helping to advance our understanding of their activities in vivo. This has been complemented by single-molecule techniques, which have facilitated the detailed dissection of the various topoisomerase reactions. Recent work has also revealed the importance of topoisomerase interactions with accessory proteins and other DNA-associated proteins, supporting the idea that they often function as part of multi-enzyme assemblies in vivo. In addition, novel topoisomerases have been identified and explored, such as topo VIII and Mini-A. These new findings are advancing our understanding of DNA-related processes and the vital functions topos fulfil, demonstrating their indispensability in virtually every aspect of DNA metabolism.
Collapse
Affiliation(s)
- Shannon J. McKie
- Department Biological Chemistry, John Innes Centre, Norwich, UK
- Laboratory of Single Molecule Biophysics, NHLBI, Bethesda, Maryland, USA
| | - Keir C. Neuman
- Laboratory of Single Molecule Biophysics, NHLBI, Bethesda, Maryland, USA
| | - Anthony Maxwell
- Department Biological Chemistry, John Innes Centre, Norwich, UK
| |
Collapse
|
17
|
Mazurek Ł, Ghilarov D, Michalczyk E, Pakosz Z, Metelev M, Czyszczoń W, Wawro K, Behroz I, Dubiley S, Süssmuth RD, Heddle JG. Pentapeptide repeat protein QnrB1 requires ATP hydrolysis to rejuvenate poisoned gyrase complexes. Nucleic Acids Res 2021; 49:1581-1596. [PMID: 33434265 PMCID: PMC7897471 DOI: 10.1093/nar/gkaa1266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/16/2020] [Accepted: 01/06/2021] [Indexed: 11/14/2022] Open
Abstract
DNA gyrase, a type II topoisomerase found predominantly in bacteria, is the target for a variety of 'poisons', namely natural product toxins (e.g. albicidin, microcin B17) and clinically important synthetic molecules (e.g. fluoroquinolones). Resistance to both groups can be mediated by pentapeptide repeat proteins (PRPs). Despite long-term studies, the mechanism of action of these protective PRPs is not known. We show that a PRP, QnrB1 provides specific protection against fluoroquinolones, which strictly requires ATP hydrolysis by gyrase. QnrB1 binds to the GyrB protein and stimulates ATPase activity of the isolated N-terminal ATPase domain of GyrB (GyrB43). We probed the QnrB1 binding site using site-specific incorporation of a photoreactive amino acid and mapped the crosslinks to the GyrB43 protein. We propose a model in which QnrB1 binding allosterically promotes dissociation of the fluoroquinolone molecule from the cleavage complex.
Collapse
Affiliation(s)
- Łukasz Mazurek
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.,Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Dmitry Ghilarov
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Zuzanna Pakosz
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.,Postgraduate School of Molecular Medicine, Warsaw, Poland
| | | | - Wojciech Czyszczoń
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Karolina Wawro
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Iraj Behroz
- Institute of Biological Chemistry, Technische Universität Berlin, Berlin, Germany
| | | | - Roderich D Süssmuth
- Institute of Biological Chemistry, Technische Universität Berlin, Berlin, Germany
| | - Jonathan G Heddle
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
18
|
Yadav VK, Claeys Bouuaert C. Mechanism and Control of Meiotic DNA Double-Strand Break Formation in S. cerevisiae. Front Cell Dev Biol 2021; 9:642737. [PMID: 33748134 PMCID: PMC7968521 DOI: 10.3389/fcell.2021.642737] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/01/2021] [Indexed: 12/17/2022] Open
Abstract
Developmentally programmed formation of DNA double-strand breaks (DSBs) by Spo11 initiates a recombination mechanism that promotes synapsis and the subsequent segregation of homologous chromosomes during meiosis. Although DSBs are induced to high levels in meiosis, their formation and repair are tightly regulated to minimize potentially dangerous consequences for genomic integrity. In S. cerevisiae, nine proteins participate with Spo11 in DSB formation, but their molecular functions have been challenging to define. Here, we describe our current view of the mechanism of meiotic DSB formation based on recent advances in the characterization of the structure and function of DSB proteins and discuss regulatory pathways in the light of recent models.
Collapse
Affiliation(s)
| | - Corentin Claeys Bouuaert
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-La-Neuve, Belgium
| |
Collapse
|
19
|
Gupta D, Tiwari P, Haque MA, Sachdeva E, Hassan MI, Ethayathulla AS, Kaur P. Structural insights into the transient closed conformation and pH dependent ATPase activity of S.Typhi GyraseB N- terminal domain. Arch Biochem Biophys 2021; 701:108786. [PMID: 33548211 DOI: 10.1016/j.abb.2021.108786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/06/2021] [Accepted: 01/29/2021] [Indexed: 11/28/2022]
Abstract
DNA Gyrase is a type II topoisomerase that utilizes the energy of ATP hydrolysis for introducing negative supercoils in DNA. The protein comprises two subunits GyrA and GyrB that form a GyrA2GyrB2 heterotetramer. GyrB subunit contains the N-terminal domain (GBNTD) for ATPase activity and the C-terminal domain (GBCTD) for interaction with GyrA and DNA. Earlier structural studies have revealed three different conformational states for GBNTD during ATP hydrolysis defined as open, semi-open, and closed. Here we report, the three-dimensional structure of a new transient closed conformation of GBNTD from Salmonella Typhi (StGBNTD) at 1.94 Å resolution. Based on the structural analysis of this transient closed conformation, we propose the role of protein in the mechanism of ATP hydrolysis. We further explored the effect of pH on ATPase activity and structural stability of the GBNTD using CD and fluorescence spectroscopy at varying pH environment. Kinetic parameters obtained from the ATPase assay were correlated with its secondary and tertiary structure at their respective pH environment. The protein possessed maximum ATPase activity and structural stability at optimum pH 8. At acidic pH, a remarkable decrease in both enzymatic activity and structural stability was observed whereas at alkaline pH there was no significant change. The structural analysis of StGBNTD reveals the role of polar interactions in stabilizing the overall dimeric conformation of the protein.
Collapse
Affiliation(s)
- Deepali Gupta
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Pragya Tiwari
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Md Anzarul Haque
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Ekta Sachdeva
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 10025, India
| | - Abdul S Ethayathulla
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
20
|
Kim H, Yen L, Wongpalee SP, Kirshner JA, Mehta N, Xue Y, Johnston JB, Burlingame AL, Kim JK, Loparo JJ, Jacobsen SE. The Gene-Silencing Protein MORC-1 Topologically Entraps DNA and Forms Multimeric Assemblies to Cause DNA Compaction. Mol Cell 2020; 75:700-710.e6. [PMID: 31442422 DOI: 10.1016/j.molcel.2019.07.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 05/28/2019] [Accepted: 07/23/2019] [Indexed: 12/21/2022]
Abstract
Microrchidia (MORC) ATPases are critical for gene silencing and chromatin compaction in multiple eukaryotic systems, but the mechanisms by which MORC proteins act are poorly understood. Here, we apply a series of biochemical, single-molecule, and cell-based imaging approaches to better understand the function of the Caenorhabditis elegans MORC-1 protein. We find that MORC-1 binds to DNA in a length-dependent but sequence non-specific manner and compacts DNA by forming DNA loops. MORC-1 molecules diffuse along DNA but become static as they grow into foci that are topologically entrapped on DNA. Consistent with the observed MORC-1 multimeric assemblies, MORC-1 forms nuclear puncta in cells and can also form phase-separated droplets in vitro. We also demonstrate that MORC-1 compacts nucleosome templates. These results suggest that MORCs affect genome structure and gene silencing by forming multimeric assemblages to topologically entrap and progressively loop and compact chromatin.
