1
|
Viskupicova J, Espinoza-Fonseca LM. Allosteric Modulation of SERCA Pumps in Health and Disease: Structural Dynamics, Posttranslational Modifications, and Therapeutic Potential. J Mol Biol 2025:169200. [PMID: 40349954 DOI: 10.1016/j.jmb.2025.169200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/29/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
Sarco/endoplasmic reticulum (SR/ER) Ca2+-ATPase (SERCA) pumps are ubiquitous membrane proteins in all eukaryotic cells, playing a central role in maintaining intracellular calcium homeostasis by re-sequestering Ca2+ ions from the cytosol into the SR/ER at the expense of ATP hydrolysis. SERCA pumps are well-characterized components of the calcium transport machinery in the cell, playing a role in various physiological processes, including muscle contraction, energy metabolism, secretion exocytosis, gene expression, synaptic transmission, cell survival, and fertilization. Allosteric regulation of SERCA pumps plays a key role in health and disease, and modulation of the SERCA pumps has emerged as a therapeutic approach for the treatment of cardiovascular, muscular, metabolic, and neurodegenerative disorders. In this review, we provide a comprehensive overview of the structural dynamics underlying allosteric modulation of SERCA, focusing on the effects of endogenous regulatory proteins, Ca2+ ions, ATP, and small molecules. We also examine in detail the role of posttranslational modifications as allosteric modulators of SERCA function, focusing on the oxidative modifications S-glutathionylation, S-nitrosylation, tyrosine nitration, and carbonylation, and non-oxidative modifications that include SUMOylation, acetylation, O-GlcNAcylation, phosphorylation, and ubiquitination. Finally, we discuss the therapeutic potential and challenges of allosteric modulation of SERCA pumps, including the design of small-molecule effectors, microRNA-based interventions, and targeted strategies that modulate SERCA posttranslational regulation. Overall, this review aims to bridge the gap between the mechanisms underlying allosteric modulation of SERCA and the translation of basic science discoveries into effective therapies targeting SERCA pumps.
Collapse
Affiliation(s)
- Jana Viskupicova
- Centre of Experimental Medicine, Institute of Experimental Pharmacology & Toxicology, Slovak Academy of Sciences, 84104 Bratislava, Slovakia.
| | - L Michel Espinoza-Fonseca
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Magkakis K, Orädd F, Ahn B, Da Silva V, Appio R, Plivelic TS, Andersson M. Real-time structural characterization of protein response to a caged compound by fast detector readout and high-brilliance synchrotron radiation. Structure 2024; 32:1519-1527.e3. [PMID: 38889721 DOI: 10.1016/j.str.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/19/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024]
Abstract
Protein dynamics are essential to biological function, and methods to determine such structural rearrangements constitute a frontier in structural biology. Synchrotron radiation can track real-time protein dynamics, but accessibility to dedicated high-flux single X-ray pulse time-resolved beamlines is scarce and protein targets amendable to such characterization are limited. These limitations can be alleviated by triggering the reaction by laser-induced activation of a caged compound and probing the structural dynamics by fast-readout detectors. In this work, we established time-resolved X-ray solution scattering (TR-XSS) at the CoSAXS beamline at the MAX IV Laboratory synchrotron. Laser-induced activation of caged ATP initiated phosphoryl transfer in the adenylate kinase (AdK) enzyme, and the reaction was monitored up to 50 ms with a 2-ms temporal resolution achieved by the detector readout. The time-resolved structural signal of the protein showed minimal radiation damage effects and excellent agreement to data collected by a single X-ray pulse approach.
Collapse
Affiliation(s)
| | - Fredrik Orädd
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Byungnam Ahn
- MAX IV Laboratory, Lund University, Lund, Sweden
| | | | | | | | | |
Collapse
|
3
|
Pounot K, Schirò G, Levantino M. Tracking the structural dynamics of proteins with time-resolved X-ray solution scattering. Curr Opin Struct Biol 2023; 82:102661. [PMID: 37536065 DOI: 10.1016/j.sbi.2023.102661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/03/2023] [Accepted: 06/29/2023] [Indexed: 08/05/2023]
Abstract
Relevant events during protein function such as ligand binding/release and interaction with substrates or with light are often accompanied by out-of-equilibrium structural dynamics. Time-resolved experimental techniques have been developed to follow protein structural changes as they happen in real time after a given reaction-triggering event. Time-resolved X-ray solution scattering is a promising approach that bears structural sensitivity with temporal resolution in the femto-to-millisecond time range, depending on the X-ray source characteristics and the triggering method. Here we present the basic principles of the technique together with a description of the most relevant results recently published and a discussion on the computational methods currently developed to achieve a structural interpretation of the time-resolved X-ray solution scattering experimental data.
