1
|
Wang C, Chu C, Guo Z, Zhan X. Structures and dynamics of Rpd3S complex bound to nucleosome. SCIENCE ADVANCES 2024; 10:eadk7678. [PMID: 38598631 PMCID: PMC11006229 DOI: 10.1126/sciadv.adk7678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/07/2024] [Indexed: 04/12/2024]
Abstract
The Rpd3S complex plays a pivotal role in facilitating local histone deacetylation in the transcribed regions to suppress intragenic transcription initiation. Here, we present the cryo-electron microscopy structures of the budding yeast Rpd3S complex in both its apo and three nucleosome-bound states at atomic resolutions, revealing the exquisite architecture of Rpd3S to well accommodate a mononucleosome without linker DNA. The Rpd3S core, containing a Sin3 Lobe and two NB modules, is a rigid complex and provides three positive-charged anchors (Sin3_HCR and two Rco1_NIDs) to connect nucleosomal DNA. In three nucleosome-bound states, the Rpd3S core exhibits three distinct orientations relative to the nucleosome, assisting the sector-shaped deacetylase Rpd3 to locate above the SHL5-6, SHL0-1, or SHL2-3, respectively. Our work provides a structural framework that reveals a dynamic working model for the Rpd3S complex to engage diverse deacetylation sites.
Collapse
Affiliation(s)
- Chengcheng Wang
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Chen Chu
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Zhouyan Guo
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Xiechao Zhan
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
2
|
Patel AB, He Y, Radhakrishnan I. Histone acetylation and deacetylation - Mechanistic insights from structural biology. Gene 2024; 890:147798. [PMID: 37726026 PMCID: PMC11253779 DOI: 10.1016/j.gene.2023.147798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023]
Abstract
Histones are subject to a diverse array of post-translational modifications. Among them, lysine acetylation is not only the most pervasive and dynamic modification but also highly consequential for regulating gene transcription. Although enzymes responsible for the addition and removal of acetyl groups were discovered almost 30 years ago, high-resolution structures of the enzymes in the context of their native complexes are only now beginning to become available, thanks to revolutionary technologies in protein structure determination and prediction. Here, we will review our current understanding of the molecular mechanisms of acetylation and deacetylation engendered by chromatin-modifying complexes, compare and contrast shared features, and discuss some of the pressing questions for future studies.
Collapse
Affiliation(s)
- Avinash B Patel
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| | - Yuan He
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| | - Ishwar Radhakrishnan
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
3
|
Möller M, Ridenour JB, Wright DF, Martin FA, Freitag M. H4K20me3 is important for Ash1-mediated H3K36me3 and transcriptional silencing in facultative heterochromatin in a fungal pathogen. PLoS Genet 2023; 19:e1010945. [PMID: 37747878 PMCID: PMC10553808 DOI: 10.1371/journal.pgen.1010945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/05/2023] [Accepted: 08/30/2023] [Indexed: 09/27/2023] Open
Abstract
Facultative heterochromatin controls development and differentiation in many eukaryotes. In metazoans, plants, and many filamentous fungi, facultative heterochromatin is characterized by transcriptional repression and enrichment with nucleosomes that are trimethylated at histone H3 lysine 27 (H3K27me3). While loss of H3K27me3 results in derepression of transcriptional gene silencing in many species, additional up- and downstream layers of regulation are necessary to mediate control of transcription in chromosome regions enriched with H3K27me3. Here, we investigated the effects of one histone mark on histone H4, namely H4K20me3, in the fungus Zymoseptoria tritici, a globally important pathogen of wheat. Deletion of kmt5, the gene encoding the sole methyltransferase responsible for H4K20 methylation, resulted in global derepression of transcription, especially in regions of facultative heterochromatin. Derepression in the absence of H4K20me3 not only affected known genes but also a large number of novel, previously undetected transcripts generated from regions of facultative heterochromatin on accessory chromosomes. Transcriptional activation in kmt5 deletion strains was accompanied by a complete loss of Ash1-mediated H3K36me3 and chromatin reorganization affecting H3K27me3 and H3K4me2 distribution in regions of facultative heterochromatin. Strains with H4K20L, M or Q mutations in the single histone H4 gene of Z. tritici recapitulated these chromatin changes, suggesting that H4K20me3 is important for Ash1-mediated H3K36me3. The ∆kmt5 mutants we obtained were more sensitive to genotoxic stressors than wild type and both, ∆kmt5 and ∆ash1, showed greatly increased rates of accessory chromosome loss. Taken together, our results provide insights into an unsuspected mechanism involved in the assembly and maintenance of facultative heterochromatin.
Collapse
Affiliation(s)
- Mareike Möller
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, United States of America
| | - John B. Ridenour
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, United States of America
| | - Devin F. Wright
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, United States of America
| | - Faith A. Martin
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, United States of America
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
4
|
Chen Z, Lundy T, Zhu Z, Hoskins VE, Zhang J, Yao X, Strahl BD, Xu C. Molecular basis for Eaf3-mediated assembly of Rpd3S and NuA4. Cell Discov 2023; 9:51. [PMID: 37236927 DOI: 10.1038/s41421-023-00565-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Affiliation(s)
- Zhenzhen Chen
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China, Hefei, Anhui, China
| | - Taylor Lundy
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhongliang Zhu
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China, Hefei, Anhui, China
| | - Victoria E Hoskins
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jiahai Zhang
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China, Hefei, Anhui, China
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China, Hefei, Anhui, China
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Chao Xu
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
5
|
Wang C, Guo Z, Chu C, Lu Y, Zhang X, Zhan X. Two assembly modes for SIN3 histone deacetylase complexes. Cell Discov 2023; 9:42. [PMID: 37076472 PMCID: PMC10115800 DOI: 10.1038/s41421-023-00539-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/10/2023] [Indexed: 04/21/2023] Open
Abstract
The switch-independent 3 (SIN3)/histone deacetylase (HDAC) complexes play essential roles in regulating chromatin accessibility and gene expression. There are two major types of SIN3/HDAC complexes (named SIN3L and SIN3S) targeting different chromatin regions. Here we present the cryo-electron microscopy structures of the SIN3L and SIN3S complexes from Schizosaccharomyces pombe (S. pombe), revealing two distinct assembly modes. In the structure of SIN3L, each Sin3 isoform (Pst1 and Pst3) interacts with one histone deacetylase Clr6, and one WD40-containing protein Prw1, forming two lobes. These two lobes are bridged by two vertical coiled-coil domains from Sds3/Dep1 and Rxt2/Png2, respectively. In the structure of SIN3S, there is only one lobe organized by another Sin3 isoform Pst2; each of the Cph1 and Cph2 binds to an Eaf3 molecule, providing two modules for histone recognition and binding. Notably, the Pst1 Lobe in SIN3L and the Pst2 Lobe in SIN3S adopt similar conformation with their deacetylase active sites exposed to the space; however, the Pst3 Lobe in SIN3L is in a compact state with its active center buried inside and blocked. Our work reveals two classical organization mechanisms for the SIN3/HDAC complexes to achieve specific targeting and provides a framework for studying the histone deacetylase complexes.
Collapse
Affiliation(s)
- Chengcheng Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, China.
| | - Zhouyan Guo
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, China
| | - Chen Chu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, China
| | - Yichen Lu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, China
| | - Xiaofeng Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, China
| | - Xiechao Zhan
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Biochemical Characterization of the TINTIN Module of the NuA4 Complex Reveals Allosteric Regulation of Nucleosome Interaction. Mol Cell Biol 2022; 42:e0017022. [PMID: 36190236 PMCID: PMC9670870 DOI: 10.1128/mcb.00170-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Trimer Independent of NuA4 involved in Transcription Interactions with Nucleosomes (TINTIN) is an integral module of the essential yeast lysine acetyltransferase complex NuA4 that plays key roles in transcription regulation and DNA repair. Composed of Eaf3, Eaf5, and Eaf7, TINTIN mediates targeting of NuA4 to chromatin through the chromodomain-containing subunit Eaf3 that is shared with the Rpd3S histone deacetylase complex. How Eaf3 mediates chromatin interaction in the context of TINTIN and how is it different from what has been observed in Rpd3S is unclear. Here, we reconstituted recombinant TINTIN and its subassemblies and characterized their biochemical and structural properties. Our coimmunoprecipitation, AlphaFold2 modeling, and hydrogen deuterium exchange mass spectrometry (HDX-MS) analyses revealed that the Eaf3 MRG domain contacts Eaf7 and this binding induces conformational changes throughout Eaf3. Nucleosome-binding assays showed that Eaf3 and TINTIN interact non-specifically with the DNA on nucleosomes. Furthermore, integration into TINTIN enhances the affinity of Eaf3 toward nucleosomes and this improvement is a result of allosteric activation of the Eaf3 chromodomain. Negative stain electron microscopy (EM) analysis revealed that TINTIN binds to the edge of nucleosomes with increased specificity in the presence of H3K36me3. Collectively, our work provides insights into the dynamics of TINTIN and the mechanism by which its interactions with chromatin are regulated.
Collapse
|
7
|
Sharda A, Humphrey TC. The role of histone H3K36me3 writers, readers and erasers in maintaining genome stability. DNA Repair (Amst) 2022; 119:103407. [PMID: 36155242 DOI: 10.1016/j.dnarep.2022.103407] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/03/2022]
Abstract
Histone Post-Translational Modifications (PTMs) play fundamental roles in mediating DNA-related processes such as transcription, replication and repair. The histone mark H3K36me3 and its associated methyltransferase SETD2 (Set2 in yeast) are archetypical in this regard, performing critical roles in each of these DNA transactions. Here, we present an overview of H3K36me3 regulation and the roles of its writers, readers and erasers in maintaining genome stability through facilitating DNA double-strand break (DSB) repair, checkpoint signalling and replication stress responses. Further, we consider how loss of SETD2 and H3K36me3, frequently observed in a number of different cancer types, can be specifically targeted in the clinic through exploiting loss of particular genome stability functions.