Collapse
Affiliation(s)
- HyeongJun Kim
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Physics and Astronomy, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Linda Yen
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Somsakul P Wongpalee
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jessica A Kirshner
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Nicita Mehta
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Yan Xue
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jonathan B Johnston
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - John K Kim
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Joseph J Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | - Steve E Jacobsen
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
21
|
Takahashi TS, Da Cunha V, Krupovic M, Mayer C, Forterre P, Gadelle D. Expanding the type IIB DNA topoisomerase family: identification of new topoisomerase and topoisomerase-like proteins in mobile genetic elements. NAR Genom Bioinform 2019; 2:lqz021. [PMID: 33575570 PMCID: PMC7671362 DOI: 10.1093/nargab/lqz021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/12/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
The control of DNA topology by DNA topoisomerases is essential for virtually all DNA transactions in the cell. These enzymes, present in every organism, exist as several non-homologous families. We previously identified a small group of atypical type IIB topoisomerases, called Topo VIII, mainly encoded by plasmids. Here, taking advantage of the rapid expansion of sequence databases, we identified new putative Topo VIII homologs. Our analyses confirm the exclusivity of the corresponding genes to mobile genetic elements (MGE) and extend their distribution to nine different bacterial phyla and one archaeal superphylum. Notably, we discovered another subfamily of topoisomerases, dubbed ‘Mini-A’, including distant homologs of type IIB topoisomerases and encoded by extrachromosomal and integrated bacterial and archaeal viruses. Interestingly, a short, functionally uncharacterized motif at the C-terminal extremity of type IIB topoisomerases appears sufficient to discriminate between Mini-A, Topo VI and Topo VIII subfamilies. This motif could be a key element for understanding the differences between the three subfamilies. Collectively, this work leads to an updated model for the origin and evolution of the type IIB topoisomerase family and raises questions regarding the role of topoisomerases during replication of MGE in bacteria and archaea.
Collapse
Affiliation(s)
- Tomio S Takahashi
- Institut de Biologie Intégrative de la Cellule, CNRS, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France.,Unité de Microbiologie Structurale, Institut Pasteur, CNRS, F-75015 Paris, France
| | - Violette Da Cunha
- Institut de Biologie Intégrative de la Cellule, CNRS, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - Mart Krupovic
- Institut Pasteur, Archaeal Virology Unit, Department of Microbiology, 75015 Paris, France
| | - Claudine Mayer
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS, F-75015 Paris, France.,Université de Paris, Paris Diderot, F-75013 Paris, France
| | - Patrick Forterre
- Institut de Biologie Intégrative de la Cellule, CNRS, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France.,Institut Pasteur, F-75015 Paris, France
| | - Danièle Gadelle
- Institut de Biologie Intégrative de la Cellule, CNRS, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| |
Collapse
|
22
|
DNA gyrase could be a crucial regulatory factor for growth and survival of Mycobacterium leprae. Sci Rep 2019; 9:10815. [PMID: 31346236 PMCID: PMC6658535 DOI: 10.1038/s41598-019-47364-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 07/12/2019] [Indexed: 12/01/2022] Open
Abstract
Leprosy, an important infectious disease in humans caused by Mycobacterium leprae (Mle), remains endemic in many countries. Notably, the pathogen cannot be cultured in vitro, except in mouse footpads in vivo. The molecular basis of these characteristics and the mechanisms remain unknown. Consequently, analysis of Mle growth and survival is urgently needed to develop novel therapies against leprosy, including rapid, simple, and specific methods to detect infection. Here, we demonstrated the functional role and contribution of Mle-DNA gyrase, which regulates DNA topology, DNA replication, and chromosome segregation to promote bacterial growth and survival, in Mle growth and survival in vitro and in vivo. The optimum temperature for Mle-DNA gyrase activity was 30 °C. When the DNA gyrB-gyrA genes in Mycobacterium smegmatis were replaced with the Mle gyrase genes by allelic exchange, the recombinants could not grow at 37 °C. Moreover, using radiorespirometry analysis for viability of Mle bacilli, we found that Mle growth was more vigorous at 25–30 °C than at 37 °C, but was inhibited above 40 °C. These results propose that DNA gyrase is a crucial factor for Mle growth and survival and its sensitivity to temperature may be exploited in heat-based treatment of leprosy.
Collapse
|
23
|
Pedersen LC, Inoue K, Kim S, Perera L, Shaw ND. A ubiquitin-like domain is required for stabilizing the N-terminal ATPase module of human SMCHD1. Commun Biol 2019; 2:255. [PMID: 31312724 PMCID: PMC6620310 DOI: 10.1038/s42003-019-0499-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 06/08/2019] [Indexed: 12/16/2022] Open
Abstract
Variants in the gene SMCHD1, which encodes an epigenetic repressor, have been linked to both congenital arhinia and a late-onset form of muscular dystrophy called facioscapulohumeral muscular dystrophy type 2 (FSHD2). This suggests that SMCHD1 has a diversity of functions in both developmental time and space. The C-terminal end of SMCHD1 contains an SMC-hinge domain which mediates homodimerization and chromatin association, whereas the molecular architecture of the N-terminal region, which harbors the GHKL-ATPase domain, is not well understood. We present the crystal structure of the human SMCHD1 N-terminal ATPase module bound to ATP as a functional dimer. The dimer is stabilized by a novel N-terminal ubiquitin-like fold and by a downstream transducer domain. While disease variants map to what appear to be critical interdomain/intermolecular interfaces, only the FSHD2-specific mutant constructs we tested consistently abolish ATPase activity and/or dimerization. These data suggest that the full functional profile of SMCHD1 has yet to be determined.
Collapse
Affiliation(s)
- Lars C. Pedersen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 USA
| | - Kaoru Inoue
- Pediatric Neuroendocrinology Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 USA
| | - Susan Kim
- Pediatric Neuroendocrinology Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 USA
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 USA
| | - Natalie D. Shaw
- Pediatric Neuroendocrinology Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 USA
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114 USA
| |
Collapse
|
24
|
Petrella S, Capton E, Raynal B, Giffard C, Thureau A, Bonneté F, Alzari PM, Aubry A, Mayer C. Overall Structures of Mycobacterium tuberculosis DNA Gyrase Reveal the Role of a Corynebacteriales GyrB-Specific Insert in ATPase Activity. Structure 2019; 27:579-589.e5. [PMID: 30744994 DOI: 10.1016/j.str.2019.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/13/2018] [Accepted: 01/14/2019] [Indexed: 01/03/2023]
Abstract
Despite sharing common features, previous studies have shown that gyrases from different species have been modified throughout evolution to modulate their properties. Here, we report two crystal structures of Mycobacterium tuberculosis DNA gyrase, an apo and AMPPNP-bound form at 2.6-Å and 3.3-Å resolution, respectively. These structures provide high-resolution structural data on the quaternary organization and interdomain connections of a gyrase (full-length GyrB-GyrA57)2 thus providing crucial inputs on this essential drug target. Together with small-angle X-ray scattering studies, they revealed an "extremely open" N-gate state, which persists even in the DNA-free gyrase-AMPPNP complex and an unexpected connection between the ATPase and cleavage core domains mediated by two Corynebacteriales-specific motifs, respectively the C-loop and DEEE-loop. We show that the C-loop participates in the stabilization of this open conformation, explaining why this gyrase has a lower ATPase activity. Our results image a conformational state which might be targeted for drug discovery.
