1
|
Loehlin DW, Kim JY, Paster CO. A tandem duplication in Drosophila melanogaster shows enhanced expression beyond the gene copy number. Genetics 2021; 220:6472349. [PMID: 35100388 PMCID: PMC9176294 DOI: 10.1093/genetics/iyab231] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Abstract
Tandem duplicated genes are common features of genomes, but the phenotypic consequences of their origins are not well understood. It is not known whether a simple doubling of gene expression should be expected, or else some other expression outcome. This study describes an experimental framework using engineered deletions to assess any contribution of locally acting cis- and globally acting trans-regulatory factors to expression interactions of particular tandem duplicated genes. Acsx1L (CG6300) and Acsx1R (CG11659) are tandem duplicates of a putative acyl-CoA synthetase gene found in Drosophila melanogaster. Experimental deletions of the duplicated segments were used to investigate whether the presence of 1 tandem duplicated block influences the expression of its neighbor. Acsx1L, the gene in the left block, shows much higher expression than either its duplicate Acsx1R or the single Acsx1 in Drosophila simulans. Acsx1L expression decreases drastically upon deleting the right-hand duplicated block. Crosses among wildtype and deletion strains show that high tandem expression is primarily due to cis-acting interactions between the duplicated blocks. No effect of these genes on cuticular hydrocarbons was detected. Sequence and phylogenetic analysis suggest that the duplication rose to fixation in D. melanogaster and has been subject to extensive gene conversion. Some strains actually carry 3 tandem copies, yet strains with 3 Acsx1s do not have higher expression levels than strains with 2. Surveys of tandem duplicate expression have typically not found the expected 2-fold increase in expression. This study suggests that cis-regulatory interactions between duplicated blocks could be responsible for this trend.
Collapse
Affiliation(s)
- David W Loehlin
- Biology Department, Williams College, Williamstown, MA 01267, USA
| | - Jeremiah Y Kim
- Biology Department, Williams College, Williamstown, MA 01267, USA
| | - Caleigh O Paster
- Biology Department, Williams College, Williamstown, MA 01267, USA
| |
Collapse
|
2
|
Cook PR, Marenduzzo D. Transcription-driven genome organization: a model for chromosome structure and the regulation of gene expression tested through simulations. Nucleic Acids Res 2019; 46:9895-9906. [PMID: 30239812 PMCID: PMC6212781 DOI: 10.1093/nar/gky763] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/14/2018] [Indexed: 12/29/2022] Open
Abstract
Current models for the folding of the human genome see a hierarchy stretching down from chromosome territories, through A/B compartments and topologically-associating domains (TADs), to contact domains stabilized by cohesin and CTCF. However, molecular mechanisms underlying this folding, and the way folding affects transcriptional activity, remain obscure. Here we review physical principles driving proteins bound to long polymers into clusters surrounded by loops, and present a parsimonious yet comprehensive model for the way the organization determines function. We argue that clusters of active RNA polymerases and their transcription factors are major architectural features; then, contact domains, TADs and compartments just reflect one or more loops and clusters. We suggest tethering a gene close to a cluster containing appropriate factors—a transcription factory—increases the firing frequency, and offer solutions to many current puzzles concerning the actions of enhancers, super-enhancers, boundaries and eQTLs (expression quantitative trait loci). As a result, the activity of any gene is directly influenced by the activity of other transcription units around it in 3D space, and this is supported by Brownian-dynamics simulations of transcription factors binding to cognate sites on long polymers.
Collapse
Affiliation(s)
- Peter R Cook
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Davide Marenduzzo
- SUPA, School of Physics, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| |
Collapse
|
3
|
Sanbonmatsu KY. Large-scale simulations of nucleoprotein complexes: ribosomes, nucleosomes, chromatin, chromosomes and CRISPR. Curr Opin Struct Biol 2019; 55:104-113. [PMID: 31125796 DOI: 10.1016/j.sbi.2019.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/01/2019] [Indexed: 12/11/2022]
Abstract
Recent advances in biotechnology such as Hi-C, CRISPR/Cas9 and ribosome display have placed nucleoprotein complexes at center stage. Understanding the structural dynamics of these complexes aids in optimizing protocols and interpreting data for these new technologies. The integration of simulation and experiment has helped advance mechanistic understanding of these systems. Coarse-grained simulations, reduced-description models, and explicit solvent molecular dynamics simulations yield useful complementary perspectives on nucleoprotein complex structural dynamics. When combined with Hi-C, cryo-EM, and single molecule measurements, these simulations integrate disparate forms of experimental data into a coherent mechanism.