Collapse
Affiliation(s)
- Asmita Sharda
- CRUK and MRC Oxford Institute for Radiation Oncology, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK
| | - Timothy C Humphrey
- CRUK and MRC Oxford Institute for Radiation Oncology, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
8
|
Zukin SA, Marunde MR, Popova IK, Soczek KM, Nogales E, Patel AB. Structure and flexibility of the yeast NuA4 histone acetyltransferase complex. eLife 2022; 11:e81400. [PMID: 36263929 PMCID: PMC9643008 DOI: 10.7554/elife.81400] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
The NuA4 protein complex acetylates histones H4 and H2A to activate both transcription and DNA repair. We report the 3.1-Å resolution cryo-electron microscopy structure of the central hub of NuA4, which flexibly tethers the histone acetyltransferase (HAT) and Trimer Independent of NuA4 involved in Transcription Interactions with Nucleosomes (TINTIN) modules. The hub contains the large Tra1 subunit and a core that includes Swc4, Arp4, Act1, Eaf1, and the C-terminal region of Epl1. Eaf1 stands out as the primary scaffolding factor that interacts with the Tra1, Swc4, and Epl1 subunits and contributes the conserved HSA helix to the Arp module. Using nucleosome-binding assays, we find that the HAT module, which is anchored to the core through Epl1, recognizes H3K4me3 nucleosomes with hyperacetylated H3 tails, while the TINTIN module, anchored to the core via Eaf1, recognizes nucleosomes that have hyperacetylated H2A and H4 tails. Together with the known interaction of Tra1 with site-specific transcription factors, our data suggest a model in which Tra1 recruits NuA4 to specific genomic sites then allowing the flexible HAT and TINTIN modules to select nearby nucleosomes for acetylation.
Collapse
Affiliation(s)
- Stefan A Zukin
- College of Chemistry, University of California, BerkeleyBerkeleyUnited States
| | | | - Irina K Popova
- EpiCypher, Inc, Research Triangle ParkDurhamUnited States
| | - Katarzyna M Soczek
- California Institute for Quantitative Biology, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cellular Biology, University of CaliforniaBerkeleyUnited States
- Innovative Genomics Institute, University of California, BerkeleyBerkeleyUnited States
| | - Eva Nogales
- California Institute for Quantitative Biology, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cellular Biology, University of CaliforniaBerkeleyUnited States
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| | - Avinash B Patel
- California Institute for Quantitative Biology, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
- Biophysics Graduate Group, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
9
|
Structure of the NuA4 acetyltransferase complex bound to the nucleosome. Nature 2022; 610:569-574. [PMID: 36198799 DOI: 10.1038/s41586-022-05303-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 09/01/2022] [Indexed: 11/09/2022]
Abstract
Deoxyribonucleic acid in eukaryotes wraps around the histone octamer to form nucleosomes1, the fundamental unit of chromatin. The N termini of histone H4 interact with nearby nucleosomes and play an important role in the formation of high-order chromatin structure and heterochromatin silencing2-4. NuA4 in yeast and its homologue Tip60 complex in mammalian cells are the key enzymes that catalyse H4 acetylation, which in turn regulates chromatin packaging and function in transcription activation and DNA repair5-10. Here we report the cryo-electron microscopy structure of NuA4 from Saccharomyces cerevisiae bound to the nucleosome. NuA4 comprises two major modules: the catalytic histone acetyltransferase (HAT) module and the transcription activator-binding (TRA) module. The nucleosome is mainly bound by the HAT module and is positioned close to a polybasic surface of the TRA module, which is important for the optimal activity of NuA4. The nucleosomal linker DNA carrying the upstream activation sequence is oriented towards the conserved, transcription activator-binding surface of the Tra1 subunit, which suggests a potential mechanism of NuA4 to act as a transcription co-activator. The HAT module recognizes the disk face of the nucleosome through the H2A-H2B acidic patch and nucleosomal DNA, projecting the catalytic pocket of Esa1 to the N-terminal tail of H4 and supporting its function in selective acetylation of H4. Together, our findings illustrate how NuA4 is assembled and provide mechanistic insights into nucleosome recognition and transcription co-activation by a HAT.
Collapse
|
10
|
Xiao C, Fan T, Tian H, Zheng Y, Zhou Z, Li S, Li C, He J. H3K36 trimethylation-mediated biological functions in cancer. Clin Epigenetics 2021; 13:199. [PMID: 34715919 PMCID: PMC8555273 DOI: 10.1186/s13148-021-01187-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Histone modification is an important form of epigenetic regulation. Thereinto, histone methylation is a critical determination of chromatin states, participating in multiple cellular processes. As a conserved histone methylation mark, histone 3 lysine 36 trimethylation (H3K36me3) can mediate multiple transcriptional-related events, such as the regulation of transcriptional activity, transcription elongation, pre-mRNA alternative splicing, and RNA m6A methylation. Additionally, H3K36me3 also contributes to DNA damage repair. Given the crucial function of H3K36me3 in genome regulation, the roles of H3K36me3 and its sole methyltransferase SETD2 in pathogenesis, especially malignancies, have been emphasized in many studies, and it is conceivable that disruption of histone methylation regulatory network composed of "writer", "eraser", "reader", and the mutation of H3K36me3 codes have the capacity of powerfully modulating cancer initiation and development. Here we review H3K36me3-mediated biological processes and summarize the latest findings regarding its role in cancers. We highlight the significance of epigenetic combination therapies in cancers.
Collapse
Affiliation(s)
- Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zheng Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shuofeng Li
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
11
|
The PWWP2A Histone Deacetylase Complex Represses Intragenic Spurious Transcription Initiation in mESCs. iScience 2020; 23:101741. [PMID: 33235983 PMCID: PMC7670215 DOI: 10.1016/j.isci.2020.101741] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/22/2020] [Accepted: 10/23/2020] [Indexed: 12/26/2022] Open
Abstract
Transcriptional fidelity depends on accurate promoter selection and initiation from the correct sites. In yeast, H3K36me3-mediated recruitment of the Rpd3S HDAC complex to gene bodies suppresses spurious transcription initiation. Here we describe an equivalent pathway in metazoans. PWWP2A/B is an H3K36me3 reader that forms a stable complex with HDAC1/2. We used CAGE-seq to profile all transcription initiation sites in wild-type mESCs and cells lacking PWWP2A/B. Loss of PWWP2A/B enhances spurious initiation from intragenic sites present in wild-type mESCs, and this effect is associated with increased levels of initiating Pol-II and histone acetylation. Spurious initiation events in Pwwp2a/b DKO mESCs do not overlap in genomic location or chromatin features with spurious sites that arise in Dnmt3b KO mESCs, previously reported to function in the suppression of intragenic transcriptional initiation, suggesting these pathways function cooperatively in maintaining the fidelity of transcription initiation in metazoans. Loss of PWWP2A/B leads to increased levels of spurious transcription initiation Spurious TSS sites are predominantly in the gene bodies of highly expressed genes Spurious sites are marked with increased histone acetylation and initiating Pol II PWWP2-spurious TSSs are distinct from those caused by DNMT3B loss
Collapse
|
12
|
Horn V, Jongkees SAK, van Ingen H. Mimicking the Nucleosomal Context in Peptide-Based Binders of a H3K36me Reader Increases Binding Affinity While Altering the Binding Mode. Molecules 2020; 25:molecules25214951. [PMID: 33114657 PMCID: PMC7662849 DOI: 10.3390/molecules25214951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 11/29/2022] Open
Abstract
Targeting of proteins in the histone modification machinery has emerged as a promising new direction to fight disease. The search for compounds that inhibit proteins that readout histone modification has led to several new epigenetic drugs, mostly for proteins involved in recognition of acetylated lysines. However, this approach proved to be a challenging task for methyllysine readers, which typically feature shallow binding pockets. Moreover, reader proteins of trimethyllysine K36 on the histone H3 (H3K36me3) not only bind the methyllysine but also the nucleosomal DNA. Here, we sought to find peptide-based binders of H3K36me3 reader PSIP1, which relies on DNA interactions to tightly bind H3K36me3 modified nucleosomes. We designed several peptides that mimic the nucleosomal context of H3K36me3 recognition by including negatively charged Glu-rich regions. Using a detailed NMR analysis, we find that addition of negative charges boosts binding affinity up to 50-fold while decreasing binding to the trimethyllysine binding pocket. Since screening and selection of compounds for reader domains is typically based solely on affinity measurements due to their lack of enzymatic activity, our case highlights the need to carefully control for the binding mode, in particular for the challenging case of H3K36me3 readers.