Collapse
Affiliation(s)
- Stéphanie Petrella
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS UMR 3528, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France; Université Paris Diderot, Sorbonne Paris Cité, 75724 Paris Cedex 15, France.
| | - Estelle Capton
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses-Paris, Cimi-Paris, INSERM U1135, National Reference Center for Mycobacteria, Laboratoire de Bactériologie-Hygiène, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière - Charles Foix, 75013 Paris, France
| | - Bertrand Raynal
- Plateforme de Biophysique Moléculaire, Institut Pasteur, CNRS UMR 3528, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Clément Giffard
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS UMR 3528, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France; Université Paris Diderot, Sorbonne Paris Cité, 75724 Paris Cedex 15, France
| | - Aurélien Thureau
- Synchrotron SOLEIL, l'Orme des Merisiers, 91410 Saint Aubin, France
| | - Françoise Bonneté
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Institut de Biologie Physico-Chimique, CNRS UMR7099 and Université Paris Didérot, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Pedro M Alzari
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS UMR 3528, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France; Université Paris Diderot, Sorbonne Paris Cité, 75724 Paris Cedex 15, France
| | - Alexandra Aubry
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses-Paris, Cimi-Paris, INSERM U1135, National Reference Center for Mycobacteria, Laboratoire de Bactériologie-Hygiène, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière - Charles Foix, 75013 Paris, France.
| | - Claudine Mayer
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS UMR 3528, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France; Université Paris Diderot, Sorbonne Paris Cité, 75724 Paris Cedex 15, France
| |
Collapse
|
25
|
Garnier F, Debat H, Nadal M. Type IA DNA Topoisomerases: A Universal Core and Multiple Activities. Methods Mol Biol 2018; 1703:1-20. [PMID: 29177730 DOI: 10.1007/978-1-4939-7459-7_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
All the type IA topoisomerases display universal characteristics relying on a core region basically responsible for the transesterification and the strand passage reaction. First limited to the bacterial domain for a long time, these enzymes were further retrieved in Archaea and Eukarya as well. This is representative of an extremely ancient origin, probably due to an inheritance from the RNA world. As remaining evidence, some current topoisomerases IA have retained a RNA topoisomerase activity. Despite the presence of this core region in all of these TopoIAs, some differences exist and are originated from variable regions, located essentially within both extremities, conferring on them their specificities. During the last 2 decades the evidence of multiple activities and dedicated roles highlighted the importance of the topoisomerases IA. It is now obvious that topoisomerases IA are key enzymes involved in the maintenance of the genome stability. The discovery of these new activities was done thanks to the use of more accurate assays, based on new sophisticated DNA substrates.
Collapse
Affiliation(s)
- Florence Garnier
- Université Versailles St-Quentin, Institut Jacques Monod, UMR 7592 CNRS-Univ. Paris Diderot, 15, rue Hélène Brion, Paris, 75013, France
| | - Hélène Debat
- Université Versailles St-Quentin, Institut Jacques Monod, UMR 7592 CNRS-Univ. Paris Diderot, 15, rue Hélène Brion, Paris, 75013, France
| | - Marc Nadal
- Institut Jacques Monod, UMR 7592 CNRS-Université Paris Diderot, 15, rue Hélène Brion, Paris, 75013, France.
| |
Collapse
|
26
|
Wendorff TJ, Berger JM. Topoisomerase VI senses and exploits both DNA crossings and bends to facilitate strand passage. eLife 2018; 7:31724. [PMID: 29595473 PMCID: PMC5922973 DOI: 10.7554/elife.31724] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 03/28/2018] [Indexed: 01/09/2023] Open
Abstract
Type II topoisomerases manage DNA supercoiling and aid chromosome segregation using a complex, ATP-dependent duplex strand passage mechanism. Type IIB topoisomerases and their homologs support both archaeal/plant viability and meiotic recombination. Topo VI, a prototypical type IIB topoisomerase, comprises two Top6A and two Top6B protomers; how these subunits cooperate to engage two DNA segments and link ATP turnover to DNA transport is poorly understood. Using multiple biochemical approaches, we show that Top6B, which harbors the ATPase activity of topo VI, recognizes and exploits the DNA crossings present in supercoiled DNA to stimulate subunit dimerization by ATP. Top6B self-association in turn induces extensive DNA bending, which is needed to support duplex cleavage by Top6A. Our observations explain how topo VI tightly coordinates DNA crossover recognition and ATP binding with strand scission, providing useful insights into the operation of type IIB topoisomerases and related meiotic recombination and GHKL ATPase machineries. Each human cell contains genetic information stored on approximately two meters of DNA. Like holiday lights in a storage box, packing so much DNA into such a small space leads to its entanglement. This snarled DNA prevents the cell from properly accessing and copying its genes. Type II topoisomerases are a group of enzymes that remove DNA tangles. They attach to one segment of a DNA tangle, cut it in half, remove the knot, and then repair the broken DNA strand. The process requires the proteins to ‘burn’ chemical energy. If topoisomerases make mistakes when they cut and reseal DNA, they could damage genetic information and harm cells. It is still unclear how these proteins recognize DNA tangles and use energy to remove knots instead of adding them. Here, Wendorff and Berger use biochemical approaches to look into topo VI, a type II topoisomerase found in plants and certain single-celled organisms. When DNA is tangled, it forms sharp bends and crossings. Their experiments reveal that topo VI has certain ‘sensors’ that detect where DNA bends, and others that recognize the crossings. Only when both features are present does the enzyme start working and using energy. These sensors act as fail-safes to ensure that topo VI only breaks DNA when it encounters a proper knot, and is not ‘set loose’ on untangled DNA. Future work will look at topo VI at an atom-by-atom level to reveal how exactly the enzymes ‘see’ DNA bends and crossings, and how interactions with the correct type of DNA triggers energy use and DNA untangling. Knowing more about topo VI can help researchers to understand how human and bacterial topoisomerases work. These results could also be generalized to other enzymes, for example those that help the genetic processes at play when sperm and egg cells form.