Collapse
|
4
|
Feuerborn A, Cook PR. Why the activity of a gene depends on its neighbors. Trends Genet 2015; 31:483-90. [PMID: 26259670 DOI: 10.1016/j.tig.2015.07.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/25/2015] [Accepted: 07/15/2015] [Indexed: 11/15/2022]
Abstract
Sixty years ago, the position of a gene on a chromosome was seen to be a major determinant of gene activity; however, position effects are rarely central to current discussions of gene expression. We describe a comprehensive and simplifying view of how position in 1D sequence and 3D nuclear space underlies expression. We suggest that apparently-different regulatory motifs including enhancers, silencers, insulators, barriers, and boundaries act similarly - they are active promoters that tether target genes close to, or distant from, appropriate transcription sites or 'factories'. We also suggest that any active transcription unit regulates the firing of its neighbors - and thus can be categorized as one or other type of motif; this is consistent with expression quantitative trait loci (eQTLs) being widely dispersed.
Collapse
Affiliation(s)
- Alexander Feuerborn
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Peter R Cook
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
5
|
Papantonis A, Cook PR. Transcription factories: genome organization and gene regulation. Chem Rev 2013; 113:8683-705. [PMID: 23597155 DOI: 10.1021/cr300513p] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Argyris Papantonis
- Sir William Dunn School of Pathology, University of Oxford , South Parks Road, Oxford OX1 3RE, United Kingdom
| | | |
Collapse
|
6
|
Larkin JD, Papantonis A, Cook PR, Marenduzzo D. Space exploration by the promoter of a long human gene during one transcription cycle. Nucleic Acids Res 2013; 41:2216-27. [PMID: 23303786 PMCID: PMC3575846 DOI: 10.1093/nar/gks1441] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An RNA polymerase has been thought to transcribe by seeking out a promoter, initiating and then tracking down the template. We add tumor necrosis factor α to primary human cells, switch on transcription of a 221-kb gene and monitor promoter position during the ensuing transcription cycle (using RNA fluorescence in situ hybridization coupled to super-resolution localization, chromosome conformation capture and Monte Carlo simulations). Results are consistent with a polymerase immobilized in a ‘factory’ capturing a promoter and reeling in the template, as the transcript and promoter are extruded. Initially, the extruded promoter is tethered close to the factory and so likely to re-initiate; later, the tether becomes long enough to allow re-initiation in another factory. We suggest close tethering underlies enhancer function and transcriptional ‘bursting’.
Collapse
Affiliation(s)
- Joshua D Larkin
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | | | | | |
Collapse
|
7
|
Deng B, Melnik S, Cook PR. Transcription factories, chromatin loops, and the dysregulation of gene expression in malignancy. Semin Cancer Biol 2012; 23:65-71. [PMID: 22285981 DOI: 10.1016/j.semcancer.2012.01.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 01/03/2012] [Indexed: 02/02/2023]
Abstract
Pathologists recognize and classify cancers according to nuclear morphology, but there remains little scientific explanation of why malignant nuclei possess their characteristic features, or how those features are related to dysregulated function. This essay will discuss a basic structure-function axis that connects one central architectural motif in the nucleus-the chromatin loop-to the vital nuclear function of transcription. The loop is attached to a "transcription factory" through components of the transcription machinery (either polymerases or transcriptional activators/repressors), and the position of a gene within a loop determines how often that gene is transcribed. Then, dysregulated transcription is tightly coupled to alterations in structure, and vice versa. We also speculate on how the experimental approaches being used to analyze loops and factories might be applied to study the problems of tumour initiation and progression.
Collapse
Affiliation(s)
- Binwei Deng
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | | | | |
Collapse
|
8
|
Cook PR. A model for all genomes: the role of transcription factories. J Mol Biol 2010; 395:1-10. [PMID: 19852969 DOI: 10.1016/j.jmb.2009.10.031] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Revised: 09/30/2009] [Accepted: 10/14/2009] [Indexed: 12/26/2022]
Abstract
A model for all genomes involving one major architectural motif is presented: DNA or chromatin loops are tethered to "factories" through the transcription machinery-a polymerase (active or inactive) or its transcription factors (activators or repressors). These loops appear and disappear as polymerases initiate and terminate (and as factors bind and dissociate), so the structure is ever-changing and self-organizing. This model is parsimonious, detailed (and so easily tested), and incorporates elements found in various other models.