Collapse
Affiliation(s)
- Velten Horn
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502 Leiden, The Netherlands;
| | - Seino A. K. Jongkees
- Chemical Biology and Drug Discovery Group, Utrecht University, P.O. Box 80082 Utrecht, The Netherlands;
| | - Hugo van Ingen
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502 Leiden, The Netherlands;
- NMR Group, Bijvoet Centre for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Correspondence: ; Tel.: +31-30-253-9934
| |
Collapse
|
13
|
Adams MK, Banks CAS, Thornton JL, Kempf CG, Zhang Y, Miah S, Hao Y, Sardiu ME, Killer M, Hattem GL, Murray A, Katt ML, Florens L, Washburn MP. Differential Complex Formation via Paralogs in the Human Sin3 Protein Interaction Network. Mol Cell Proteomics 2020; 19:1468-1484. [PMID: 32467258 PMCID: PMC8143632 DOI: 10.1074/mcp.ra120.002078] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Indexed: 01/09/2023] Open
Abstract
Despite the continued analysis of HDAC inhibitors in clinical trials, the heterogeneous nature of the protein complexes they target limits our understanding of the beneficial and off-target effects associated with their application. Among the many HDAC protein complexes found within the cell, Sin3 complexes are conserved from yeast to humans and likely play important roles as regulators of transcriptional activity. The presence of two Sin3 paralogs in humans, SIN3A and SIN3B, may result in a heterogeneous population of Sin3 complexes and contributes to our poor understanding of the functional attributes of these complexes. Here, we profile the interaction networks of SIN3A and SIN3B to gain insight into complex composition and organization. In accordance with existing data, we show that Sin3 paralog identity influences complex composition. Additionally, chemical cross-linking MS identifies domains that mediate interactions between Sin3 proteins and binding partners. The characterization of rare SIN3B proteoforms provides additional evidence for the existence of conserved and divergent elements within human Sin3 proteins. Together, these findings shed light on both the shared and divergent properties of human Sin3 proteins and highlight the heterogeneous nature of the complexes they organize.
Collapse
Affiliation(s)
- Mark K Adams
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | | | - Janet L Thornton
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | | | - Ying Zhang
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Sayem Miah
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Yan Hao
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Mihaela E Sardiu
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Maxime Killer
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Gaye L Hattem
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Alexis Murray
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Maria L Katt
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Michael P Washburn
- Stowers Institute for Medical Research, Kansas City, Missouri, USA; Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
14
|
The Eaf3 chromodomain acts as a pH sensor for gene expression by altering its binding affinity for histone methylated-lysine residues. Biosci Rep 2020; 40:222061. [PMID: 32031206 PMCID: PMC7033311 DOI: 10.1042/bsr20191958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 01/21/2023] Open
Abstract
During gene expression, histone acetylation by histone acetyltransferase (HAT) loosens the chromatin structure around the promoter to allow RNA polymerase II (Pol II) to initiate transcription, while de-acetylation by histone deacetylase (HDAC) tightens the structure in the transcribing region to repress false initiation. Histone acetylation is also regulated by intracellular pH (pHi) with global hypoacetylation observed at low pHi, and hyperacetylation, causing proliferation, observed at high pHi. However, the mechanism underlying the pHi-dependent regulation of gene expression remains elusive. Here, we have explored the role of the chromodomain (CD) of budding yeast Eaf3, a common subunit of both HAT and HDAC that is thought to recognize methylated lysine residues on histone H3. We found that Eaf3 CD interacts with histone H3 peptides methylated at Lys4 (H3K4me, a promoter epigenetic marker) and Lys36 (H3K36me, a coding region epigenetic marker), as well as with many dimethyl-lysine peptides and even arginine-asymmetrically dimethylated peptides, but not with unmethylated, phosphorylated or acetylated peptides. The Eaf3 CD structure revealed an unexpected histidine residue in the aromatic cage essential for binding H3K4me and H3K36me. pH titration experiments showed that protonation of the histidine residue around physiological pH controls the charge state of the aromatic cage to regulate binding to H3K4me and H3K36me. Histidine substitution and NMR experiments confirmed the correlation of histidine pKa with binding affinity. Collectively, our findings suggest that Eaf3 CD functions as a pHi sensor and a regulator of gene expression via its pHi-dependent interaction with methylated nucleosomes.
Collapse
|
15
|
Li J, Ahn JH, Wang GG. Understanding histone H3 lysine 36 methylation and its deregulation in disease. Cell Mol Life Sci 2019; 76:2899-2916. [PMID: 31147750 PMCID: PMC11105573 DOI: 10.1007/s00018-019-03144-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 12/13/2022]
Abstract
Methylation of histone H3 lysine 36 (H3K36) plays crucial roles in the partitioning of chromatin to distinctive domains and the regulation of a wide range of biological processes. Trimethylation of H3K36 (H3K36me3) demarcates body regions of the actively transcribed genes, providing signals for modulating transcription fidelity, mRNA splicing and DNA damage repair; and di-methylation of H3K36 (H3K36me2) spreads out within large intragenic regions, regulating distribution of histone H3 lysine 27 trimethylation (H3K27me3) and possibly DNA methylation. These H3K36 methylation-mediated events are biologically crucial and controlled by different classes of proteins responsible for either 'writing', 'reading' or 'erasing' of H3K36 methylation marks. Deregulation of H3K36 methylation and related regulatory factors leads to pathogenesis of disease such as developmental syndrome and cancer. Additionally, recurrent mutations of H3K36 and surrounding histone residues are detected in human tumors, further highlighting the importance of H3K36 in biology and medicine. This review will elaborate on current advances in understanding H3K36 methylation and related molecular players during various chromatin-templated cellular processes, their crosstalks with other chromatin factors, as well as their deregulations in the diseased contexts.
Collapse
Affiliation(s)
- Jie Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jeong Hyun Ahn
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
16
|
van Emmerik CL, van Ingen H. Unspinning chromatin: Revealing the dynamic nucleosome landscape by NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 110:1-19. [PMID: 30803691 DOI: 10.1016/j.pnmrs.2019.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 05/09/2023]
Abstract
NMR is an essential technique for obtaining information at atomic resolution on the structure, motions and interactions of biomolecules. Here, we review the contribution of NMR to our understanding of the fundamental unit of chromatin: the nucleosome. Nucleosomes compact the genome by wrapping the DNA around a protein core, the histone octamer, thereby protecting genomic integrity. Crucially, the imposed barrier also allows strict regulation of gene expression, DNA replication and DNA repair processes through an intricate system of histone and DNA modifications and a wide range of interactions between nucleosomes and chromatin factors. In this review, we describe how NMR has contributed to deciphering the molecular basis of nucleosome function. Starting from pioneering studies in the 1960s using natural abundance NMR studies, we focus on the progress in sample preparation and NMR methodology that has allowed high-resolution studies on the nucleosome and its subunits. We summarize the results and approaches of state-of-the-art NMR studies on nucleosomal DNA, histone complexes, nucleosomes and nucleosomal arrays. These studies highlight the particular strength of NMR in studying nucleosome dynamics and nucleosome-protein interactions. Finally, we look ahead to exciting new possibilities that will be afforded by on-going developments in solution and solid-state NMR. By increasing both the depth and breadth of nucleosome NMR studies, it will be possible to offer a unique perspective on the dynamic landscape of nucleosomes and its interacting proteins.
Collapse
Affiliation(s)
- Clara L van Emmerik
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands.
| | - Hugo van Ingen
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
17
|
Combinatorial Genetic Control of Rpd3S Through Histone H3K4 and H3K36 Methylation in Budding Yeast. G3-GENES GENOMES GENETICS 2018; 8:3411-3420. [PMID: 30158320 PMCID: PMC6222569 DOI: 10.1534/g3.118.200589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Much of euchromatin regulation occurs through reversible methylation of histone H3 lysine-4 and lysine-36 (H3K4me and H3K36me). Using the budding yeast Saccharomyces cerevisiae, we previously found that levels of H3K4me modulated temperature sensitive alleles of the transcriptional elongation complex Spt6-Spn1 through an unknown H3K4me effector pathway. Here we identify the Rpd3S histone deacetylase complex as the H3K4me effector underlying these Spt6-Spn1 genetic interactions. Exploiting these Spt6-Spn1 genetic interactions, we show that H3K4me and H3K36me collaboratively impact Rpd3S function in an opposing manner. H3K36me is deposited by the histone methyltransferase Set2 and is known to promote Rpd3S function at RNA PolII transcribed open reading frames. Using genetic epistasis experiments, we find that mutations perturbing the Set2-H3K36me-Rpd3S pathway suppress the growth defects caused by temperature sensitive alleles of SPT6 and SPN1, illuminating that this pathway antagonizes Spt6-Spn1. Using these sensitive genetic assays, we also identify a role for H3K4me in antagonizing Rpd3S that functions through the Rpd3S subunit Rco1, which is known to bind H3 N-terminal tails in a manner that is prevented by H3K4me. Further genetic experiments reveal that the H3K4 and H3K36 demethylases JHD2 and RPH1 mediate this combinatorial control of Rpd3S. Finally, our studies also show that the Rpd3L complex, which acts at promoter-proximal regions of PolII transcribed genes, counters Rpd3S for genetic modulation of Spt6-Spn1, and that these two Rpd3 complexes balance the activities of each other. Our findings present the first evidence that H3K4me and H3K36me act combinatorially to control Rpd3S.