Collapse
Affiliation(s)
- Timothy J Wendorff
- Biophysics Graduate Program, University of California, Berkeley, Berkeley, United States
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
27
|
Koch A, Kang HG, Steinbrenner J, Dempsey DA, Klessig DF, Kogel KH. MORC Proteins: Novel Players in Plant and Animal Health. FRONTIERS IN PLANT SCIENCE 2017; 8:1720. [PMID: 29093720 PMCID: PMC5651269 DOI: 10.3389/fpls.2017.01720] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/20/2017] [Indexed: 05/02/2023]
Abstract
Microrchidia (MORC) proteins comprise a family of proteins that have been identified in prokaryotes and eukaryotes. They are defined by two hallmark domains: a GHKL-type ATPase and an S5 fold. MORC proteins in plants were first discovered via a genetic screen for Arabidopsis mutants compromised for resistance to a viral pathogen. Subsequent studies expanded their role in plant immunity and revealed their involvement in gene silencing and transposable element repression. Emerging data suggest that MORC proteins also participate in pathogen-induced chromatin remodeling and epigenetic gene regulation. In addition, biochemical analyses recently demonstrated that plant MORCs have topoisomerase II (topo II)-like DNA modifying activities that may be important for their function. Interestingly, animal MORC proteins exhibit many parallels with their plant counterparts, as they have been implicated in disease development and gene silencing. In addition, human MORCs, like plant MORCs, bind salicylic acid and this inhibits some of their topo II-like activities. In this review, we will focus primarily on plant MORCs, although relevant comparisons with animal MORCs will be provided.
Collapse
Affiliation(s)
- Aline Koch
- Centre for BioSystems, Land Use and Nutrition, Institute for Phytopathology, Justus Liebig University Giessen, Giessen, Germany
| | - Hong-Gu Kang
- Department of Biology, Texas State University, San Marcos, TX, United States
| | - Jens Steinbrenner
- Centre for BioSystems, Land Use and Nutrition, Institute for Phytopathology, Justus Liebig University Giessen, Giessen, Germany
| | | | - Daniel F. Klessig
- Boyce Thompson Institute for Plant Research, Ithaca, NY, United States
- *Correspondence: Daniel F. Klessig
| | - Karl-Heinz Kogel
- Centre for BioSystems, Land Use and Nutrition, Institute for Phytopathology, Justus Liebig University Giessen, Giessen, Germany
- Karl-Heinz Kogel
| |
Collapse
|
28
|
Mouse MORC3 is a GHKL ATPase that localizes to H3K4me3 marked chromatin. Proc Natl Acad Sci U S A 2016; 113:E5108-16. [PMID: 27528681 DOI: 10.1073/pnas.1609709113] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Microrchidia (MORC) proteins are GHKL (gyrase, heat-shock protein 90, histidine kinase, MutL) ATPases that function in gene regulation in multiple organisms. Animal MORCs also contain CW-type zinc finger domains, which are known to bind to modified histones. We solved the crystal structure of the murine MORC3 ATPase-CW domain bound to the nucleotide analog AMPPNP (phosphoaminophosphonic acid-adenylate ester) and in complex with a trimethylated histone H3 lysine 4 (H3K4) peptide (H3K4me3). We observed that the MORC3 N-terminal ATPase domain forms a dimer when bound to AMPPNP. We used native mass spectrometry to show that dimerization is ATP-dependent, and that dimer formation is enhanced in the presence of nonhydrolyzable ATP analogs. The CW domain uses an aromatic cage to bind trimethylated Lys4 and forms extensive hydrogen bonds with the H3 tail. We found that MORC3 localizes to promoters marked by H3K4me3 throughout the genome, consistent with its binding to H3K4me3 in vitro. Our work sheds light on aspects of the molecular dynamics and function of MORC3.
Collapse
|
29
|
Robert T, Vrielynck N, Mézard C, de Massy B, Grelon M. A new light on the meiotic DSB catalytic complex. Semin Cell Dev Biol 2016; 54:165-76. [DOI: 10.1016/j.semcdb.2016.02.025] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/22/2016] [Indexed: 11/30/2022]
|
30
|
Structural Dynamics and Mechanochemical Coupling in DNA Gyrase. J Mol Biol 2016; 428:1833-45. [PMID: 27016205 DOI: 10.1016/j.jmb.2016.03.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/16/2016] [Accepted: 03/15/2016] [Indexed: 11/22/2022]
Abstract
Gyrase is a molecular motor that harnesses the free energy of ATP hydrolysis to perform mechanical work on DNA. The enzyme specifically introduces negative supercoiling in a process that must coordinate fuel consumption with DNA cleavage and religation and with numerous conformational changes in both the protein and DNA components of a large nucleoprotein complex. Here we present a current understanding of mechanochemical coupling in this essential molecular machine, with a focus on recent diverse biophysical approaches that have revealed details of molecular architectures, new conformational intermediates, structural transitions modulated by ATP binding, and the influence of mechanics on motor function. Recent single-molecule assays have also illuminated the reciprocal relationships between supercoiling and transcription, an illustration of mechanical interactions between gyrase and other molecular machines at the heart of chromosomal biology.
Collapse
|
31
|
Robert T, Nore A, Brun C, Maffre C, Crimi B, Bourbon HM, de Massy B. The TopoVIB-Like protein family is required for meiotic DNA double-strand break formation. Science 2016; 351:943-9. [PMID: 26917764 DOI: 10.1126/science.aad5309] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Meiotic recombination is induced by the formation of DNA double-strand breaks (DSBs) catalyzed by SPO11, the ortholog of subunit A of TopoVI DNA topoisomerase (TopoVIA). TopoVI activity requires the interaction between A and B subunits. We identified a conserved family of plant and animal proteins [the TOPOVIB-Like (TOPOVIBL) family] that share strong structural similarity to the TopoVIB subunit of TopoVI DNA topoisomerase. We further characterize the meiotic recombination proteins Rec102 (Saccharomyces cerevisiae), Rec6 (Schizosaccharomyces pombe), and MEI-P22 (Drosophila melanogaster) as homologs to the transducer domain of TopoVIB. We demonstrate that the mouse TOPOVIBL protein interacts and forms a complex with SPO11 and is required for meiotic DSB formation. We conclude that meiotic DSBs are catalyzed by a complex involving SPO11 and TOPOVIBL.
Collapse
Affiliation(s)
- T Robert
- Institute of Human Genetics, UPR 1142 CNRS, 141 Rue de la Cardonille, 34396 Montpellier cedex 05, France
| | - A Nore
- Institute of Human Genetics, UPR 1142 CNRS, 141 Rue de la Cardonille, 34396 Montpellier cedex 05, France
| | - C Brun
- Institute of Human Genetics, UPR 1142 CNRS, 141 Rue de la Cardonille, 34396 Montpellier cedex 05, France
| | - C Maffre
- Institute of Human Genetics, UPR 1142 CNRS, 141 Rue de la Cardonille, 34396 Montpellier cedex 05, France
| | - B Crimi
- Institute of Human Genetics, UPR 1142 CNRS, 141 Rue de la Cardonille, 34396 Montpellier cedex 05, France
| | - H-M Bourbon
- Centre de Biologie du Développement, Université Fédérale de Toulouse, Paul Sabatier Campus, 118 Route de Narbonne, 31062 Toulouse, France.
| | - B de Massy
- Institute of Human Genetics, UPR 1142 CNRS, 141 Rue de la Cardonille, 34396 Montpellier cedex 05, France.