Collapse
Affiliation(s)
- Kevin Pounot
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, France
| | - Giorgio Schirò
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France.
| | - Matteo Levantino
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, France.
| |
Collapse
|
4
|
Orädd F, Ravishankar H, Goodman J, Rogne P, Backman L, Duelli A, Nors Pedersen M, Levantino M, Wulff M, Wolf-Watz M, Andersson M. Tracking the ATP-binding response in adenylate kinase in real time. SCIENCE ADVANCES 2021; 7:eabi5514. [PMID: 34788091 PMCID: PMC8597995 DOI: 10.1126/sciadv.abi5514] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/27/2021] [Indexed: 05/25/2023]
Abstract
The biological function of proteins is critically dependent on dynamics inherent to the native structure. Such structural dynamics obey a predefined order and temporal timing to execute the specific reaction. Determination of the cooperativity of key structural rearrangements requires monitoring protein reactions in real time. In this work, we used time-resolved x-ray solution scattering (TR-XSS) to visualize structural changes in the Escherichia coli adenylate kinase (AdK) enzyme upon laser-induced activation of a protected ATP substrate. A 4.3-ms transient intermediate showed partial closing of both the ATP- and AMP-binding domains, which indicates a cooperative closing mechanism. The ATP-binding domain also showed local unfolding and breaking of an Arg131-Asp146 salt bridge. Nuclear magnetic resonance spectroscopy data identified similar unfolding in an Arg131Ala AdK mutant, which refolded in a closed, substrate-binding conformation. The observed structural dynamics agree with a “cracking mechanism” proposed to underlie global structural transformation, such as allostery, in proteins.
Collapse
Affiliation(s)
- Fredrik Orädd
- Department of Chemistry, Umeå University, Linnaeus Väg 10, 901 87 Umeå, Sweden
| | - Harsha Ravishankar
- Department of Chemistry, Umeå University, Linnaeus Väg 10, 901 87 Umeå, Sweden
| | - Jack Goodman
- Department of Chemistry, Umeå University, Linnaeus Väg 10, 901 87 Umeå, Sweden
| | - Per Rogne
- Department of Chemistry, Umeå University, Linnaeus Väg 10, 901 87 Umeå, Sweden
| | - Lars Backman
- Department of Chemistry, Umeå University, Linnaeus Väg 10, 901 87 Umeå, Sweden
| | - Annette Duelli
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Martin Nors Pedersen
- ESRF—The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38043 Grenoble, Cedex 9, France
| | - Matteo Levantino
- ESRF—The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38043 Grenoble, Cedex 9, France
| | - Michael Wulff
- ESRF—The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38043 Grenoble, Cedex 9, France
| | - Magnus Wolf-Watz
- Department of Chemistry, Umeå University, Linnaeus Väg 10, 901 87 Umeå, Sweden
| | - Magnus Andersson
- Department of Chemistry, Umeå University, Linnaeus Väg 10, 901 87 Umeå, Sweden
| |
Collapse
|
5
|
Orädd F, Andersson M. Tracking Membrane Protein Dynamics in Real Time. J Membr Biol 2021; 254:51-64. [PMID: 33409541 PMCID: PMC7936944 DOI: 10.1007/s00232-020-00165-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022]
Abstract
Abstract Membrane proteins govern critical cellular processes and are central to human health and associated disease. Understanding of membrane protein function is obscured by the vast ranges of structural dynamics—both in the spatial and time regime—displayed in the protein and surrounding membrane. The membrane lipids have emerged as allosteric modulators of membrane protein function, which further adds to the complexity. In this review, we discuss several examples of membrane dependency. A particular focus is on how molecular dynamics (MD) simulation have aided to map membrane protein dynamics and how enhanced sampling methods can enable observing the otherwise inaccessible biological time scale. Also, time-resolved X-ray scattering in solution is highlighted as a powerful tool to track membrane protein dynamics, in particular when combined with MD simulation to identify transient intermediate states. Finally, we discuss future directions of how to further develop this promising approach to determine structural dynamics of both the protein and the surrounding lipids. Graphic Abstract ![]()
Collapse
Affiliation(s)
- Fredrik Orädd
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | |
Collapse
|
6
|
Kim J, Kim JG, Ki H, Ahn CW, Ihee H. Estimating signal and noise of time-resolved X-ray solution scattering data at synchrotrons and XFELs. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:633-645. [PMID: 32381763 PMCID: PMC7206544 DOI: 10.1107/s1600577520002738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/27/2020] [Indexed: 06/11/2023]
Abstract