Collapse
|
18
|
Affiliation(s)
- Jung-Ae Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, South Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, South Korea
| | - Minjung Kwon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Jaehoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| |
Collapse
|
19
|
Schmähling S, Meiler A, Lee Y, Mohammed A, Finkl K, Tauscher K, Israel L, Wirth M, Philippou-Massier J, Blum H, Habermann B, Imhof A, Song JJ, Müller J. Regulation and function of H3K36 di-methylation by the trithorax-group protein complex AMC. Development 2018. [PMID: 29540501 PMCID: PMC5963871 DOI: 10.1242/dev.163808] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Drosophila Ash1 protein is a trithorax-group (trxG) regulator that antagonizes Polycomb repression at HOX genes. Ash1 di-methylates lysine 36 in histone H3 (H3K36me2) but how this activity is controlled and at which genes it functions is not well understood. We show that Ash1 protein purified from Drosophila exists in a complex with MRG15 and Caf1 that we named AMC. In Drosophila and human AMC, MRG15 binds a conserved FxLP motif near the Ash1 SET domain and stimulates H3K36 di-methylation on nucleosomes. Drosophila MRG15-null and ash1 catalytic mutants show remarkably specific trxG phenotypes: stochastic loss of HOX gene expression and homeotic transformations in adults. In mutants lacking AMC, H3K36me2 bulk levels appear undiminished but H3K36me2 is reduced in the chromatin of HOX and other AMC-regulated genes. AMC therefore appears to act on top of the H3K36me2/me3 landscape generated by the major H3K36 methyltransferases NSD and Set2. Our analyses suggest that H3K36 di-methylation at HOX genes is the crucial physiological function of AMC and the mechanism by which the complex antagonizes Polycomb repression at these genes. Highlighted Article: The trithorax group protein Ash1 and its regulator MRG15 form a multiprotein complex that maintains expression of HOX and other target genes by methylating histone H3 in their chromatin.
Collapse
Affiliation(s)
- Sigrun Schmähling
- Max-Planck Institute of Biochemistry, Laboratory of Chromatin Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Arno Meiler
- Max-Planck Institute of Biochemistry, Computational Biology, Am Klopferspitz 18 82152 Martinsried, Germany
| | - Yoonjung Lee
- Korea Advanced Institute of Science and Technology (KAIST), Department of Biological Sciences, Daejeon 34141, Korea
| | - Arif Mohammed
- Max-Planck Institute of Biochemistry, Laboratory of Chromatin Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Katja Finkl
- Max-Planck Institute of Biochemistry, Laboratory of Chromatin Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Katharina Tauscher
- Max-Planck Institute of Biochemistry, Laboratory of Chromatin Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Lars Israel
- Zentrallabor für Proteinanalytik, BioMedical Center, Ludwig-Maximilians-University Munich, Großhadernerstr. 9, 82152 Martinsried, Germany
| | - Marc Wirth
- Zentrallabor für Proteinanalytik, BioMedical Center, Ludwig-Maximilians-University Munich, Großhadernerstr. 9, 82152 Martinsried, Germany
| | - Julia Philippou-Massier
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Bianca Habermann
- Max-Planck Institute of Biochemistry, Computational Biology, Am Klopferspitz 18 82152 Martinsried, Germany
| | - Axel Imhof
- Zentrallabor für Proteinanalytik, BioMedical Center, Ludwig-Maximilians-University Munich, Großhadernerstr. 9, 82152 Martinsried, Germany
| | - Ji-Joon Song
- Korea Advanced Institute of Science and Technology (KAIST), Department of Biological Sciences, Daejeon 34141, Korea
| | - Jürg Müller
- Max-Planck Institute of Biochemistry, Laboratory of Chromatin Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| |
Collapse
|
20
|
Zhang Y, Lei M, Yang X, Feng Y, Yang Y, Loppnau P, Li Y, Yang Y, Min J, Liu Y. Structural and histone binding studies of the chromo barrel domain of TIP60. FEBS Lett 2018; 592:1221-1232. [PMID: 29494751 DOI: 10.1002/1873-3468.13021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 01/20/2023]
Abstract
Tat-interactive protein 60 consists of an N-terminal chromo barrel domain (TIP60-CB) and a C-terminal acetyltransferase domain and acetylates histone and nonhistone proteins in diverse cellular processes. While TIP60-CB is thought to recognize histone tails, molecular details of this interaction remain unclear. Here, we attempted a quantitative analysis of the interaction between the human TIP60-CB and histone peptides, but did not observe any detectable binding by either fluorescence polarization or isothermal titration calorimetry assays. We also determined the crystal structure of the TIP60-CB alone. Analysis of the apo-structure reveals a putative peptide-binding site that might be occluded by the basic side chain of a residue in a unique β hairpin between the two N-terminal strands of the β barrel, leading to the inability of TIP60-CB to bind histones.
Collapse
Affiliation(s)
- Yuzhe Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Ming Lei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China.,Structural Genomics Consortium, University of Toronto, Canada
| | - Xiajie Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Yue Feng
- Structural Genomics Consortium, University of Toronto, Canada
| | - Yuan Yang
- Graduate school, Wuhan Sports University, China
| | - Peter Loppnau
- Structural Genomics Consortium, University of Toronto, Canada
| | - Yanjun Li
- Structural Genomics Consortium, University of Toronto, Canada
| | - Yi Yang
- College of Health Science, Wuhan Sports University, China
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China.,Structural Genomics Consortium, University of Toronto, Canada.,Department of Physiology, University of Toronto, Canada
| | - Yanli Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China.,Structural Genomics Consortium, University of Toronto, Canada
| |
Collapse
|
21
|
Li J, Duns G, Westers H, Sijmons R, van den Berg A, Kok K. SETD2: an epigenetic modifier with tumor suppressor functionality. Oncotarget 2018; 7:50719-50734. [PMID: 27191891 PMCID: PMC5226616 DOI: 10.18632/oncotarget.9368] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/05/2016] [Indexed: 11/25/2022] Open
Abstract
In the past decade important progress has been made in our understanding of the epigenetic regulatory machinery. It has become clear that genetic aberrations in multiple epigenetic modifier proteins are associated with various types of cancer. Moreover, targeting the epigenome has emerged as a novel tool to treat cancer patients. Recently, the first drugs have been reported that specifically target SETD2-negative tumors. In this review we discuss the studies on the associated protein, Set domain containing 2 (SETD2), a histone modifier for which mutations have only recently been associated with cancer development. Our review starts with the structural characteristics of SETD2 and extends to its corresponding function by combining studies on SETD2 function in yeast, Drosophila, Caenorhabditis elegans, mice, and humans. SETD2 is now generally known as the single human gene responsible for trimethylation of lysine 36 of Histone H3 (H3K36). H3K36me3 readers that recruit protein complexes to carry out specific processes, including transcription elongation, RNA processing, and DNA repair, determine the impact of this histone modification. Finally, we describe the prevalence of SETD2-inactivating mutations in cancer, with the highest frequency in clear cell Renal Cell Cancer, and explore how SETD2-inactivation might contribute to tumor development.
Collapse
Affiliation(s)
- Jun Li
- Department of Genetics, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Gerben Duns
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, Canada
| | - Helga Westers
- Department of Genetics, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Rolf Sijmons
- Department of Genetics, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Klaas Kok
- Department of Genetics, University of Groningen, University Medical Center Groningen, The Netherlands
| |
Collapse
|
22
|
Wu WS, Tu HP, Chu YH, Nordling TEM, Tseng YY, Liaw HJ. YHMI: a web tool to identify histone modifications and histone/chromatin regulators from a gene list in yeast. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2018:5145122. [PMID: 30371756 PMCID: PMC6204766 DOI: 10.1093/database/bay116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 09/29/2018] [Indexed: 12/18/2022]
Abstract
Post-translational modifications of histones (e.g. acetylation, methylation, phosphorylation and ubiquitination) play crucial roles in regulating gene expression by altering chromatin structures and creating docking sites for histone/chromatin regulators. However, the combination patterns of histone modifications, regulatory proteins and their corresponding target genes remain incompletely understood. Therefore, it is advantageous to have a tool for the enrichment/depletion analysis of histone modifications and histone/chromatin regulators from a gene list. Many ChIP-chip/ChIP-seq datasets of histone modifications and histone/chromatin regulators in yeast can be found in the literature. Knowing the needs and having the data motivate us to develop a web tool, called Yeast Histone Modifications Identifier (YHMI), which can identify the enriched/depleted histone modifications and the enriched histone/chromatin regulators from a list of yeast genes. Both tables and figures are provided to visualize the identification results. Finally, the high-quality and biological insight of the identification results are demonstrated by two case studies. We believe that YHMI is a valuable tool for yeast biologists to do epigenetics research.
Collapse
Affiliation(s)
- Wei-Sheng Wu
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Ping Tu
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Han Chu
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Torbjörn E M Nordling
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yan-Yuan Tseng
- Center for Molecular Medicine and Genetics, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Hung-Jiun Liaw
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
23
|
Huang C, Yang F, Zhang Z, Zhang J, Cai G, Li L, Zheng Y, Chen S, Xi R, Zhu B. Mrg15 stimulates Ash1 H3K36 methyltransferase activity and facilitates Ash1 Trithorax group protein function in Drosophila. Nat Commun 2017; 8:1649. [PMID: 29158494 PMCID: PMC5696344 DOI: 10.1038/s41467-017-01897-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/23/2017] [Indexed: 12/28/2022] Open
Abstract
Ash1 is a Trithorax group protein that possesses H3K36-specific histone methyltransferase activity, which antagonizes Polycomb silencing. Here we report the identification of two Ash1 complex subunits, Mrg15 and Nurf55. In vitro, Mrg15 stimulates the enzymatic activity of Ash1. In vivo, Mrg15 is recruited by Ash1 to their common targets, and Mrg15 reinforces Ash1 chromatin association and facilitates the proper deposition of H3K36me2. To dissect the functional role of Mrg15 in the context of the Ash1 complex, we identify an Ash1 point mutation (Ash1-R1288A) that displays a greatly attenuated interaction with Mrg15. Knock-in flies bearing this mutation display multiple homeotic transformation phenotypes, and these phenotypes are partially rescued by overexpressing the Mrg15-Nurf55 fusion protein, which stabilizes the association of Mrg15 with Ash1. In summary, Mrg15 is a subunit of the Ash1 complex, a stimulator of Ash1 enzymatic activity and a critical regulator of the TrxG protein function of Ash1 in Drosophila.