| |
Collapse
|
32
|
Vrielynck N, Chambon A, Vezon D, Pereira L, Chelysheva L, De Muyt A, Mezard C, Mayer C, Grelon M. A DNA topoisomerase VI-like complex initiates meiotic recombination. Science 2016; 351:939-43. [DOI: 10.1126/science.aad5196] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
Visualizing autophosphorylation in histidine kinases. Nat Commun 2015; 5:3258. [PMID: 24500224 DOI: 10.1038/ncomms4258] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 01/14/2014] [Indexed: 12/17/2022] Open
Abstract
Reversible protein phosphorylation is the most widespread regulatory mechanism in signal transduction. Autophosphorylation in a dimeric sensor histidine kinase is the first step in two-component signalling, the predominant signal-transduction device in bacteria. Despite being the most abundant sensor kinases in nature, the molecular bases of the histidine kinase autophosphorylation mechanism are still unknown. Furthermore, it has been demonstrated that autophosphorylation can occur in two directions, cis (intrasubunit) or trans (intersubunit) within the dimeric histidine kinase. Here, we present the crystal structure of the complete catalytic machinery of a chimeric histidine kinase. The structure shows an asymmetric histidine kinase dimer where one subunit is caught performing the autophosphorylation reaction. A structure-guided functional analysis on HK853 and EnvZ, two prototypical cis- and trans-phosphorylating histidine kinases, has allowed us to decipher the catalytic mechanism of histidine kinase autophosphorylation, which seems to be common independently of the reaction directionality.
Collapse
|
34
|
Wu H, Zeng H, Lam R, Tempel W, Kerr ID, Min J. Structure of the human MLH1 N-terminus: implications for predisposition to Lynch syndrome. Acta Crystallogr F Struct Biol Commun 2015; 71:981-5. [PMID: 26249686 PMCID: PMC4528928 DOI: 10.1107/s2053230x15010183] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/26/2015] [Indexed: 02/25/2023] Open
Abstract
Mismatch repair prevents the accumulation of erroneous insertions/deletions and non-Watson-Crick base pairs in the genome. Pathogenic mutations in the MLH1 gene are associated with a predisposition to Lynch and Turcot's syndromes. Although genetic testing for these mutations is available, robust classification of variants requires strong clinical and functional support. Here, the first structure of the N-terminus of human MLH1, determined by X-ray crystallography, is described. The structure shares a high degree of similarity with previously determined prokaryotic MLH1 homologs; however, this structure affords a more accurate platform for the classification of MLH1 variants.
Collapse
Affiliation(s)
- Hong Wu
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Hong Zeng
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Robert Lam
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Wolfram Tempel
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Iain D. Kerr
- Myriad Genetic Laboratories Inc., 320 Wakara Way, Salt Lake City, UT 84108, USA
| | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
35
|
Immormino RM, Starbird CA, Silversmith RE, Bourret RB. Probing Mechanistic Similarities between Response Regulator Signaling Proteins and Haloacid Dehalogenase Phosphatases. Biochemistry 2015; 54:3514-27. [PMID: 25928369 DOI: 10.1021/acs.biochem.5b00286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Response regulator signaling proteins and phosphatases of the haloacid dehalogenase (HAD) superfamily share strikingly similar folds, active site geometries, and reaction chemistry. Proteins from both families catalyze the transfer of a phosphoryl group from a substrate to one of their own aspartyl residues, and subsequent hydrolysis of the phosphoprotein. Notable differences include an additional Asp that functions as an acid/base catalyst and an active site well-structured prior to phosphorylation in HAD phosphatases. Both features contribute to reactions substantially faster than those for response regulators. To investigate mechanisms underlying the functional differences between response regulators and HAD phosphatases, we characterized five double mutants of the response regulator CheY designed to mimic HAD phosphatases. Each mutant contained the extra Asp paired with a phosphatase-inspired substitution to potentially position the Asp properly. Only CheY DR (Arg as the anchor) exhibited enhanced rates of both autophosphorylation with phosphoramidate and autodephosphorylation compared to those of wild-type CheY. Crystal structures of CheY DR complexed with MoO4(2-) or WO4(2-) revealed active site hydrogen bonding networks similar to those in HAD·substrate complexes, with the extra Asp positioned for direct interaction with the leaving group (phosphorylation) or nucleophile (dephosphorylation). However, CheY DR reaction kinetics did not exhibit the pH sensitivities expected for acid/base catalysis. Biochemical analysis indicated CheY DR had an enhanced propensity to adopt the active conformation without phosphorylation, but a crystal structure revealed unphosphorylated CheY DR was not locked in the active conformation. Thus, the enhanced reactivity of CheY DR reflected partial acquisition of catalytic and structural features of HAD phosphatases.
Collapse
Affiliation(s)
- Robert M Immormino
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599-7290, United States
| | - Chrystal A Starbird
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599-7290, United States
| | - Ruth E Silversmith
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599-7290, United States
| | - Robert B Bourret
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599-7290, United States
| |
Collapse
|
36
|
E. coli Gyrase Fails to Negatively Supercoil Diaminopurine-Substituted DNA. J Mol Biol 2015; 427:2305-18. [PMID: 25902201 DOI: 10.1016/j.jmb.2015.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 03/06/2015] [Accepted: 04/10/2015] [Indexed: 12/18/2022]
Abstract
Type II topoisomerases modify DNA supercoiling, and crystal structures suggest that they sharply bend DNA in the process. Bacterial gyrases are a class of type II topoisomerases that can introduce negative supercoiling by creating a wrap of DNA before strand passage. Isoforms of these essential enzymes were compared to reveal whether they can bend or wrap artificially stiffened DNA. Escherichia coli gyrase and human topoisomerase IIα were challenged with normal DNA or stiffer DNA produced by polymerase chain reaction reactions in which diaminopurine (DAP) replaced adenine deoxyribonucleotide triphosphates. On single DNA molecules twisted with magnetic tweezers to create plectonemes, the rates or pauses during relaxation of positive supercoils in DAP-substituted versus normal DNA were distinct for both enzymes. Gyrase struggled to bend or perhaps open a gap in DAP-substituted DNA, and segments of wider DAP DNA may have fit poorly into the N-gate of the human topoisomerase IIα. Pauses during processive activity on both types of DNA exhibited ATP dependence consistent with two pathways leading to the strand-passage-competent state with a bent gate segment and a transfer segment trapped by an ATP-loaded and latched N-gate. However, E. coli DNA gyrase essentially failed to negatively supercoil 35% stiffer DAP DNA.
Collapse
|
37
|
Hearnshaw SJ, Chung TTH, Stevenson CEM, Maxwell A, Lawson DM. The role of monovalent cations in the ATPase reaction of DNA gyrase. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:996-1005. [PMID: 25849408 PMCID: PMC4388272 DOI: 10.1107/s1399004715002916] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/10/2015] [Indexed: 11/25/2022]
Abstract
Four new crystal structures of the ATPase domain of the GyrB subunit of Escherichia coli DNA gyrase have been determined. One of these, solved in the presence of K(+), is the highest resolution structure reported so far for this domain and, in conjunction with the three other structures, reveals new insights into the function of this domain. Evidence is provided for the existence of two monovalent cation-binding sites: site 1, which preferentially binds a K(+) ion that interacts directly with the α-phosphate of ATP, and site 2, which preferentially binds an Na(+) ion and the functional significance of which is not clear. The crystallographic data are corroborated by ATPase data, and the structures are compared with those of homologues to investigate the broader conservation of these sites.
