1
|
Chen T, Pu M, Subramanian S, Kearns D, Rowe-Magnus D. PlzD modifies Vibrio vulnificus foraging behavior and virulence in response to elevated c-di-GMP. mBio 2023; 14:e0153623. [PMID: 37800901 PMCID: PMC10653909 DOI: 10.1128/mbio.01536-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/21/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Many free-swimming bacteria propel themselves through liquid using rotary flagella, and mounting evidence suggests that the inhibition of flagellar rotation initiates biofilm formation, a sessile lifestyle that is a nearly universal surface colonization paradigm in bacteria. In general, motility and biofilm formation are inversely regulated by the intracellular second messenger bis-(3´-5´)-cyclic dimeric guanosine monophosphate (c-di-GMP). Here, we identify a protein, PlzD, bearing a conserved c-di-GMP binding PilZ domain that localizes to the flagellar pole in a c-di-GMP-dependent manner and alters the foraging behavior, biofilm, and virulence characteristics of the opportunistic human pathogen, Vibrio vulnificus. Our data suggest that PlzD interacts with components of the flagellar stator to decrease bacterial swimming speed and changes in swimming direction, and these activities are enhanced when cellular c-di-GMP levels are elevated. These results reveal a physical link between a second messenger (c-di-GMP) and an effector (PlzD) that promotes transition from a motile to a sessile state in V. vulnificus.
Collapse
Affiliation(s)
- Tianyi Chen
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Meng Pu
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sundharraman Subramanian
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Dan Kearns
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Dean Rowe-Magnus
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
- Department of Molecular and Cellular Biochemistry, Indiana University Bloomington, Bloomington, Indiana, USA
| |
Collapse
|
2
|
Banerjee P, Sahoo PK, Sheenu, Adhikary A, Ruhal R, Jain D. Molecular and structural facets of c-di-GMP signalling associated with biofilm formation in Pseudomonas aeruginosa. Mol Aspects Med 2021; 81:101001. [PMID: 34311995 DOI: 10.1016/j.mam.2021.101001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/09/2021] [Accepted: 07/16/2021] [Indexed: 12/29/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen and is the primary cause of nosocomial infections. Biofilm formation by this organism results in chronic and hard to eradicate infections. The intracellular signalling molecule bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) is a secondary messenger in bacterial cells crucial for motile to sessile transition. The signalling pathway components encompass two classes of enzymes with antagonistic activities, the diguanylate cyclases (DGCs) and phosphodiesterases (PDEs) that regulate the cellular levels of c-di-GMP at distinct stages of biofilm initiation, maturation and dispersion. This review summarizes the structural analysis and functional studies of the DGCs and PDEs involved in biofilm regulation in P. aeruginosa. In addition, we also describe the effector proteins that sense the perturbations in c-di-GMP levels to elicit a functional output. Finally, we discuss possible mechanisms that allow the dynamic levels of c-di-GMP to regulate cognate cellular response. Uncovering the details of the regulation of the c-di-GMP signalling pathway is vital for understanding the behaviour of the pathogen and characterization of novel targets for anti-biofilm interventions.
Collapse
Affiliation(s)
- Priyajit Banerjee
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India; Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India
| | - Pankaj Kumar Sahoo
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Sheenu
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Anirban Adhikary
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Rohit Ruhal
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Deepti Jain
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India.
| |
Collapse
|
3
|
Molecular response of Deinococcus radiodurans to simulated microgravity explored by proteometabolomic approach. Sci Rep 2019; 9:18462. [PMID: 31804539 PMCID: PMC6895123 DOI: 10.1038/s41598-019-54742-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022] Open
Abstract
Regarding future space exploration missions and long-term exposure experiments, a detailed investigation of all factors present in the outer space environment and their effects on organisms of all life kingdoms is advantageous. Influenced by the multiple factors of outer space, the extremophilic bacterium Deinococcus radiodurans has been long-termly exposed outside the International Space Station in frames of the Tanpopo orbital mission. The study presented here aims to elucidate molecular key components in D. radiodurans, which are responsible for recognition and adaptation to simulated microgravity. D. radiodurans cultures were grown for two days on plates in a fast-rotating 2-D clinostat to minimize sedimentation, thus simulating reduced gravity conditions. Subsequently, metabolites and proteins were extracted and measured with mass spectrometry-based techniques. Our results emphasize the importance of certain signal transducer proteins, which showed higher abundances in cells grown under reduced gravity. These proteins activate a cellular signal cascade, which leads to differences in gene expressions. Proteins involved in stress response, repair mechanisms and proteins connected to the extracellular milieu and the cell envelope showed an increased abundance under simulated microgravity. Focusing on the expression of these proteins might present a strategy of cells to adapt to microgravity conditions.