Collapse
Affiliation(s)
- Chang Huang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fu Yang
- National institute of Biological Sciences, Beijing, 102206, China
| | - Zhuqiang Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gaihong Cai
- National institute of Biological Sciences, Beijing, 102206, China
| | - Lin Li
- National institute of Biological Sciences, Beijing, 102206, China
| | - Yong Zheng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - She Chen
- National institute of Biological Sciences, Beijing, 102206, China
| | - Rongwen Xi
- National institute of Biological Sciences, Beijing, 102206, China.
| | - Bing Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
24
|
Structure and mechanism of plant histone mark readers. SCIENCE CHINA-LIFE SCIENCES 2017; 61:170-177. [PMID: 29019143 DOI: 10.1007/s11427-017-9163-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/11/2017] [Indexed: 10/18/2022]
Abstract
In eukaryotes, epigenetic-based mechanisms are involved in almost all the important biological processes. Amongst different epigenetic regulation pathways, the dynamic covalent modifications on histones are the most extensively investigated and characterized types. The covalent modifications on histone can be "read" by specific protein domains and then subsequently trigger downstream signaling events. Plants generally possess epigenetic regulation systems similar to animals and fungi, but also exhibit some plant-specific features. Similar to animals and fungi, plants require distinct protein domains to specifically "read" modified histones in both modification-specific and sequence-specific manners. In this review, we will focus on recent progress of the structural studies on the recognition of the epigenetic marks on histones by plant reader proteins, and further summarize the general and exceptional features of plant histone mark readers.
Collapse
|
25
|
Characterizing the molecular architectures of chromatin-modifying complexes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1613-1622. [PMID: 28652207 DOI: 10.1016/j.bbapap.2017.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/09/2017] [Accepted: 06/21/2017] [Indexed: 11/23/2022]
Abstract
Eukaryotic cells package their genome in the form of a DNA-protein complex known as chromatin. This organization not only condenses the genome to fit within the confines of the nucleus, but also provides a platform for a cell to regulate accessibility to different gene sequences. The basic packaging element of chromatin is the nucleosome, which consists of 146 base pairs of DNA wrapped around histone proteins. One major means that a cell regulates chromatin structure is by depositing post-translational modifications on nucleosomal histone proteins, and thereby altering internucleosomal interactions and/or binding to different chromatin associated factors. These chromatin modifications are often catalyzed by multi-subunit enzyme complexes, whose large size, sophisticated composition, and inherent conformational flexibility pose significant technical challenges to their biochemical and structural characterization. Multiple structural approaches including nuclear magnetic resonance spectroscopy, X-ray crystallography, single-particle electron microscopy, and crosslinking coupled to mass spectrometry are often used synergistically to probe the overall architecture, subunit organization, and catalytic mechanisms of these macromolecular assemblies. In this review, we highlight several recent chromatin-modifying complexes studies that embodies this multipronged structural approach, and explore common themes amongst them. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.
Collapse
|
26
|
Shaping the cellular landscape with Set2/SETD2 methylation. Cell Mol Life Sci 2017; 74:3317-3334. [PMID: 28386724 DOI: 10.1007/s00018-017-2517-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/24/2017] [Accepted: 03/28/2017] [Indexed: 12/15/2022]
Abstract
Chromatin structure is a major barrier to gene transcription that must be disrupted and re-set during each round of transcription. Central to this process is the Set2/SETD2 methyltransferase that mediates co-transcriptional methylation to histone H3 at lysine 36 (H3K36me). Studies reveal that H3K36me not only prevents inappropriate transcriptional initiation from arising within gene bodies, but that it has other conserved functions that include the repair of damaged DNA and regulation of pre-mRNA splicing. Consistent with the importance of Set2/SETD2 in chromatin biology, mutations of SETD2, or mutations at or near H3K36 in H3.3, have recently been found to underlie cancer development. This review will summarize the latest insights into the functions of Set2/SETD2 in genome regulation and cancer development.
Collapse
|
27
|
Structure and function of histone methylation-binding proteins in plants. Biochem J 2016; 473:1663-80. [DOI: 10.1042/bcj20160123] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/29/2016] [Indexed: 12/28/2022]
Abstract
Post-translational modifications of histones play important roles in modulating many essential biological processes in both animals and plants. These covalent modifications, including methylation, acetylation, phosphorylation, ubiquitination, SUMOylation and so on, are laid out and erased by histone-modifying enzymes and read out by effector proteins. Recent studies have revealed that a number of developmental processes in plants are under the control of histone post-translational modifications, such as floral transition, seed germination, organogenesis and morphogenesis. Therefore, it is critical to identify those protein domains, which could specifically recognize these post-translational modifications to modulate chromatin structure and regulate gene expression. In the present review, we discuss the recent progress in understanding the structure and function of the histone methylation readers in plants, by focusing on Arabidopsis thaliana proteins.
Collapse
|
28
|
Patel DJ. A Structural Perspective on Readout of Epigenetic Histone and DNA Methylation Marks. Cold Spring Harb Perspect Biol 2016; 8:a018754. [PMID: 26931326 DOI: 10.1101/cshperspect.a018754] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This article outlines the protein modules that target methylated lysine histone marks and 5mC DNA marks, and the molecular principles underlying recognition. The article focuses on the structural basis underlying readout of isolated marks by single reader molecules, as well as multivalent readout of multiple marks by linked reader cassettes at the histone tail and nucleosome level. Additional topics addressed include the role of histone mimics, cross talk between histone marks, technological developments at the genome-wide level, advances using chemical biology approaches, the linkage between histone and DNA methylation, the role for regulatory lncRNAs, and the promise of chromatin-based therapeutic modalities.
Collapse
Affiliation(s)
- Dinshaw J Patel
- Structural Biology Department, Memorial Sloan-Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
29
|
Speranzini V, Pilotto S, Sixma TK, Mattevi A. Touch, act and go: landing and operating on nucleosomes. EMBO J 2016; 35:376-88. [PMID: 26787641 DOI: 10.15252/embj.201593377] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/10/2015] [Indexed: 12/16/2022] Open
Abstract
Chromatin-associated enzymes are responsible for the installation, removal and reading of precise post-translation modifications on DNA and histone proteins. They are specifically recruited to the target gene by associated factors, and as a result of their activity, they contribute in modulating cell identity and differentiation. Structural and biophysical approaches are broadening our knowledge on these processes, demonstrating that DNA, histone tails and histone surfaces can each function as distinct yet functionally interconnected anchoring points promoting nucleosome binding and modification. The mechanisms underlying nucleosome recognition have been described for many histone modifiers and related readers. Here, we review the recent literature on the structural organization of these nucleosome-associated proteins, the binding properties that drive nucleosome modification and the methodological advances in their analysis. The overarching conclusion is that besides acting on the same substrate (the nucleosome), each system functions through characteristic modes of action, which bring about specific biological functions in gene expression regulation.
Collapse
Affiliation(s)
| | - Simona Pilotto
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Titia K Sixma
- Division of Biochemistry and Cancer Genomics Center, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
30
|
Combined Interactions of Plant Homeodomain and Chromodomain Regulate NuA4 Activity at DNA Double-Strand Breaks. Genetics 2015; 202:77-92. [PMID: 26564157 DOI: 10.1534/genetics.115.184432] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 11/09/2015] [Indexed: 11/18/2022] Open
Abstract
DNA double-strand breaks (DSBs) represent one of the most threatening lesions to the integrity of genomes. In yeast Saccharomyces cerevisiae, NuA4, a histone acetylation complex, is recruited to DSBs, wherein it acetylates histones H2A and H4, presumably relaxing the chromatin and allowing access to repair proteins. Two subunits of NuA4, Yng2 and Eaf3, can interact in vitro with methylated H3K4 and H3K36 via their plant homeodomain (PHD) and chromodomain. However, the roles of the two domains and how they interact in a combinatorial fashion are still poorly characterized. In this study, we generated mutations in the PHD and chromodomain that disrupt their interaction with methylated H3K4 and H3K36. We demonstrate that the combined mutations in both the PHD and chromodomain impair the NuA4 recruitment, reduce H4K12 acetylation at the DSB site, and confer sensitivity to bleomycin that induces DSBs. In addition, the double mutant cells are defective in DSB repair as judged by Southern blot and exhibit prolonged activation of phospho-S129 of H2A. Cells harboring the H3K4R, H3K4R, K36R, or set1Δ set2Δ mutant that disrupts H3K4 and H3K36 methylation also show very similar phenotypes to the PHD and chromodomain double mutant. Our results suggest that multivalent interactions between the PHD, chromodomain, and methylated H3K4 and H3K36 act in a combinatorial manner to recruit NuA4 and regulate the NuA4 activity at the DSB site.
Collapse
|
31
|
Howard CJ, Yu RR, Gardner ML, Shimko JC, Ottesen JJ. Chemical and biological tools for the preparation of modified histone proteins. Top Curr Chem (Cham) 2015; 363:193-226. [PMID: 25863817 DOI: 10.1007/128_2015_629] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Eukaryotic chromatin is a complex and dynamic system in which the DNA double helix is organized and protected by interactions with histone proteins. This system is regulated through a large network of dynamic post-translational modifications (PTMs) which ensure proper gene transcription, DNA repair, and other processes involving DNA. Homogenous protein samples with precisely characterized modification sites are necessary to understand better the functions of modified histone proteins. Here, we discuss sets of chemical and biological tools developed for the preparation of modified histones, with a focus on the appropriate choice of tool for a given target. We start with genetic approaches for the creation of modified histones, including the incorporation of genetic mimics of histone modifications, chemical installation of modification analogs, and the use of the expanded genetic code to incorporate modified amino acids. We also cover the chemical ligation techniques which have been invaluable in the generation of complex modified histones indistinguishable from their natural counterparts. We end with a prospectus on future directions.