Collapse
Affiliation(s)
- Peter R Cook
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
9
|
Abstract
Chromosomes are not distributed randomly in nuclei. Appropriate positioning can activate (or repress) genes by bringing them closer to active (or inactive) compartments like euchromatin (or heterochromatin), and this is usually assumed to be driven by specific local forces (e.g., involving H bonds between nucleosomes or between nucleosomes and the lamina). Using Monte Carlo simulations, we demonstrate that nonspecific (entropic) forces acting alone are sufficient to position and shape self-avoiding polymers within a confining sphere in the ways seen in nuclei. We suggest that they can drive long flexible polymers (representing gene-rich chromosomes) to the interior, compact/thick ones (and heterochromatin) to the periphery, looped (but not linear) ones into appropriately shaped (ellipsoidal) territories, and polymers with large terminal beads (representing centromeric heterochromatin) into peripheral chromocenters. Flexible polymers tend to intermingle less than others, which is in accord with observations that gene-dense (and so flexible) chromosomes make poor translocation partners. Thus, entropic forces probably participate in the self-organization of chromosomes within nuclei.
Collapse
Affiliation(s)
- Peter R Cook
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, England, UK.
| | | |
Collapse
|
10
|
Nicodemi M, Prisco A. Thermodynamic pathways to genome spatial organization in the cell nucleus. Biophys J 2009; 96:2168-2177. [PMID: 19289043 PMCID: PMC2717292 DOI: 10.1016/j.bpj.2008.12.3919] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 11/16/2008] [Accepted: 12/09/2008] [Indexed: 12/17/2022] Open
Abstract
The architecture of the eukaryotic genome is characterized by a high degree of spatial organization. Chromosomes occupy preferred territories correlated to their state of activity and, yet, displace their genes to interact with remote sites in complex patterns requiring the orchestration of a huge number of DNA loci and molecular regulators. Far from random, this organization serves crucial functional purposes, but its governing principles remain elusive. By computer simulations of a statistical mechanics model, we show how architectural patterns spontaneously arise from the physical interaction between soluble binding molecules and chromosomes via collective thermodynamics mechanisms. Chromosomes colocalize, loops and territories form, and find their relative positions as stable thermodynamic states. These are selected by thermodynamic switches, which are regulated by concentrations/affinity of soluble mediators and by number/location of their attachment sites along chromosomes. Our thermodynamic switch model of nuclear architecture, thus, explains on quantitative grounds how well-known cell strategies of upregulation of DNA binding proteins or modification of chromatin structure can dynamically shape the organization of the nucleus.
Collapse
Affiliation(s)
- Mario Nicodemi
- Department of Physics and Complexity Science, University of Warwick, Coventry, United Kingdom.
| | | |
Collapse
|
11
|
Babu MM, Janga SC, de Santiago I, Pombo A. Eukaryotic gene regulation in three dimensions and its impact on genome evolution. Curr Opin Genet Dev 2008; 18:571-82. [PMID: 19007886 DOI: 10.1016/j.gde.2008.10.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 10/07/2008] [Accepted: 10/09/2008] [Indexed: 12/11/2022]
Abstract
Recent advances in molecular techniques and high-resolution imaging are beginning to provide exciting insights into the higher order chromatin organization within the cell nucleus and its influence on eukaryotic gene regulation. This improved understanding of gene regulation also raises fundamental questions about how spatial features might have constrained the organization of genes on eukaryotic chromosomes and how mutations that affect these processes might contribute to disease conditions. In this review, we discuss recent studies that highlight the role of spatial components in gene regulation and their impact on genome evolution. We then address implications for human diseases and outline new directions for future research.
Collapse
Affiliation(s)
- M Madan Babu
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| | | | | | | |
Collapse
|
12
|
Xu M, Cook PR. The role of specialized transcription factories in chromosome pairing. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2155-60. [PMID: 18706455 DOI: 10.1016/j.bbamcr.2008.07.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 07/03/2008] [Accepted: 07/14/2008] [Indexed: 01/12/2023]
Abstract
Homologous chromosomes can pair in somatic and germ line cells, and many mechanisms have been proposed to explain how they do so. One popular class of models involves base-pairing between DNA strands catalyzed by recombination proteins, but pairing still occurs in mutants lacking the relevant functional proteins. We discuss an alternative based on two observations: transcription occurs in factories that specialize in transcribing specific gene sub-sets, and chromosomes only pair when transcribed. Each chromosome in the haploid set has a unique array of transcription units strung along its length; we suggest each is organized into clouds of loops tethered to specialized factories. Only homologs share similar strings of clouds and factories. Pairing begins when a promoter on one chromosome initiates in the homologous and specialized factory organized mainly by its homologous partner. This transiently ties the two homologs together, to increase the chances that adjacent promoters initiate in their homologous factories and that the two homologs will be zipped together. Then, interactions between promoters and RNA polymerases in the factories mediate pairing.