Elucidating the structural dynamics of small molecules and proteins in the liquid solution phase is essential to ensure a fundamental understanding of their reaction mechanisms. In this regard, time-resolved X-ray solution scattering (TRXSS), also known as time-resolved X-ray liquidography (TRXL), has been established as a powerful technique for obtaining the structural information of reaction intermediates and products in the liquid solution phase and is expected to be applied to a wider range of molecules in the future. A TRXL experiment is generally performed at the beamline of a synchrotron or an X-ray free-electron laser (XFEL) to provide intense and short X-ray pulses. Considering the limited opportunities to use these facilities, it is necessary to verify the plausibility of a target experiment prior to the actual experiment. For this purpose, a program has been developed, referred to as S-cube, which is short for a Solution Scattering Simulator. This code allows the routine estimation of the shape and signal-to-noise ratio (SNR) of TRXL data from known experimental parameters. Specifically, S-cube calculates the difference scattering curve and the associated quantum noise on the basis of the molecular structure of the target reactant and product, the target solvent, the energy of the pump laser pulse and the specifications of the beamline to be used. Employing a simplified form for the pair-distribution function required to calculate the solute-solvent cross term greatly increases the calculation speed as compared with a typical TRXL data analysis. Demonstrative applications of S-cube are presented, including the estimation of the expected TRXL data and SNR level for the future LCLS-II HE beamlines.
Collapse
Affiliation(s)
- Jungmin Kim
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jong Goo Kim
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hosung Ki
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Chi Woo Ahn
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyotcherl Ihee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
7
|
Ravishankar H, Pedersen MN, Eklund M, Sitsel A, Li C, Duelli A, Levantino M, Wulff M, Barth A, Olesen C, Nissen P, Andersson M. Tracking Ca 2+ ATPase intermediates in real time by x-ray solution scattering. SCIENCE ADVANCES 2020; 6:eaaz0981. [PMID: 32219166 PMCID: PMC7083613 DOI: 10.1126/sciadv.aaz0981] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/23/2019] [Indexed: 05/14/2023]
Abstract
Sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) transporters regulate calcium signaling by active calcium ion reuptake to internal stores. Structural transitions associated with transport have been characterized by x-ray crystallography, but critical intermediates involved in the accessibility switch across the membrane are missing. We combined time-resolved x-ray solution scattering (TR-XSS) experiments and molecular dynamics (MD) simulations for real-time tracking of concerted SERCA reaction cycle dynamics in the native membrane. The equilibrium [Ca2]E1 state before laser activation differed in the domain arrangement compared with crystal structures, and following laser-induced release of caged ATP, a 1.5-ms intermediate was formed that showed closure of the cytoplasmic domains typical of E1 states with bound Ca2+ and ATP. A subsequent 13-ms transient state showed a previously unresolved actuator (A) domain arrangement that exposed the ADP-binding site after phosphorylation. Hence, the obtained TR-XSS models determine the relative timing of so-far elusive domain rearrangements in a native environment.
Collapse
Affiliation(s)
- Harsha Ravishankar
- Department of Chemistry, Umeå University. Linnaeus Väg 10, 901 87 Umeå, Sweden
| | | | | | - Aljona Sitsel
- DANDRITE–Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University. Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Chenge Li
- Department of Biochemistry and Biophysics, Stockholm University. Svante Arrhenius Väg 16C, 106 91 Stockholm, Sweden
| | - Annette Duelli
- Department of Biomedical Sciences, University of Copenhagen. Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Matteo Levantino
- European Synchrotron Radiation Facility, Grenoble, Cedex 38043, BP 220, France
- Department of Physics and Chemistry, University of Palermo, Viale delle Scienze -Ed 18, 90128 Palermo, Italy
| | - Michael Wulff
- European Synchrotron Radiation Facility, Grenoble, Cedex 38043, BP 220, France
| | - Andreas Barth
- Department of Biochemistry and Biophysics, Stockholm University. Svante Arrhenius Väg 16C, 106 91 Stockholm, Sweden
| | - Claus Olesen
- Department of Biomedicine, Aarhus University, Vest Ole Worms Allé 3, 113 8000 Aarhus C, Denmark
| | - Poul Nissen
- DANDRITE–Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University. Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Magnus Andersson
- Department of Chemistry, Umeå University. Linnaeus Väg 10, 901 87 Umeå, Sweden
- Corresponding author.