Collapse
Affiliation(s)
- Cecil J Howard
- Department of Chemistry and Biochemistry and The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, 43210, USA
| | | | | | | | | |
Collapse
|
32
|
Structural Basis for Multi-specificity of MRG Domains. Structure 2015; 23:1049-57. [PMID: 25960410 DOI: 10.1016/j.str.2015.03.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/27/2015] [Accepted: 03/31/2015] [Indexed: 11/24/2022]
Abstract
Chromatin-binding proteins play vital roles in the assembly and recruitment of multi-subunit complexes harboring effector proteins to specific genomic loci. MRG15, a chromodomain-containing chromatin-binding protein, recruits diverse chromatin-associated complexes that regulate gene transcription, DNA repair, and RNA splicing. Previous studies with Pf1, another chromatin-binding subunit of the Sin3S/Rpd3S histone deacetylase complex, defined the sequence and structural requirements for interactions with the MRG15 MRG domain, a common target of diverse subunits in the aforementioned complexes. We now show that MRGBP, a member of the Tip60/NuA4 histone acetyltransferase complex, engages the same two surfaces of the MRG domain as Pf1. High-affinity interactions occur via a bipartite structural motif including an FxLP sequence motif. MRGBP shares little sequence and structural similarity with Pf1, yet targets similar pockets on the surface of the MRG domain, mimicking Pf1 in its interactions. Our studies shed light onto how MRG domains have evolved to bind diverse targets.
Collapse
|
33
|
Gatchalian J, Kingsley MC, Moslet SD, Rosas Ospina RD, Kutateladze TG. An aromatic cage is required but not sufficient for binding of Tudor domains of the Polycomblike protein family to H3K36me3. Epigenetics 2015; 10:467-73. [PMID: 25923537 DOI: 10.1080/15592294.2015.1042646] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Polycomblike (Pcl) proteins are important transcriptional regulators and components of the Polycomb Repressive Complex 2 (PRC2). The Tudor domains of human homologs PHF1 and PHF19 have been found to recognize trimethylated lysine 36 of histone H3 (H3K36me3); however, the biological role of Tudor domains of other Pcl proteins remains poorly understood. Here, we characterize the molecular basis underlying histone binding activities of the Tudor domains of the Pcl family. In contrast to a predominant view, we found that the methyl lysine-binding aromatic cage is necessary but not sufficient for recognition of H3K36me3 by these Tudor domains and that a hydrophobic patch, adjacent to the aromatic cage, is also required.
Collapse
Affiliation(s)
- Jovylyn Gatchalian
- a Department of Pharmacology; University of Colorado School of Medicine ; Aurora , CO , USA
| | | | | | | | | |
Collapse
|
34
|
Ruan C, Lee CH, Cui H, Li S, Li B. Nucleosome contact triggers conformational changes of Rpd3S driving high-affinity H3K36me nucleosome engagement. Cell Rep 2015; 10:204-15. [PMID: 25578729 DOI: 10.1016/j.celrep.2014.12.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 11/21/2014] [Accepted: 12/11/2014] [Indexed: 12/17/2022] Open
Abstract
The Rpd3S histone deacetylase complex utilizes two subunits, Eaf3 and Rco1, to recognize nucleosomes methylated at H3K36 (H3K36me) with high affinity and strong specificity. However, the chromobarrel domain of Eaf3 (CHD) that is responsible for H3K36me recognition only binds weakly and with little specificity to histone peptides. Here, using deuterium exchange mass spectrometry (DXMS), we detected conformational changes of Rpd3S upon its contact with chromatin. Interestingly, we found that the Sin3-interacting domain of Rco1 (SID) allosterically stimulates preferential binding of Eaf3 to H3K36-methylated peptides. This activation is tightly regulated by an autoinhibitory mechanism to ensure optimal multivalent engagement of Rpd3S with nucleosomes. Lastly, we identified mutations at the interface between SID and Eaf3 that do not disrupt complex integrity but severely compromise Rpd3S functions in vitro and in vivo, suggesting that the nucleosome-induced conformational changes are essential for chromatin recognition.
Collapse
Affiliation(s)
- Chun Ruan
- Department of Molecular Biology, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Chul-Hwan Lee
- Department of Molecular Biology, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Haochen Cui
- Department of Molecular Biology, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Sheng Li
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bing Li
- Department of Molecular Biology, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
35
|
Xu Y, Gan ES, Zhou J, Wee WY, Zhang X, Ito T. Arabidopsis MRG domain proteins bridge two histone modifications to elevate expression of flowering genes. Nucleic Acids Res 2014; 42:10960-74. [PMID: 25183522 PMCID: PMC4176166 DOI: 10.1093/nar/gku781] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Trimethylation of lysine 36 of histone H3 (H3K36me3) is found to be associated with various transcription events. In Arabidopsis, the H3K36me3 level peaks in the first half of coding regions, which is in contrast to the 3'-end enrichment in animals. The MRG15 family proteins function as 'reader' proteins by binding to H3K36me3 to control alternative splicing or prevent spurious intragenic transcription in animals. Here, we demonstrate that two closely related Arabidopsis homologues (MRG1 and MRG2) are localised to the euchromatin and redundantly ensure the increased transcriptional levels of two flowering time genes with opposing functions, FLOWERING LOCUS C and FLOWERING LOCUS T (FT). MRG2 directly binds to the FT locus and elevates the expression in an H3K36me3-dependent manner. MRG1/2 binds to H3K36me3 with their chromodomain and interact with the histone H4-specific acetyltransferases (HAM1 and HAM2) to achieve a high expression level through active histone acetylation at the promoter and 5' regions of target loci. Together, this study presents a mechanistic link between H3K36me3 and histone H4 acetylation. Our data also indicate that the biological functions of MRG1/2 have diversified from their animal homologues during evolution, yet they still maintain their conserved H3K36me3-binding molecular function.
Collapse
Affiliation(s)
- Yifeng Xu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Eng-Seng Gan
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore Department of Biological Sciences, National University of Singapore, Singapore 117543, Republic of Singapore
| | - Jie Zhou
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Wan-Yi Wee
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Xiaoyu Zhang
- Department of Plant Biology, University of Georgia, Athens, GA 30602-7271, USA
| | - Toshiro Ito
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore Department of Biological Sciences, National University of Singapore, Singapore 117543, Republic of Singapore
| |
Collapse
|
36
|
Gilbert TM, McDaniel SL, Byrum SD, Cades JA, Dancy BCR, Wade H, Tackett AJ, Strahl BD, Taverna SD. A PWWP domain-containing protein targets the NuA3 acetyltransferase complex via histone H3 lysine 36 trimethylation to coordinate transcriptional elongation at coding regions. Mol Cell Proteomics 2014; 13:2883-95. [PMID: 25104842 DOI: 10.1074/mcp.m114.038224] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Post-translational modifications of histones, such as acetylation and methylation, are differentially positioned in chromatin with respect to gene organization. For example, although histone H3 is often trimethylated on lysine 4 (H3K4me3) and acetylated on lysine 14 (H3K14ac) at active promoter regions, histone H3 lysine 36 trimethylation (H3K36me3) occurs throughout the open reading frames of transcriptionally active genes. The conserved yeast histone acetyltransferase complex, NuA3, specifically binds H3K4me3 through a plant homeodomain (PHD) finger in the Yng1 subunit, and subsequently catalyzes the acetylation of H3K14 through the histone acetyltransferase domain of Sas3, leading to transcription initiation at a subset of genes. We previously found that Ylr455w (Pdp3), an uncharacterized proline-tryptophan-tryptophan-proline (PWWP) domain-containing protein, copurifies with stable members of NuA3. Here, we employ mass-spectrometric analysis of affinity purified Pdp3, biophysical binding assays, and genetic analyses to classify NuA3 into two functionally distinct forms: NuA3a and NuA3b. Although NuA3a uses the PHD finger of Yng1 to interact with H3K4me3 at the 5'-end of open reading frames, NuA3b contains the unique member, Pdp3, which regulates an interaction between NuA3b and H3K36me3 at the transcribed regions of genes through its PWWP domain. We find that deletion of PDP3 decreases NuA3-directed transcription and results in growth defects when combined with transcription elongation mutants, suggesting NuA3b acts as a positive elongation factor. Finally, we determine that NuA3a, but not NuA3b, is synthetically lethal in combination with a deletion of the histone acetyltransferase GCN5, indicating NuA3b has a specialized role at coding regions that is independent of Gcn5 activity. Collectively, these studies define a new form of the NuA3 complex that associates with H3K36me3 to effect transcriptional elongation. MS data are available via ProteomeXchange with identifier PXD001156.