Collapse
|
4
|
Kostick-Dunn JL, Izac JR, Freedman JC, Szkotnicki LT, Oliver LD, Marconi RT. The Borrelia burgdorferi c-di-GMP Binding Receptors, PlzA and PlzB, Are Functionally Distinct. Front Cell Infect Microbiol 2018; 8:213. [PMID: 30050868 PMCID: PMC6050380 DOI: 10.3389/fcimb.2018.00213] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/07/2018] [Indexed: 12/19/2022] Open
Abstract
Cyclic-di-GMP (c-di-GMP) contributes to the regulation of processes required by the Lyme disease (LD) spirochetes to complete the tick-mammal enzootic cycle. Our understanding of the effector mechanisms of c-di-GMP in the Borrelia is evolving. While most LD spirochete isolates encode a single PilZ domain containing c-di-GMP receptor designated as PlzA, genome analyses have revealed that a subset encode a second PilZ domain protein (PlzB). The c-di-GMP binding potential of PlzB, and its role in LD spirochete biology, have not been investigated. To determine if PlzB binds c-di-GMP, plzB from B. burgdorferi isolate ZS7 was PCR amplified, cloned, and recombinant protein generated. PlzB bound c-di-GMP but not other nucleotides, indicating a specific binding interaction. To determine if PlzA and PlzB are functionally synonymous, a series of allelic-exchange gene deletion and cis-complemented strains were generated in the B. burgdorferi B31 background. B. burgdorferi B31-ΔplzA was competent to infect Ixodes scapularis larvae but not mice when delivered by either needle or tick feeding. B. burgdorferi B31-ΔplzA also displayed an atypical motility phenotype. Complementation in cis of B. burgdorferi B31-ΔplzA with plzA (B31-plzA KI) restored wild-type (wt) phenotype. However, a strain complemented in cis with plzB (B31-plzB KI) did not. The data presented here are consistent with an earlier study that demonstrated that PlzA plays an essential role in spirochete survival in the mammalian environment. We add to our understanding of the c-di-GMP regulatory network by demonstrating that while PlzB binds c-di-GMP, it is not functionally synonymous with PlzA. The absence of plzB from most strains suggests that it is not required for survival. One possibility is that cells that harbor both PlzA and PlzB might have enhanced biological fitness or increased virulence.
Collapse
Affiliation(s)
- Jessica L Kostick-Dunn
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA, United States
| | - Jerilyn R Izac
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA, United States
| | - John C Freedman
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA, United States
| | - Lee T Szkotnicki
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA, United States
| | - Lee D Oliver
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA, United States
| | - Richard T Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA, United States
| |
Collapse
|
5
|
Lo YL, Shen L, Chang CH, Bhuwan M, Chiu CH, Chang HY. Regulation of Motility and Phenazine Pigment Production by FliA Is Cyclic-di-GMP Dependent in Pseudomonas aeruginosa PAO1. PLoS One 2016; 11:e0155397. [PMID: 27175902 PMCID: PMC4866697 DOI: 10.1371/journal.pone.0155397] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 04/28/2016] [Indexed: 12/21/2022] Open
Abstract
The transcription factor FliA, also called sigma 28, is a major regulator of bacterial flagellar biosynthesis genes. Growing evidence suggest that in addition to motility, FliA is involved in controlling numerous bacterial behaviors, even though the underlying regulatory mechanism remains unclear. By using a transcriptional fusion to gfp that responds to cyclic (c)-di-GMP, this study revealed a higher c-di-GMP concentration in the fliA deletion mutant of Pseudomonas aeruginosa than in its wild-type strain PAO1. A comparative analysis of transcriptome profiles of P. aeruginosa PAO1 and its fliA deletion mutant revealed an altered expression of several c-di-GMP-modulating enzyme-encoding genes in the fliA deletion mutant. Moreover, the downregulation of PA4367 (bifA), a Glu-Ala-Leu motif-containing phosphodiesterase, in the fliA deletion mutant was confirmed using the β-glucuronidase reporter gene assay. FliA also altered pyocyanin and pyorubin production by modulating the c-di-GMP concentration. Complementing the fliA mutant strain with bifA restored the motility defect and pigment overproduction of the fliA mutant. Our results indicate that in addition to regulating flagellar gene transcription, FliA can modulate the c-di-GMP concentration to regulate the swarming motility and phenazine pigment production in P. aeruginosa.