| |
Collapse
|
8
|
Interpreting solution X-ray scattering data using molecular simulations. Curr Opin Struct Biol 2018; 49:18-26. [DOI: 10.1016/j.sbi.2017.11.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/20/2017] [Accepted: 11/04/2017] [Indexed: 01/23/2023]
|
9
|
Ultrafast anisotropic protein quake propagation after CO photodissociation in myoglobin. Proc Natl Acad Sci U S A 2016; 113:10565-70. [PMID: 27601659 DOI: 10.1073/pnas.1603539113] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
"Protein quake" denotes the dissipation of excess energy across a protein, in response to a local perturbation such as the breaking of a chemical bond or the absorption of a photon. Femtosecond time-resolved small- and wide-angle X-ray scattering (TR-SWAXS) is capable of tracking such ultrafast protein dynamics. However, because the structural interpretation of the experiments is complicated, a molecular picture of protein quakes has remained elusive. In addition, new questions arose from recent TR-SWAXS data that were interpreted as underdamped oscillations of an entire protein, thus challenging the long-standing concept of overdamped global protein dynamics. Based on molecular-dynamics simulations, we present a detailed molecular movie of the protein quake after carbon monoxide (CO) photodissociation in myoglobin. The simulations suggest that the protein quake is characterized by a single pressure peak that propagates anisotropically within 500 fs across the protein and further into the solvent. By computing TR-SWAXS patterns from the simulations, we could interpret features in the reciprocal-space SWAXS signals as specific real-space dynamics, such as CO displacement and pressure wave propagation. Remarkably, we found that the small-angle data primarily detect modulations of the solvent density but not oscillations of the bare protein, thereby reconciling recent TR-SWAXS experiments with the notion of overdamped global protein dynamics.
Collapse
|
10
|
Brinkmann LUL, Hub JS. Anisotropic time-resolved solution X-ray scattering patterns from explicit-solvent molecular dynamics. J Chem Phys 2015; 143:104108. [DOI: 10.1063/1.4930013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Levin U. L. Brinkmann
- Institute for Microbiology and Genetics, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Jochen S. Hub
- Institute for Microbiology and Genetics, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| |
Collapse
|
11
|
Chaudhuri BN. Emerging applications of small angle solution scattering in structural biology. Protein Sci 2015; 24:267-76. [PMID: 25516491 PMCID: PMC4353354 DOI: 10.1002/pro.2624] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 12/05/2014] [Indexed: 12/12/2022]
Abstract
Small angle solution X-ray and neutron scattering recently resurfaced as powerful tools to address an array of biological problems including folding, intrinsic disorder, conformational transitions, macromolecular crowding, and self or hetero-assembling of biomacromolecules. In addition, small angle solution scattering complements crystallography, nuclear magnetic resonance spectroscopy, and other structural methods to aid in the structure determinations of multidomain or multicomponent proteins or nucleoprotein assemblies. Neutron scattering with hydrogen/deuterium contrast variation, or X-ray scattering with sucrose contrast variation to a certain extent, is a convenient tool for characterizing the organizations of two-component systems such as a nucleoprotein or a lipid-protein assembly. Time-resolved small and wide-angle solution scattering to study biological processes in real time, and the use of localized heavy-atom labeling and anomalous solution scattering for applications as FRET-like molecular rulers, are amongst promising newer developments. Despite the challenges in data analysis and interpretation, these X-ray/neutron solution scattering based approaches hold great promise for understanding a wide variety of complex processes prevalent in the biological milieu.