Collapse
Affiliation(s)
- Stephen James Hearnshaw
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, England
| | - Terence Tsz-Hong Chung
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, England
| | | | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, England
| | - David Mark Lawson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, England
| |
Collapse
|
38
|
Abstract
DNA topoisomerases are enzymes that control the topology of DNA in all cells. There are two types, I and II, classified according to whether they make transient single- or double-stranded breaks in DNA. Their reactions generally involve the passage of a single- or double-strand segment of DNA through this transient break, stabilized by DNA-protein covalent bonds. All topoisomerases can relax DNA, but DNA gyrase, present in all bacteria, can also introduce supercoils into DNA. Because of their essentiality in all cells and the fact that their reactions proceed via DNA breaks, topoisomerases have become important drug targets; the bacterial enzymes are key targets for antibacterial agents. This article discusses the structure and mechanism of topoisomerases and their roles in the bacterial cell. Targeting of the bacterial topoisomerases by inhibitors, including antibiotics in clinical use, is also discussed.
Collapse
|
39
|
Stanger FV, Dehio C, Schirmer T. Structure of the N-terminal Gyrase B fragment in complex with ADP⋅Pi reveals rigid-body motion induced by ATP hydrolysis. PLoS One 2014; 9:e107289. [PMID: 25202966 PMCID: PMC4159350 DOI: 10.1371/journal.pone.0107289] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 08/12/2014] [Indexed: 11/18/2022] Open
Abstract
Type II DNA topoisomerases are essential enzymes that catalyze topological rearrangement of double-stranded DNA using the free energy generated by ATP hydrolysis. Bacterial DNA gyrase is a prototype of this family and is composed of two subunits (GyrA, GyrB) that form a GyrA2GyrB2 heterotetramer. The N-terminal 43-kDa fragment of GyrB (GyrB43) from E. coli comprising the ATPase and the transducer domains has been studied extensively. The dimeric fragment is competent for ATP hydrolysis and its structure in complex with the substrate analog AMPPNP is known. Here, we have determined the remaining conformational states of the enzyme along the ATP hydrolysis reaction path by solving crystal structures of GyrB43 in complex with ADP⋅BeF3, ADP⋅Pi, and ADP. Upon hydrolysis, the enzyme undergoes an obligatory 12° domain rearrangement to accommodate the 1.5 Å increase in distance between the γ- and β-phosphate of the nucleotide within the sealed binding site at the domain interface. Conserved residues from the QTK loop of the transducer domain (also part of the domain interface) couple the small structural change within the binding site with the rigid body motion. The domain reorientation is reflected in a significant 7 Å increase in the separation of the two transducer domains of the dimer that would embrace one of the DNA segments in full-length gyrase. The observed conformational change is likely to be relevant for the allosteric coordination of ATP hydrolysis with DNA binding, cleavage/re-ligation and/or strand passage.
Collapse
Affiliation(s)
- Frédéric V. Stanger
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, Basel, Switzerland
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Christoph Dehio
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Tilman Schirmer
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
40
|
Erie DA, Weninger KR. Single molecule studies of DNA mismatch repair. DNA Repair (Amst) 2014; 20:71-81. [PMID: 24746644 DOI: 10.1016/j.dnarep.2014.03.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 03/21/2014] [Accepted: 03/22/2014] [Indexed: 11/30/2022]
Abstract
DNA mismatch repair, which involves is a widely conserved set of proteins, is essential to limit genetic drift in all organisms. The same system of proteins plays key roles in many cancer related cellular transactions in humans. Although the basic process has been reconstituted in vitro using purified components, many fundamental aspects of DNA mismatch repair remain hidden due in part to the complexity and transient nature of the interactions between the mismatch repair proteins and DNA substrates. Single molecule methods offer the capability to uncover these transient but complex interactions and allow novel insights into mechanisms that underlie DNA mismatch repair. In this review, we discuss applications of single molecule methodology including electron microscopy, atomic force microscopy, particle tracking, FRET, and optical trapping to studies of DNA mismatch repair. These studies have led to formulation of mechanistic models of how proteins identify single base mismatches in the vast background of matched DNA and signal for their repair.
Collapse
Affiliation(s)
- Dorothy A Erie
- Department of Chemistry and Curriculum in Applied Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| | - Keith R Weninger
- Department of Physics, North Carolina State University, Raleigh, NC 27695, United States
| |
Collapse
|
41
|
Mycobacterium tuberculosis DNA gyrase ATPase domain structures suggest a dissociative mechanism that explains how ATP hydrolysis is coupled to domain motion. Biochem J 2014; 456:263-73. [PMID: 24015710 DOI: 10.1042/bj20130538] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
DNA gyrase, a type II topoisomerase, regulates DNA topology by creating a double-stranded break in one DNA duplex and transporting another DNA duplex [T-DNA (transported DNA)] through this break. The ATPase domains dimerize, in the presence of ATP, to trap the T-DNA segment. Hydrolysis of only one of the two ATPs, and release of the resulting Pi, is rate-limiting in DNA strand passage. A long unresolved puzzle is how the non-hydrolysable ATP analogue AMP-PNP (adenosine 5'-[β,γ-imido]triphosphate) can catalyse one round of DNA strand passage without Pi release. In the present paper we discuss two crystal structures of the Mycobacterium tuberculosis DNA gyrase ATPase domain: one complexed with AMP-PCP (adenosine 5'-[β,γ-methylene]triphosphate) was unexpectedly monomeric, the other, an AMP-PNP complex, crystallized as a dimer. In the AMP-PNP structure, the unprotonated nitrogen (P-N=P imino) accepts hydrogen bonds from a well-ordered 'ATP lid', which is known to be required for dimerization. The equivalent CH2 group, in AMP-PCP, cannot accept hydrogen bonds, leaving the 'ATP lid' region disordered. Further analysis suggested that AMP-PNP can be converted from the imino (P-N=P) form into the imido form (P-NH-P) during the catalytic cycle. A main-chain NH is proposed to move to either protonate AMP-P-N=P to AMP-P-NH-P, or to protonate ATP to initiate ATP hydrolysis. This suggests a novel dissociative mechanism for ATP hydrolysis that could be applicable not only to GHKL phosphotransferases, but also to unrelated ATPases and GTPases such as Ras. On the basis of the domain orientation in our AMP-PCP structure we propose a mechanochemical scheme to explain how ATP hydrolysis is coupled to domain motion.