Collapse
Affiliation(s)
- Yi-Ling Lo
- Institute of Molecular Medicine, National Tsing Hua University, Hsin Chu, Taiwan
| | - Lunda Shen
- Institute of Molecular Medicine, National Tsing Hua University, Hsin Chu, Taiwan
| | - Chih-Hsuan Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsin Chu, Taiwan
| | - Manish Bhuwan
- Institute of Molecular Medicine, National Tsing Hua University, Hsin Chu, Taiwan
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Hwan-You Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsin Chu, Taiwan
- * E-mail:
| |
Collapse
|
6
|
[Networks involving quorum sensing, cyclic-di-GMP and nitric oxide on biofilm production in bacteria]. Rev Argent Microbiol 2014; 46:242-55. [PMID: 25444134 DOI: 10.1016/s0325-7541(14)70079-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 06/03/2014] [Indexed: 01/06/2023] Open
Abstract
Bacterial biofilms are ubiquitous in nature, and their flexibility is derived in part from a complex extracellular matrix that can be made-to-order to cope with environmental demand. Although common developmental stages leading to biofilm formation have been described, an in-depth knowledge of genetic and signaling is required to understand biofilm formation. Bacteria detect changes in population density by quorum sensing and particular environmental conditions, using signals such as cyclic di-GMP or nitric oxide. The significance of understanding these signaling pathways lies in that they control a broad variety of functions such as biofilm formation, and motility, providing benefits to bacteria as regards host colonization, defense against competitors, and adaptation to changing environments. Due to the importance of these features, we here review the signaling network and regulatory connections among quorum sensing, c-di-GMP and nitric oxide involving biofilm formation.
Collapse
|
7
|
Sarkar J, Frederick J, Marconi RT. The Hpk2-Rrp2 two-component regulatory system of Treponema denticola: a potential regulator of environmental and adaptive responses. Mol Oral Microbiol 2010; 25:241-51. [PMID: 20618698 DOI: 10.1111/j.2041-1014.2010.00578.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Treponema denticola levels in the gingival crevice become elevated as periodontal disease develops. Oral treponemes may account for as much as 40% of the total bacterial population in the periodontal pocket. The stimuli that trigger enhanced growth of T. denticola, and the mechanisms associated with the transmission of these signals, remain to be defined. We hypothesize that the T. denticola open reading frames tde1970 (histidine kinase) and tde1969 (response regulator) constitute a functional two-component regulatory system that regulates, at least in part, responses to the changing environmental conditions associated with the development of periodontal disease. The results presented demonstrate that tde1970 and tde1969 are conserved, universal among T. denticola isolates and transcribed as part of a seven-gene operon in a growth-phase-dependent manner. tde1970 undergoes autophosphorylation and transfers phosphate to tde1969. Henceforth, the proteins encoded by these open reading frames are designated as Hpk2 and Rrp2 respectively. Hpk2 autophosphorylation kinetics were influenced by environmental conditions and by the presence or absence of a PAS domain. It can be concluded that Hpk2 and Rrp2 constitute a functional two-component system that contributes to environmental sensing.
Collapse
Affiliation(s)
- J Sarkar
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23298-0678, USA
| | | | | |
Collapse
|
8
|
Ching SM, Tan WJ, Chua KL, Lam Y. Synthesis of cyclic di-nucleotidic acids as potential inhibitors targeting diguanylate cyclase. Bioorg Med Chem 2010; 18:6657-65. [PMID: 20797869 DOI: 10.1016/j.bmc.2010.07.068] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 07/28/2010] [Accepted: 07/29/2010] [Indexed: 11/30/2022]
Abstract
Five analogs of cyclic di-nucleotidic acid including c-di-GMP were synthesized and evaluated for their biological activities on Slr1143, a diguanylate cyclase of Synechocystis sp. Slr1143 was overexpressed from the recombinant plasmid which contained the gene of interest and subsequently purified by affinity chromatography. A new HPLC method capable of separating the compound and product peaks with good resolution was optimized and applied to the analysis of the compounds. Results obtained show that cyclic di-inosinylic acid 1b demonstrates a stronger inhibition on Slr1143 than c-di-GMP and is a potential inhibitor for biofilm formation.
Collapse
Affiliation(s)
- Shi Min Ching
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | | | | | | |
Collapse
|