Collapse
Affiliation(s)
- Barnali N Chaudhuri
- Faculty of Life Sciences and Biotechnology, South Asian UniversityAkbar Bhawan, Chanakyapuri, New Delhi, India
| |
Collapse
|
12
|
Wickstrand C, Dods R, Royant A, Neutze R. Bacteriorhodopsin: Would the real structural intermediates please stand up? Biochim Biophys Acta Gen Subj 2014; 1850:536-53. [PMID: 24918316 DOI: 10.1016/j.bbagen.2014.05.021] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/23/2014] [Accepted: 05/29/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND Bacteriorhodopsin (bR) is the simplest known light driven proton pump and has been heavily studied using structural methods: eighty four X-ray diffraction, six electron diffraction and three NMR structures of bR are deposited within the protein data bank. Twenty one X-ray structures report light induced structural changes and changes induced by mutation, changes in pH, thermal annealing or X-ray induced photo-reduction have also been examined. SCOPE OF REVIEW We argue that light-induced structural changes that are replicated across several studies by independent research groups are those most likely to represent what is happening in reality. We present both internal distance matrix analyses that sort deposited bR structures into hierarchal trees, and difference Fourier analysis of deposited X-ray diffraction data. MAJOR CONCLUSIONS An internal distance matrix analysis separates most wild-type bR structures according to their different crystal forms, indicating how the protein's structure is influenced by crystallization conditions. A similar analysis clusters eleven studies of illuminated bR crystals as one branch of a hierarchal tree with reproducible movements of the extracellular portion of helix C towards helix G, and of the cytoplasmic portion of helix F away from helices A, B and G. All crystallographic data deposited for illuminated crystals show negative difference density on a water molecule (Wat402) that forms H-bonds to the retinal Schiff Base and two aspartate residues (Asp85, Asp212) in the bR resting state. Other recurring difference density features indicated reproducible side-chain, backbone and water molecule displacements. X-ray induced radiation damage also disorders Wat402 but acts via cleaving the head-groups of Asp85 and Asp212. GENERAL SIGNIFICANCE A remarkable level of agreement exists when deposited structures and crystallographic observations are viewed as a whole. From this agreement a unified picture of the structural mechanism of light-induced proton pumping by bR emerges. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.
Collapse
Affiliation(s)
- Cecilia Wickstrand
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Robert Dods
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Antoine Royant
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France; CNRS, IBS, F-38044 Grenoble, France; CEA, IBS, F-38044 Grenoble, France; European Synchrotron Radiation Facility, F-38043 Grenoble, France.
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden.
| |
Collapse
|
13
|
Grossman M, Sela-Passwell N, Sagi I. Achieving broad molecular insights into dynamic protein interactions by integrated structural-kinetic approaches. Curr Opin Struct Biol 2011; 21:678-85. [PMID: 21945040 DOI: 10.1016/j.sbi.2011.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/21/2011] [Accepted: 07/31/2011] [Indexed: 11/30/2022]
Abstract
A network of dynamic protein interactions with their protein partners, substrates, and ligands is known to be crucial for biological function. Revealing molecular and structural-based mechanisms at atomic resolution and in real-time is fundamental for achieving a basic understanding of cellular processes. These technically challenging goals may be achieved by combining time-resolved spectroscopic and structural-kinetic tools, thus providing broad insights into specific molecular events over a wide range of timescales. Here we review representative studies utilizing such an integrated real-time structural approach designed to reveal molecular mechanisms underlying protein interactions at atomic resolution.
Collapse
Affiliation(s)
- Moran Grossman
- Departments of Structural Biology and Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
14
|
Malmerberg E, Omran Z, Hub JS, Li X, Katona G, Westenhoff S, Johansson LC, Andersson M, Cammarata M, Wulff M, van der Spoel D, Davidsson J, Specht A, Neutze R. Time-resolved WAXS reveals accelerated conformational changes in iodoretinal-substituted proteorhodopsin. Biophys J 2011; 101:1345-53. [PMID: 21943415 DOI: 10.1016/j.bpj.2011.07.050] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/15/2011] [Accepted: 07/15/2011] [Indexed: 12/20/2022] Open
Abstract
Time-resolved wide-angle x-ray scattering (TR-WAXS) is an emerging biophysical method which probes protein conformational changes with time. Here we present a comparative TR-WAXS study of native green-absorbing proteorhodopsin (pR) from SAR86 and a halogenated derivative for which the retinal chromophore has been replaced with 13-desmethyl-13-iodoretinal (13-I-pR). Transient absorption spectroscopy differences show that the 13-I-pR photocycle is both accelerated and displays more complex kinetics than native pR. TR-WAXS difference data also reveal that protein structural changes rise and decay an order-of-magnitude more rapidly for 13-I-pR than native pR. Despite these differences, the amplitude and nature of the observed helical motions are not significantly affected by the substitution of the retinal's C-20 methyl group with an iodine atom. Molecular dynamics simulations indicate that a significant increase in free energy is associated with the 13-cis conformation of 13-I-pR, consistent with our observation that the transient 13-I-pR conformational state is reached more rapidly. We conclude that although the conformational trajectory is accelerated, the major transient conformation of pR is unaffected by the substitution of an iodinated retinal chromophore.