Collapse
Affiliation(s)
- Tonya M Gilbert
- From the ‡Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205; §Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205
| | - Stephen L McDaniel
- ¶Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Stephanie D Byrum
- ‖Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205
| | - Jessica A Cades
- From the ‡Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205
| | - Blair C R Dancy
- From the ‡Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205; §Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205
| | - Herschel Wade
- **Department of Biophysics and Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205
| | - Alan J Tackett
- ‖Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205
| | - Brian D Strahl
- ¶Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599; ‡‡Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Sean D Taverna
- From the ‡Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205; §Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205;
| |
Collapse
|
37
|
Rossetto D, Cramet M, Wang AY, Steunou AL, Lacoste N, Schulze JM, Côté V, Monnet-Saksouk J, Piquet S, Nourani A, Kobor MS, Côté J. Eaf5/7/3 form a functionally independent NuA4 submodule linked to RNA polymerase II-coupled nucleosome recycling. EMBO J 2014; 33:1397-415. [PMID: 24843044 DOI: 10.15252/embj.201386433] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The NuA4 histone acetyltransferase complex is required for gene regulation, cell cycle progression, and DNA repair. Dissection of the 13-subunit complex reveals that the Eaf7 subunit bridges Eaf5 with Eaf3, a H3K36me3-binding chromodomain protein, and this Eaf5/7/3 trimer is anchored to NuA4 through Eaf5. This trimeric subcomplex represents a functional module, and a large portion exists in a native form outside the NuA4 complex. Gene-specific and genome-wide location analyses indicate that Eaf5/7/3 correlates with transcription activity and is enriched over the coding region. In agreement with a role in transcription elongation, the Eaf5/7/3 trimer interacts with phosphorylated RNA polymerase II and helps its progression. Loss of Eaf5/7/3 partially suppresses intragenic cryptic transcription arising in set2 mutants, supporting a role in nucleosome destabilization. On the other hand, loss of the trimer leads to an increase of replication-independent histone exchange over the coding region of transcribed genes. Taken together, these results lead to a model where Eaf5/7/3 associates with elongating polymerase to promote the disruption of nucleosomes in its path, but also their refolding in its wake.
Collapse
Affiliation(s)
- Dorine Rossetto
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center Centre de Recherche du CHU de Québec-Axe Oncologie Hôtel-Dieu de Québec, Quebec City, QC, Canada
| | - Myriam Cramet
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center Centre de Recherche du CHU de Québec-Axe Oncologie Hôtel-Dieu de Québec, Quebec City, QC, Canada
| | - Alice Y Wang
- Center for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, BC, Canada
| | - Anne-Lise Steunou
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center Centre de Recherche du CHU de Québec-Axe Oncologie Hôtel-Dieu de Québec, Quebec City, QC, Canada
| | - Nicolas Lacoste
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center Centre de Recherche du CHU de Québec-Axe Oncologie Hôtel-Dieu de Québec, Quebec City, QC, Canada
| | - Julia M Schulze
- Center for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, BC, Canada
| | - Valérie Côté
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center Centre de Recherche du CHU de Québec-Axe Oncologie Hôtel-Dieu de Québec, Quebec City, QC, Canada
| | - Julie Monnet-Saksouk
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center Centre de Recherche du CHU de Québec-Axe Oncologie Hôtel-Dieu de Québec, Quebec City, QC, Canada
| | - Sandra Piquet
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center Centre de Recherche du CHU de Québec-Axe Oncologie Hôtel-Dieu de Québec, Quebec City, QC, Canada
| | - Amine Nourani
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center Centre de Recherche du CHU de Québec-Axe Oncologie Hôtel-Dieu de Québec, Quebec City, QC, Canada
| | - Michael S Kobor
- Center for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, BC, Canada
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center Centre de Recherche du CHU de Québec-Axe Oncologie Hôtel-Dieu de Québec, Quebec City, QC, Canada
| |
Collapse
|
38
|
Musselman CA, Khorasanizadeh S, Kutateladze TG. Towards understanding methyllysine readout. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:686-93. [PMID: 24727128 DOI: 10.1016/j.bbagrm.2014.04.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 03/19/2014] [Accepted: 04/02/2014] [Indexed: 02/09/2023]
Abstract
BACKGROUND Lysine methylation is the most versatile covalent posttranslational modification (PTM) found in histones and non-histone proteins. Over the past decade a number of methyllysine-specific readers have been discovered and their interactions with histone tails have been structurally and biochemically characterized. More recently innovative experimental approaches have emerged that allow for studying reader interactions in the context of the full nucleosome and nucleosomal arrays. SCOPE OF REVIEW In this review we give a brief overview of the known mechanisms of histone lysine methylation readout, summarize progress recently made in exploring interactions with methylated nucleosomes, and discuss the latest advances in the development of small molecule inhibitors of the methyllysine-specific readers. MAJOR CONCLUSIONS New studies reveal various reader-nucleosome contacts outside the methylated histone tail, thus offering a better model for association of histone readers to chromatin and broadening our understanding of the functional implications of these interactions. In addition, some progress has been made in the design of antagonists of these interactions. GENERAL SIGNIFICANCE Specific lysine methylation patterns are commonly associated with certain chromatin states and genomic elements, and are linked to distinct biological outcomes such as transcription activation or repression. Disruption of patterns of histone modifications is associated with a number of diseases, and there is tremendous therapeutic potential in targeting histone modification pathways. Thus, investigating binding of readers of these modifications is not only important for elucidating fundamental mechanisms of chromatin regulation, but also necessary for the design of targeted therapeutics. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function.
Collapse
Affiliation(s)
| | - Sepideh Khorasanizadeh
- Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
39
|
Liu Y, Liu K, Qin S, Xu C, Min J. Epigenetic targets and drug discovery: part 1: histone methylation. Pharmacol Ther 2014; 143:275-94. [PMID: 24704322 DOI: 10.1016/j.pharmthera.2014.03.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 03/24/2014] [Indexed: 01/10/2023]
Abstract
Dynamic chromatin structure is modulated by post-translational modifications on histones, such as acetylation, phosphorylation and methylation. Research on histone methylation has become the most flourishing area of epigenetics in the past fourteen years, and a large amount of data has been accumulated regarding its biology and disease implications. Correspondingly, a lot of efforts have been made to develop small molecule compounds that can specifically modulate histone methyltransferases and methylation reader proteins, aiming for potential therapeutic drugs. Here, we summarize recent progress in chemical probe and drug discovery of histone methyltransferases and methylation reader proteins. For each target, we will review their biological/biochemical functions first, and then focus on their disease implications and drug discovery. We can also see that structure-based compound design and optimization plays a critical role in facilitating the development of highly potent and selective chemical probes and inhibitors for these targets.
Collapse
Affiliation(s)
- Yanli Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Su Qin
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Chao Xu
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
40
|
Lu R, Wang GG. Tudor: a versatile family of histone methylation 'readers'. Trends Biochem Sci 2013; 38:546-55. [PMID: 24035451 DOI: 10.1016/j.tibs.2013.08.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/07/2013] [Accepted: 08/08/2013] [Indexed: 12/28/2022]
Abstract
The Tudor domain comprises a family of motifs that mediate protein-protein interactions required for various DNA-templated biological processes. Emerging evidence demonstrates a versatility of the Tudor family domains by identifying their specific interactions to a wide variety of histone methylation marks. Here, we discuss novel functions of a number of Tudor-containing proteins [including Jumonji domain-containing 2A (JMJD2A), p53-binding protein 1 (53BP1), SAGA-associated factor 29 (SGF29), Spindlin1, ubiquitin-like with PHD and RING finger domains 1 (UHRF1), PHD finger protein 1 (PHF1), PHD finger protein 19 (PHF19), and SAWADEE homeodomain homolog 1 (SHH1)] in 'reading' unique methylation events on histones in order to facilitate DNA damage repair or regulate transcription. This review covers our recent understanding of the molecular bases for histone-Tudor interactions and their biological outcomes. As deregulation of Tudor-containing proteins is associated with certain human disorders, pharmacological targeting of Tudor interactions could provide new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Rui Lu
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
41
|
Perceiving the epigenetic landscape through histone readers. Nat Struct Mol Biol 2013; 19:1218-27. [PMID: 23211769 DOI: 10.1038/nsmb.2436] [Citation(s) in RCA: 610] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 10/01/2012] [Indexed: 12/24/2022]
Abstract
Post-translational modifications (PTMs) of histones provide a fine-tuned mechanism for regulating chromatin structure and dynamics. PTMs can alter direct interactions between histones and DNA and serve as docking sites for protein effectors, or readers, of these PTMs. Binding of the readers recruits or stabilizes various components of the nuclear signaling machinery at specific genomic sites, mediating fundamental DNA-templated processes, including gene transcription and DNA recombination, replication and repair. In this review, we highlight the latest advances in characterizing histone-binding mechanisms and identifying new epigenetic readers and summarize the functional significance of PTM recognition.
Collapse
|
42
|
Nikolov M, Fischle W. Systematic analysis of histone modification readout. ACTA ACUST UNITED AC 2013; 9:182-94. [DOI: 10.1039/c2mb25328c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
43
|
Crystal structure of the human SUV39H1 chromodomain and its recognition of histone H3K9me2/3. PLoS One 2012; 7:e52977. [PMID: 23285239 PMCID: PMC3532415 DOI: 10.1371/journal.pone.0052977] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 11/22/2012] [Indexed: 01/08/2023] Open
Abstract
SUV39H1, the first identified histone lysine methyltransferase in human, is involved in chromatin modification and gene regulation. SUV39H1 contains a chromodomain in its N-terminus, which potentially plays a role in methyl-lysine recognition and SUV39H1 targeting. In this study, the structure of the chromodomain of human SUV39H1 was determined by X-ray crystallography. The SUV39H1 chromodomain displays a generally conserved structure fold compared with other solved chromodomains. However, different from other chromodomains, the SUV39H1 chromodomain possesses a much longer helix at its C-terminus. Furthermore, the SUV39H1 chromodomain was shown to recognize histone H3K9me2/3 specifically.