Collapse
|
42
|
Gilkerson J, Callis J. A genetic screen for mutants defective in IAA1-LUC degradation in Arabidopsis thaliana reveals an important requirement for TOPOISOMERASE6B in auxin physiology. PLANT SIGNALING & BEHAVIOR 2014; 9:e972207. [PMID: 25482814 PMCID: PMC4622002 DOI: 10.4161/psb.29850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Many plant growth and developmental processes are modulated by the hormone auxin. Auxin-modulated proteolysis of Aux/IAAs, a family of transcriptional repressors, represents a major mode of auxin action. Auxin facilitates the interaction of Aux/IAAs with TIR1/AFB F-box proteins, promoting their ubiquitination by the SCF(TIR1/AFB) ubiquitin E3 ligase leading to subsequent degradation by the 26S proteasome. To identify new genes regulating Aux/IAA proteolysis in Arabidopsis thaliana, we took a genetic approach, identifying individuals with altered degradation of an IAA1-luciferase fusion protein (IAA1-LUC). A mutant with 2-fold slower IAA1-LUC degradation rate compared with wild-type was isolated. Positional cloning identified the mutant as an allele of TOPOISOMERASE6B, named top6b-7. TOP6B encodes a subunit of a plant and archea-specific enzyme regulating endoreduplication, DNA damage repair and transcription in plants. T-DNA insertion alleles (top6b-8 and top6b-9) were also analyzed. top6b-7 seedlings are less sensitive to exogenous auxin than wild-type siblings in primary root growth assays, and experiments with DR5:GUS. Additionally, top6b-7 seedlings have a 40% reduction in the amount of endogenous IAA. These data suggest that increased IAA1-LUC half-life in top6b-7 probably results from a combination of both lower endogenous IAA levels and reduced sensitivity to auxin.
Collapse
Affiliation(s)
- Jonathan Gilkerson
- Department of Molecular and Cellular Biology and Plant Biology Graduate Group; University of California; Davis, CA USA
- Current address: Plant Biology Laboratory; Howard Hughes Medical Institute; Salk Institute for Biological Studies; La Jolla, CA USA
| | - Judy Callis
- Department of Molecular and Cellular Biology and Plant Biology Graduate Group; University of California; Davis, CA USA
- Correspondence to: Judy Callis;
| |
Collapse
|
43
|
Mechaly AE, Sassoon N, Betton JM, Alzari PM. Segmental helical motions and dynamical asymmetry modulate histidine kinase autophosphorylation. PLoS Biol 2014; 12:e1001776. [PMID: 24492262 PMCID: PMC3904827 DOI: 10.1371/journal.pbio.1001776] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 12/13/2013] [Indexed: 01/23/2023] Open
Abstract
Histidine kinases (HKs) are dimeric receptors that participate in most adaptive responses to environmental changes in prokaryotes. Although it is well established that stimulus perception triggers autophosphorylation in many HKs, little is known on how the input signal propagates through the HAMP domain to control the transient interaction between the histidine-containing and ATP-binding domains during the catalytic reaction. Here we report crystal structures of the full cytoplasmic region of CpxA, a prototypical HK involved in Escherichia coli response to envelope stress. The structural ensemble, which includes the Michaelis complex, unveils HK activation as a highly dynamic process, in which HAMP modulates the segmental mobility of the central HK α-helices to promote a strong conformational and dynamical asymmetry that characterizes the kinase-active state. A mechanical model based on our structural and biochemical data provides insights into HAMP-mediated signal transduction, the autophosphorylation reaction mechanism, and the symmetry-dependent control of HK kinase/phosphatase functional states.
Collapse
Affiliation(s)
- Ariel E. Mechaly
- Institut Pasteur, Unité de Microbiologie Structurale and CNRS UMR 3528, Paris, France
| | - Nathalie Sassoon
- Institut Pasteur, Unité de Microbiologie Structurale and CNRS UMR 3528, Paris, France
| | - Jean-Michel Betton
- Institut Pasteur, Unité de Microbiologie Structurale and CNRS UMR 3528, Paris, France
| | - Pedro M. Alzari
- Institut Pasteur, Unité de Microbiologie Structurale and CNRS UMR 3528, Paris, France
| |
Collapse
|
44
|
Mayer C, Janin YL. Non-quinolone inhibitors of bacterial type IIA topoisomerases: a feat of bioisosterism. Chem Rev 2013; 114:2313-42. [PMID: 24313284 DOI: 10.1021/cr4003984] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Claudine Mayer
- Unité de Microbiologie Structurale, Département de Biologie Structurale et Chimie, Institut Pasteur , 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | |
Collapse
|
45
|
Li DQ, Nair SS, Kumar R. The MORC family: new epigenetic regulators of transcription and DNA damage response. Epigenetics 2013; 8:685-93. [PMID: 23804034 DOI: 10.4161/epi.24976] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Microrchidia (MORC) is a highly conserved nuclear protein superfamily with widespread domain architectures that intimately link MORCs with signaling-dependent chromatin remodeling and epigenetic regulation. Accumulating structural and biochemical evidence has shed new light on the mechanistic action and emerging role of MORCs as epigenetic regulators in diverse nuclear processes. In this Point of View, we focus on discussing recent advances in our understanding of the unique domain architectures of MORC family of chromatin remodelers and their potential contribution to epigenetic control of DNA template-dependent processes such as transcription and DNA damage response. Given that the deregulation of MORCs has been linked with human cancer and other diseases, further efforts to uncover the structure and function of MORCs may ultimately lead to the development of new approaches to intersect with the functionality of MORC family of chromatin remodeling proteins to correct associated pathogenesis.
Collapse
Affiliation(s)
- Da-Qiang Li
- Department of Biochemistry and Molecular Medicine; School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | | | | |
Collapse
|
46
|
Cunningham CN, Southworth DR, Krukenberg KA, Agard DA. The conserved arginine 380 of Hsp90 is not a catalytic residue, but stabilizes the closed conformation required for ATP hydrolysis. Protein Sci 2012; 21:1162-71. [PMID: 22653663 DOI: 10.1002/pro.2103] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Hsp90, a dimeric ATP-dependent molecular chaperone, is required for the folding and activation of numerous essential substrate "client" proteins including nuclear receptors, cell cycle kinases, and telomerase. Fundamental to its mechanism is an ensemble of dramatically different conformational states that result from nucleotide binding and hydrolysis and distinct sets of interdomain interactions. Previous structural and biochemical work identified a conserved arginine residue (R380 in yeast) in the Hsp90 middle domain (MD) that is required for wild type hydrolysis activity in yeast, and hence proposed to be a catalytic residue. As part of our investigations on the origins of species-specific differences in Hsp90 conformational dynamics we probed the role of this MD arginine in bacterial, yeast, and human Hsp90s using a combination of structural and functional approaches. While the R380A mutation compromised ATPase activity in all three homologs, the impact on ATPase activity was both variable and much more modest (2-7 fold) than the mutation of an active site glutamate (40 fold) known to be required for hydrolysis. Single particle electron microscopy and small-angle X-ray scattering revealed that, for all Hsp90s, mutation of this arginine abrogated the ability to form the closed "ATP" conformational state in response to AMPPNP binding. Taken together with previous mutagenesis data exploring intra- and intermonomer interactions, these new data suggest that R380 does not directly participate in the hydrolysis reaction as a catalytic residue, but instead acts as an ATP-sensor to stabilize an NTD-MD conformation required for efficient ATP hydrolysis.