Collapse
Affiliation(s)
- Erik Malmerberg
- Department of Chemistry, Biochemistry and Biophysics, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abela R, Patterson B. Time-resolved scattering from chemical systems at the proposed SwissFEL X-ray laser project. Trends Analyt Chem 2010. [DOI: 10.1016/j.trac.2010.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Westenhoff S, Nazarenko E, Malmerberg E, Davidsson J, Katona G, Neutze R. Time-resolved structural studies of protein reaction dynamics: a smorgasbord of X-ray approaches. Acta Crystallogr A 2010; 66:207-19. [PMID: 20164644 PMCID: PMC2824530 DOI: 10.1107/s0108767309054361] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 12/16/2009] [Indexed: 11/26/2022] Open
Abstract
Time-resolved structural studies of proteins have undergone several significant developments during the last decade. Recent developments using time-resolved X-ray methods, such as time-resolved Laue diffraction, low-temperature intermediate trapping, time-resolved wide-angle X-ray scattering and time-resolved X-ray absorption spectroscopy, are reviewed. Proteins undergo conformational changes during their biological function. As such, a high-resolution structure of a protein’s resting conformation provides a starting point for elucidating its reaction mechanism, but provides no direct information concerning the protein’s conformational dynamics. Several X-ray methods have been developed to elucidate those conformational changes that occur during a protein’s reaction, including time-resolved Laue diffraction and intermediate trapping studies on three-dimensional protein crystals, and time-resolved wide-angle X-ray scattering and X-ray absorption studies on proteins in the solution phase. This review emphasizes the scope and limitations of these complementary experimental approaches when seeking to understand protein conformational dynamics. These methods are illustrated using a limited set of examples including myoglobin and haemoglobin in complex with carbon monoxide, the simple light-driven proton pump bacteriorhodopsin, and the superoxide scavenger superoxide reductase. In conclusion, likely future developments of these methods at synchrotron X-ray sources and the potential impact of emerging X-ray free-electron laser facilities are speculated upon.
Collapse
Affiliation(s)
- Sebastian Westenhoff
- Department of Chemistry, Biochemistry and Biophysics, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|
17
|
Lee JH, Ihee H. Advantages of time-resolved difference X-ray solution scattering curves in analyzing solute molecular structure. Struct Chem 2009. [DOI: 10.1007/s11224-009-9521-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Andersson M, Malmerberg E, Westenhoff S, Katona G, Cammarata M, Wöhri AB, Johansson LC, Ewald F, Eklund M, Wulff M, Davidsson J, Neutze R. Structural Dynamics of Light-Driven Proton Pumps. Structure 2009; 17:1265-75. [DOI: 10.1016/j.str.2009.07.007] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 07/07/2009] [Accepted: 07/09/2009] [Indexed: 10/20/2022]
|
19
|
Specht A, Bolze F, Omran Z, Nicoud JF, Goeldner M. Photochemical tools to study dynamic biological processes. HFSP JOURNAL 2009; 3:255-64. [PMID: 20119482 PMCID: PMC2799987 DOI: 10.2976/1.3132954] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 04/21/2009] [Indexed: 11/19/2022]
Abstract
Light-responsive biologically active compounds offer the possibility to study the dynamics of biological processes. Phototriggers and photoswitches have been designed, providing the capability to rapidly cause the initiation of wide range of dynamic biological phenomena. We will discuss, in this article, recent developments in the field of light-triggered chemical tools, specially how two-photon excitation, "caged" fluorophores, and the photoregulation of protein activities in combination with time-resolved x-ray techniques should break new grounds in the understanding of dynamic biological processes.