Collapse
Affiliation(s)
- Meng Xu
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE UK
| | | |
Collapse
|
13
|
Faro-Trindade I, Cook PR. Transcription factories: structures conserved during differentiation and evolution. Biochem Soc Trans 2007; 34:1133-7. [PMID: 17073768 DOI: 10.1042/bst0341133] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Many cellular functions take place in discrete compartments, but our textbooks make little reference to any compartments involved in transcription. We review the evidence that active RNA polymerases and associated factors cluster into 'factories' that carry out many (perhaps all) of the functions required to generate mature transcripts. Clustering ensures high local concentrations and efficient interaction. Then, a gene must associate with the appropriate factory before it can be transcribed. Recent results show that the density and diameter of nucleoplasmic factories remain roughly constant as cells differentiate, despite large changes in the numbers of active polymerases and nucleoplasmic volumes.
Collapse
Affiliation(s)
- I Faro-Trindade
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | |
Collapse
|
14
|
Marenduzzo D, Faro-Trindade I, Cook PR. What are the molecular ties that maintain genomic loops? Trends Genet 2007; 23:126-33. [PMID: 17280735 DOI: 10.1016/j.tig.2007.01.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 11/29/2006] [Accepted: 01/18/2007] [Indexed: 01/04/2023]
Abstract
The formation of genomic loops by proteins bound at sites scattered along a chromosome has a central role in many cellular processes, such as transcription, recombination and replication. Until recently, few such loops had been analyzed in any detail, and there was little agreement about the nature of the molecular ties maintaining these loops. Recent evidence suggests that loops are found in both prokaryotes and eukaryotes, and that the transcription machinery is a molecular tie. In addition, results obtained using site-specific recombination in bacteria and chromosome conformation capture in eukaryotes support the idea that active transcription units are in close contact. These data are consistent with a model for genome organization in which active polymerases cluster into transcription 'factories', which, inevitably, loops the intervening DNA. They are also consistent with the ties functioning as barriers, silencers, enhancers or locus control regions, depending on their positions relative to other genes.
Collapse
Affiliation(s)
- Davide Marenduzzo
- School of Physics, University of Edinburgh, Mayfield Road, Edinburgh, UK
| | | | | |
Collapse
|
15
|
Faro-Trindade I, Cook PR. A conserved organization of transcription during embryonic stem cell differentiation and in cells with high C value. Mol Biol Cell 2006; 17:2910-20. [PMID: 16624866 PMCID: PMC1483028 DOI: 10.1091/mbc.e05-11-1024] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 03/06/2006] [Accepted: 04/10/2006] [Indexed: 12/15/2022] Open
Abstract
Although we have detailed information on the alterations occurring in steady-state levels of all cellular mRNAs during differentiation, we still know little about more global changes. Therefore, we investigated the numbers of molecules of RNA polymerase II that are active--and the way those molecules are organized--as two mouse cells (aneuploid F9 teratocarcinoma, and euploid and totipotent embryonic stem cells) differentiate into parietal endoderm. Quantitative immunoblotting shows the number of active molecules roughly halves. Transcription sites (detected by light and electron microscopy after allowing engaged polymerases to extend nascent transcripts in bromouridine-triphosphate) are uniformly distributed throughout the nucleoplasm. The numbers of such sites fall during differentiation as nuclei become smaller, but site density and diameter remain roughly constant. Similar site densities and diameters are found in salamander (amphibian) cells with 11-fold larger genomes, and in aneuploid HeLa cells. We conclude that active polymerases and their nascent transcripts are concentrated in a limited number of discrete nucleoplasmic sites or factories, and we speculate that the organization of transcription is conserved during both differentiation and evolution to a high C value.
Collapse
Affiliation(s)
- Inês Faro-Trindade
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | |
Collapse
|
16
|
Abstract
DNA and RNA polymerases active on bacterial and human genomes in the crowded environment of a cell are modeled as beads spaced along a string. Aggregation of the large polymerizing complexes increases the entropy of the system through an increase in entropy of the many small crowding molecules; this occurs despite the entropic costs of looping the intervening DNA. Results of a quantitative cost/benefit analysis are consistent with observations that active polymerases cluster into replication and transcription "factories" in both pro- and eukaryotes. We conclude that the second law of thermodynamics acts through nonspecific entropic forces between engaged polymerases to drive the self-organization of genomes into loops containing several thousands (and sometimes millions) of basepairs.
Collapse
Affiliation(s)
- Davide Marenduzzo
- Mathematics Institute, University of Warwick, Coventry, United Kingdom
| | | | | |
Collapse
|