Collapse
|
44
|
Cai L, Rothbart SB, Lu R, Xu B, Chen WY, Tripathy A, Rockowitz S, Zheng D, Patel DJ, Allis CD, Strahl BD, Song J, Wang GG. An H3K36 methylation-engaging Tudor motif of polycomb-like proteins mediates PRC2 complex targeting. Mol Cell 2012; 49:571-82. [PMID: 23273982 DOI: 10.1016/j.molcel.2012.11.026] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 10/31/2012] [Accepted: 11/21/2012] [Indexed: 01/08/2023]
Abstract
Polycomb repressive complex 2 (PRC2) regulates pluripotency, differentiation, and tumorigenesis through catalysis of histone H3 lysine 27 trimethylation (H3K27me3) on chromatin. However, the mechanisms that underlie PRC2 recruitment and spreading on chromatin remain unclear. Here we report that histone H3 lysine 36 trimethylation (H3K36me3) binding activity is harbored in the Tudor motifs of PRC2-associated polycomb-like (PCL) proteins PHF1/PCL1 and PHF19/PCL3. Ectopically expressed PHF1 induced Tudor-dependent stabilization of PRC2 complexes on bulk chromatin and mediated spreading of PRC2 and H3K27me3 into H3K36me3-containing chromatin regions. In murine pluripotent stem cells, we identified coexistence of H3K36me3, H3K27me3, and PHF19/PCL3 at a subset of poised developmental genes and demonstrated that PHF19/PCL3 Tudor function is required for optimal H3K27me3 and repression of these loci. Collectively, our data suggest that PCL recognition of H3K36me3 promotes intrusion of PRC2 complexes into active chromatin regions to promote gene silencing and modulate the chromatin landscape during development.
Collapse
Affiliation(s)
- Ling Cai
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Tudor domains of the PRC2 components PHF1 and PHF19 selectively bind to histone H3K36me3. Biochem Biophys Res Commun 2012; 430:547-53. [PMID: 23228662 DOI: 10.1016/j.bbrc.2012.11.116] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 11/29/2012] [Indexed: 01/30/2023]
Abstract
PRC2 is the major H3K27 methyltransferase and is responsible for maintaining repressed gene expression patterns throughout development. It contains four core components: EZH2, EED, SUZ12 and RbAp46/48 and some cell-type specific components. In this study, we focused on characterizing the histone binding domains of PHF1 and PHF19, and found that the Tudor domains of PHF1 and PHF19 selectively bind to histone H3K36me3. Structural analysis of these Tudor domains also shed light on how these Tudor domains selectively bind to histone H3K36me3. The histone H3K36me3 binding by the Tudor domains of PHF1, PHF19 and likely MTF2 provide another recruitment and regulatory mechanism for the PRC2 complex. In addition, we found that the first PHD domains of PHF1 and PHF19 do not exhibit histone H3K4 binding ability, nor do they affect the Tudor domain binding to histones.
Collapse
|
46
|
Molecular basis for H3K36me3 recognition by the Tudor domain of PHF1. Nat Struct Mol Biol 2012; 19:1266-72. [PMID: 23142980 PMCID: PMC3603146 DOI: 10.1038/nsmb.2435] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 10/03/2012] [Indexed: 12/18/2022]
Abstract
The PHD finger protein 1 (PHF1) is essential in epigenetic regulation and genome maintenance. Here we show that the Tudor domain of human PHF1 binds to histone H3 trimethylated at Lys36 (H3K36me3). We report a 1.9-Å resolution crystal structure of the Tudor domain in complex with H3K36me3 and describe the molecular mechanism of H3K36me3 recognition using NMR. Binding of PHF1 to H3K36me3 inhibits the ability of the Polycomb PRC2 complex to methylate Lys27 of histone H3 in vitro and in vivo. Laser microirradiation data show that PHF1 is transiently recruited to DNA double-strand breaks, and PHF1 mutants impaired in the H3K36me3 interaction exhibit reduced retention at double-strand break sites. Together, our findings suggest that PHF1 can mediate deposition of the repressive H3K27me3 mark and acts as a cofactor in early DNA-damage response.
Collapse
|
47
|
Smolle M, Workman JL. Transcription-associated histone modifications and cryptic transcription. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:84-97. [PMID: 22982198 DOI: 10.1016/j.bbagrm.2012.08.008] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/14/2012] [Accepted: 08/29/2012] [Indexed: 12/21/2022]
Abstract
Eukaryotic genomes are packaged into chromatin, a highly organized structure consisting of DNA and histone proteins. All nuclear processes take place in the context of chromatin. Modifications of either DNA or histone proteins have fundamental effects on chromatin structure and function, and thus influence processes such as transcription, replication or recombination. In this review we highlight histone modifications specifically associated with gene transcription by RNA polymerase II and summarize their genomic distributions. Finally, we discuss how (mis-)regulation of these histone modifications perturbs chromatin organization over coding regions and results in the appearance of aberrant, intragenic transcription. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Michaela Smolle
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | |
Collapse
|
48
|
PHF20 is an effector protein of p53 double lysine methylation that stabilizes and activates p53. Nat Struct Mol Biol 2012; 19:916-24. [PMID: 22864287 DOI: 10.1038/nsmb.2353] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Accepted: 07/06/2012] [Indexed: 12/26/2022]
Abstract
PHF20 is a multidomain protein and subunit of a lysine acetyltransferase complex that acetylates histone H4 and p53 but whose function is unclear. Using biochemical, biophysical and cellular approaches, we determined that PHF20 is a direct regulator of p53. A Tudor domain in PHF20 recognized p53 dimethylated at Lys370 or Lys382 and a homodimeric form of this Tudor domain could associate with the two dimethylated sites on p53 with enhanced affinity, indicating a multivalent interaction. Association with PHF20 promotes stabilization and activation of p53 by diminishing Mdm2-mediated p53 ubiquitylation and degradation. PHF20 contributes to upregulation of p53 in response to DNA damage, and ectopic expression of PHF20 in different cell lines leads to phenotypic changes that are hallmarks of p53 activation. Overall our work establishes that PHF20 functions as an effector of p53 methylation that stabilizes and activates p53.
Collapse
|
49
|
Histone H3 lysine 36 methylation targets the Isw1b remodeling complex to chromatin. Mol Cell Biol 2012; 32:3479-85. [PMID: 22751925 DOI: 10.1128/mcb.00389-12] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Histone H3 lysine 36 methylation is a ubiquitous hallmark of productive transcription elongation. Despite the prevalence of this histone posttranslational modification, however, the downstream functions triggered by this mark are not well understood. In this study, we showed that H3K36 methylation promoted the chromatin interaction of the Isw1b chromatin-remodeling complex in Saccharomyces cerevisiae. Similar to H3K36 methylation, Isw1b was found at the mid- and 3' regions of transcribed genes genome wide, and its presence at active genes was dependent on H3K36 methylation and the PWWP domain of the Isw1b subunit, Ioc4. Moreover, purified Isw1b preferentially interacted with recombinant nucleosomes that were methylated at lysine 36, and this interaction also required the Ioc4 PWWP domain. While H3K36 methylation has been shown to regulate the binding of numerous factors, this is the first time that it has been shown to facilitate targeting of a chromatin-remodeling complex.
Collapse
|
50
|
Kumar GS, Chang W, Xie T, Patel A, Zhang Y, Wang GG, David G, Radhakrishnan I. Sequence requirements for combinatorial recognition of histone H3 by the MRG15 and Pf1 subunits of the Rpd3S/Sin3S corepressor complex. J Mol Biol 2012; 422:519-31. [PMID: 22728643 DOI: 10.1016/j.jmb.2012.06.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 06/07/2012] [Accepted: 06/08/2012] [Indexed: 01/05/2023]
Abstract
The transcriptional output at a genomic locus in eukaryotes is determined, in part, by the pattern of histone modifications that are read and interpreted by key effector proteins. The histone deacetylase activity of the evolutionarily conserved Rpd3S/Sin3S complex is crucial for suppressing aberrant transcription from cryptic start sites within intragenic regions of actively transcribed genes. Precise targeting of the complex relies on the chromatin binding activities of the MRG15 (MRG stands for mortality factor on chromosome 4 related gene) and Pf1 subunits. Whereas the molecular target of the MRG15 chromodomain (CD) has been suggested to be H3K36me(2/3), the precise molecular target of the Pf1 plant homeodomain 1 (PHD1) has remained elusive. Here, we show that Pf1 PHD1 binds preferentially to the unmodified extreme N-terminus of histone H3 (H3K4me(0)) but not to H3K4me(2/3), which are enriched in the promoter and 5' regions of genes. Unlike previously characterized CD and PHD domains that bind to their targets with micromolar affinity, both MRG15 CD and Pf1 PHD1 bind to their targets with >100 μM affinity, offering an explanation for why both MRG15 CD and Pf1 PHD1 domains are required to target the Rpd3S/Sin3S complex to chromatin. Our results also suggest that bivalency, rather than cooperativity, is the operative mechanism by which Pf1 and MRG15 combine to engage H3 in a biologically significant manner. Finally, the studies reveal an unanticipated role of Pf1 PHD1 in engaging the MRG15 MRG domain, albeit in a Pf1 MRG-binding-domain-dependent manner, implying a key role for the MRG15 MRG-Pf1 MBD interaction in chromatin targeting of the Rpd3S/Sin3S complex.
Collapse
Affiliation(s)
- Ganesan Senthil Kumar
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | | | | | | | | | | | | | | |
Collapse
|