Collapse
Affiliation(s)
- Alexandre Specht
- Laboratoire de Conception et Application de Molécules Bioactives, Faculté de Pharmacie, UMR 7199, Université de Strasbourg-CNRS, 74 route du Rhin, F-67401 Illkirch-Graffenstaden Cedex, France
| | - Frédéric Bolze
- Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, UMR 7213, Université de Strasbourg-CNRS, 74 route du Rhin, F-67401 Illkirch-Graffenstaden Cedex, France
| | - Ziad Omran
- Laboratoire de Conception et Application de Molécules Bioactives, Faculté de Pharmacie, UMR 7199, Université de Strasbourg-CNRS, 74 route du Rhin, F-67401 Illkirch-Graffenstaden Cedex, France
| | - Jean-François Nicoud
- Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, UMR 7213, Université de Strasbourg-CNRS, 74 route du Rhin, F-67401 Illkirch-Graffenstaden Cedex, France
| | - Maurice Goeldner
- Laboratoire de Conception et Application de Molécules Bioactives, Faculté de Pharmacie, UMR 7199, Université de Strasbourg-CNRS, 74 route du Rhin, F-67401 Illkirch-Graffenstaden Cedex, France
| |
Collapse
|
20
|
Vincent J, Andersson M, Eklund M, Wöhri AB, Odelius M, Malmerberg E, Kong Q, Wulff M, Neutze R, Davidsson J. Solvent dependent structural perturbations of chemical reaction intermediates visualized by time-resolved x-ray diffraction. J Chem Phys 2009; 130:154502. [PMID: 19388754 DOI: 10.1063/1.3111401] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ultrafast time-resolved wide angle x-ray scattering from chemical reactions in solution has recently emerged as a powerful technique for determining the structural dynamics of transient photochemical species. Here we examine the structural evolution of photoexcited CH(2)I(2) in the nonpolar solvent cyclohexane and draw comparisons with a similar study in the polar solvent methanol. As with earlier spectroscopic studies, our data confirm a common initial reaction pathway in both solvents. After photoexcitation, CH(2)I(2) dissociates to form CH(2)I* + I*. Iodine radicals remaining within the solvent cage recombine with a nascent CH(2)I* radical to form the transient isomer CH(2)I-I, whereas those which escape the solvent cage ultimately combine to form I(2) in cyclohexane. Moreover, the transient isomer has a lifetime approximately 30 times longer in the nonpolar solvent. Of greater chemical significance is the property of time-resolved wide angle x-ray diffraction to accurately determine the structure of the of CH(2)I-I reaction intermediate. Thus we observe that the transient iodine-iodine bond is 0.07 A+/-0.04 A shorter in cyclohexane than in methanol. A longer iodine-iodine bond length for the intermediate arises in methanol due to favorable H-bond interaction with the polar solvent. These findings establish that time-resolved x-ray diffraction has sufficient sensitivity to enable solvent dependent structural perturbations of transient chemical species to be accurately resolved.
Collapse
Affiliation(s)
- Jonathan Vincent
- Department of Photochemistry and Molecular Science, Uppsala University, P.O. Box 523, S-751 20 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Forneris F, Mattevi A. Enzymes without borders: mobilizing substrates, delivering products. Science 2008; 321:213-6. [PMID: 18621661 DOI: 10.1126/science.1151118] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Many cellular reactions involve both hydrophobic and hydrophilic molecules that reside within the chemically distinct environments defined by the phospholipid-based membranes and the aqueous lumens of cytoplasm and organelles. Enzymes performing this type of reaction are required to access a lipophilic substrate located in the membranes and to catalyze its reaction with a polar, water-soluble compound. Here, we explore the different binding strategies and chemical tricks that enzymes have developed to overcome this problem. These reactions can be catalyzed by integral membrane proteins that channel a hydrophilic molecule into their active site, as well as by water-soluble enzymes that are able to capture a lipophilic substrate from the phospholipid bilayer. Many chemical and biological aspects of this type of enzymology remain to be investigated and will require the integration of protein chemistry with membrane biology.
Collapse
Affiliation(s)
- Federico Forneris
- Department of Genetics and Microbiology, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | | |
Collapse
|
22
|
Citations. Biotechniques 2008. [DOI: 10.2144/000112766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|