Collapse
Affiliation(s)
- Christian N Cunningham
- Graduate Group in Biophysics, University of California, San Francisco, California 94158, USA
| | | | | | | |
Collapse
|
47
|
Pereira JH, Ralston CY, Douglas NR, Kumar R, Lopez T, McAndrew RP, Knee KM, King JA, Frydman J, Adams PD. Mechanism of nucleotide sensing in group II chaperonins. EMBO J 2011; 31:731-40. [PMID: 22193720 DOI: 10.1038/emboj.2011.468] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 11/28/2011] [Indexed: 11/09/2022] Open
Abstract
Group II chaperonins mediate protein folding in an ATP-dependent manner in eukaryotes and archaea. The binding of ATP and subsequent hydrolysis promotes the closure of the multi-subunit rings where protein folding occurs. The mechanism by which local changes in the nucleotide-binding site are communicated between individual subunits is unknown. The crystal structure of the archaeal chaperonin from Methanococcus maripaludis in several nucleotides bound states reveals the local conformational changes associated with ATP hydrolysis. Residue Lys-161, which is extremely conserved among group II chaperonins, forms interactions with the γ-phosphate of ATP but shows a different orientation in the presence of ADP. The loss of the ATP γ-phosphate interaction with Lys-161 in the ADP state promotes a significant rearrangement of a loop consisting of residues 160-169. We propose that Lys-161 functions as an ATP sensor and that 160-169 constitutes a nucleotide-sensing loop (NSL) that monitors the presence of the γ-phosphate. Functional analysis using NSL mutants shows a significant decrease in ATPase activity, suggesting that the NSL is involved in timing of the protein folding cycle.
Collapse
Affiliation(s)
- Jose H Pereira
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bates AD, Berger JM, Maxwell A. The ancestral role of ATP hydrolysis in type II topoisomerases: prevention of DNA double-strand breaks. Nucleic Acids Res 2011; 39:6327-39. [PMID: 21525132 PMCID: PMC3159449 DOI: 10.1093/nar/gkr258] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 04/04/2011] [Accepted: 04/06/2011] [Indexed: 12/27/2022] Open
Abstract
Type II DNA topoisomerases (topos) catalyse changes in DNA topology by passing one double-stranded DNA segment through another. This reaction is essential to processes such as replication and transcription, but carries with it the inherent danger of permanent double-strand break (DSB) formation. All type II topos hydrolyse ATP during their reactions; however, only DNA gyrase is able to harness the free energy of hydrolysis to drive DNA supercoiling, an energetically unfavourable process. A long-standing puzzle has been to understand why the majority of type II enzymes consume ATP to support reactions that do not require a net energy input. While certain type II topos are known to 'simplify' distributions of DNA topoisomers below thermodynamic equilibrium levels, the energy required for this process is very low, suggesting that this behaviour is not the principal reason for ATP hydrolysis. Instead, we propose that the energy of ATP hydrolysis is needed to control the separation of protein-protein interfaces and prevent the accidental formation of potentially mutagenic or cytotoxic DSBs. This interpretation has parallels with the actions of a variety of molecular machines that catalyse the conformational rearrangement of biological macromolecules.
Collapse
Affiliation(s)
- Andrew D Bates
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK.
| | | | | |
Collapse
|
49
|
An XJ, Deng ZY, Wang T. OsSpo11-4, a rice homologue of the archaeal TopVIA protein, mediates double-strand DNA cleavage and interacts with OsTopVIB. PLoS One 2011; 6:e20327. [PMID: 21637817 PMCID: PMC3102714 DOI: 10.1371/journal.pone.0020327] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 04/21/2011] [Indexed: 11/17/2022] Open
Abstract
DNA topoisomerase VI from Archaea, a heterotetrameric complex composed of two TopVIA and two TopVIB subunits, is involved in altering DNA topology during replication, transcription and chromosome segregation by catalyzing DNA strand transfer through transient double-strand breaks. The sequenced yeast and animal genomes encode only one homologue of the archaeal TopVIA subunit, namely Spo11, and no homologue of the archaeal TopVIB subunit. In yeast, Spo11 is essential for initiating meiotic recombination and this function appears conserved among other eukaryotes. In contrast to yeast and animals, studies in Arabidopsis and rice have identified three Spo11/TopVIA homologues and one TopVIB homologue in plants. Here, we further identified two novel Spo11/TopVIA homologues (named OsSpo11-4 and OsSpo11-5, respectively) that exist just in the monocot model plant Oryza sativa, indicating that at least five Spo11/TopVIA homologues are present in the rice genome. To reveal the biochemical function of the two novel Spo11/TopVIA homologues, we first examined the interactions among OsSpo11-1, OsSpo11-4, OsSpo11-5, and OsTopVIB by yeast two-hybrid assay. The results showed that OsSpo11-4 and OsTopVIB can self-interact strongly and among the 3 examined OsSpo11 proteins, only OsSpo11-4 interacted with OsTopVIB. Pull-down assay confirmed the interaction between OsSpo11-4 and OsTopVIB, which indicates that OsSpo11-4 may interact with OsTopVIB in vivo. Further in vitro enzymatic analysis revealed that among the above 4 proteins, only OsSpo11-4 exhibited double-strand DNA cleavage activity and its enzymatic activity appears dependent on Mg2+ and independent of OsTopVIB, despite its interaction with OsTopVIB. We further analyzed the biological function of OsSpo11-4 by RNA interference and found that down-regulated expression of OsSpo11-4 led to defects in male meiosis, indicating OsSpo11-4 is required for meiosis.
Collapse
Affiliation(s)
- Xiao Jing An
- Research Center of Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | | | |
Collapse
|
50
|
Baker NM, Weigand S, Maar-Mathias S, Mondragón A. Solution structures of DNA-bound gyrase. Nucleic Acids Res 2011; 39:755-66. [PMID: 20870749 PMCID: PMC3025574 DOI: 10.1093/nar/gkq799] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 08/20/2010] [Accepted: 08/24/2010] [Indexed: 12/02/2022] Open
Abstract
The DNA gyrase negative supercoiling mechanism involves the assembly of a large gyrase/DNA complex and conformational rearrangements coupled to ATP hydrolysis. To establish the complex arrangement that directs the reaction towards negative supercoiling, bacterial gyrase complexes bound to 137- or 217-bp DNA fragments representing the starting conformational state of the catalytic cycle were characterized by sedimentation velocity and small-angle X-ray scattering (SAXS) experiments. The experiments revealed elongated complexes with hydrodynamic radii of 70-80 Å. Molecular envelopes calculated from these SAXS data show 2-fold symmetric molecules with the C-terminal domain (CTD) of the A subunit and the ATPase domain of the B subunit at opposite ends of the complexes. The proposed gyrase model, with the DNA binding along the sides of the molecule and wrapping around the CTDs located near the exit gate of the protein, adds new information on the mechanism of DNA negative supercoiling.
Collapse
Affiliation(s)
- Nicole M. Baker
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Dr, Evanston, IL 60208, USA and DND-CAT Synchrotron Research Center, APS/ANL Building 432A, 9700 S. Cass Ave., Argonne, IL 60439, USA
| | - Steven Weigand
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Dr, Evanston, IL 60208, USA and DND-CAT Synchrotron Research Center, APS/ANL Building 432A, 9700 S. Cass Ave., Argonne, IL 60439, USA
| | - Sarah Maar-Mathias
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Dr, Evanston, IL 60208, USA and DND-CAT Synchrotron Research Center, APS/ANL Building 432A, 9700 S. Cass Ave., Argonne, IL 60439, USA
| | - Alfonso Mondragón
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Dr, Evanston, IL 60208, USA and DND-CAT Synchrotron Research Center, APS/ANL Building 432A, 9700 S. Cass Ave., Argonne, IL 60439, USA
| |
Collapse
|