1
|
Nussinov R. Pioneer in Molecular Biology: Conformational Ensembles in Molecular Recognition, Allostery, and Cell Function. J Mol Biol 2025; 437:169044. [PMID: 40015370 PMCID: PMC12021580 DOI: 10.1016/j.jmb.2025.169044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/01/2025]
Abstract
In 1978, for my PhD, I developed the efficient O(n3) dynamic programming algorithm for the-then open problem of RNA secondary structure prediction. This algorithm, now dubbed the "Nussinov algorithm", "Nussinov plots", and "Nussinov diagrams", is still taught across Europe and the U.S. As sequences started coming out in the 1980s, I started seeking genome-encoded functional signals, later becoming a bioinformatics trend. In the early 1990s I transited to proteins, co-developing a powerful computer vision-based docking algorithm. In the late 1990s, I proposed the foundational role of conformational ensembles in molecular recognition and allostery. At the time, conformational ensembles and free energy landscapes were viewed as physical properties of proteins but were not associated with function. The classical view of molecular recognition and binding was based on only two conformations captured by crystallography: open and closed. I proposed that all conformational states preexist. Proteins always have not one folded form-nor two-but many folded forms. Thus, rather than inducing fit, binding can work by shifting the ensembles between states, and this shifting, or redistributing the ensembles to maintain equilibrium, is the origin of the allosteric effect and protein, thus cell, function. This transformative paradigm impacted community views in allosteric drug design, catalysis, and regulation. Dynamic conformational ensemble shifts are now acknowledged as the origin of recognition, allostery, and signaling, underscoring that conformational ensembles-not proteins-are the workhorses of the cell, pioneering the fundamental idea that dynamic ensembles are the driving force behind cellular processes. Nussinov was recognized as pioneer in molecular biology by JMB.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
2
|
Chiu C, Stetson S, Thayer KM. MD Multi-Sector Selector: Recursive Extraction and Refinement of Molecular Dynamics Based Sectors Yields Two Sectors in p53 Tumor Suppressor Protein. J Phys Chem B 2025; 129:3747-3760. [PMID: 40173308 PMCID: PMC12010330 DOI: 10.1021/acs.jpcb.4c08495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 04/04/2025]
Abstract
Allosteric signaling in proteins allows perturbations at one locale to modulate activity at an orthosteric distant site. This may explain how distal mutations disrupt protein activity and offer pathways for the development of allosteric therapeutics, a novel class of restorative compounds to reactivate native function. Despite the ubiquitous presence of allosteric control in nature and the promises that it holds for treating currently untreatable diseases, quantitative theory of the mechanism of allostery is lacking. Working to fill this critical gap, we have developed a novel method to identify groups of covarying residues which the sector hypothesis suggests are capable of transmitting allosteric signals in proteins. A major problem with sectors computed from covariance measures is the selection relies upon a full covariance matrix rather than on the covariance among the residues posited to be in the sector. We demonstrate a novel method which constructs sectors on the basis of cohesion within the residues in the sector to eliminate the incongruity between the sector idea and the way it is calculated. Furthermore, the refinement can be iteratively applied, enabling the extraction of more than one sector in a well-defined, systematic manner. In this study, we report on the development of MD multi-sector selector and its application to allosteric signaling in the tumor suppressor protein p53. We consider the implications of our findings on our long-term goal of allosterically reactivating mutant p53 as a means of curing cancer, and critically assess the broader applicability of MD multi-sector selector across diverse fields.
Collapse
Affiliation(s)
- Christopher
A. Chiu
- Quantitative
Analysis CenterWesleyan University, Allbritton Center, 222 Church Street, Middletown, Connecticut 06459, United States
| | - Sean Stetson
- Mathematics
and Computer Science, Wesleyan University 54 Lawn Avenue, Hall-Atwater Laboratories,
Chemistry Station, Middletown, Connecticut 06459, United States
| | - Kelly M. Thayer
- Quantitative
Analysis CenterWesleyan University, Allbritton Center, 222 Church Street, Middletown, Connecticut 06459, United States
- Mathematics
and Computer Science, Wesleyan University 54 Lawn Avenue, Hall-Atwater Laboratories,
Chemistry Station, Middletown, Connecticut 06459, United States
- Molecular
Biophysics Program, Wesleyan University, 54 Lawn Avenue, Hall-Atwater Laboratories,
Chemistry Station, Middletown, Connecticut 06459, United States
- College
of Integrative Sciences, Wesleyan University, 54 Lawn Avenue, Hall-Atwater Laboratories,
Chemistry Station, Middletown, Connecticut 06459, United States
| |
Collapse
|
3
|
Nussinov R, Yavuz BR, Jang H. Allostery in Disease: Anticancer Drugs, Pockets, and the Tumor Heterogeneity Challenge. J Mol Biol 2025:169050. [PMID: 40021049 DOI: 10.1016/j.jmb.2025.169050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Charting future innovations is challenging. Yet, allosteric and orthosteric anticancer drugs are undergoing a revolution and taxing unresolved dilemmas await. Among the imaginative innovations, here we discuss cereblon and thalidomide derivatives as a means of recruiting neosubstrates and their degradation, allosteric heterogeneous bifunctional drugs like PROTACs, drugging phosphatases, inducers of targeted posttranslational protein modifications, antibody-drug conjugates, exploiting membrane interactions to increase local concentration, stabilizing the folded state, and more. These couple with harnessing allosteric cryptic pockets whose discovery offers more options to modulate the affinity of orthosteric, active site inhibitors. Added to these are strategies to counter drug resistance through drug combinations co-targeting pathways to bypass signaling blockades. Here, we discuss on the molecular and cellular levels, such inspiring advances, provide examples of their applications, their mechanisms and rational. We start with an overview on difficult to target proteins and their properties-rarely, if ever-conceptualized before, discuss emerging innovative drugs, and proceed to the increasingly popular allosteric cryptic pockets-their advantages-and critically, issues to be aware of. We follow with drug resistance and in-depth discussion of tumor heterogeneity. Heterogeneity is a hallmark of highly aggressive cancers, the core of drug resistance unresolved challenge. We discuss potential ways to target heterogeneity by predicting it. The increase in experimental and clinical data, computed (cell-type specific) interactomes, capturing transient cryptic pockets, learned drug resistance, workings of regulatory mechanisms, heterogeneity, and resistance-based cell signaling drug combinations, assisted by AI-driven reasoning and recognition, couple with creative allosteric drug discovery, charting future innovations.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, the United States of America; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, the United States of America; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Bengi Ruken Yavuz
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, the United States of America
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, the United States of America; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, the United States of America
| |
Collapse
|
4
|
Timsit Y, Sergeant-Perthuis G, Bennequin D. The role of ribosomal protein networks in ribosome dynamics. Nucleic Acids Res 2025; 53:gkae1308. [PMID: 39788545 PMCID: PMC11711686 DOI: 10.1093/nar/gkae1308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 12/12/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025] Open
Abstract
Accurate protein synthesis requires ribosomes to integrate signals from distant functional sites and execute complex dynamics. Despite advances in understanding ribosome structure and function, two key questions remain: how information is transmitted between these distant sites, and how ribosomal movements are synchronized? We recently highlighted the existence of ribosomal protein networks, likely evolved to participate in ribosome signaling. Here, we investigate the relationship between ribosomal protein networks and ribosome dynamics. Our findings show that major motion centers in the bacterial ribosome interact specifically with r-proteins, and that ribosomal RNA exhibits high mobility around each r-protein. This suggests that periodic electrostatic changes in the context of negatively charged residues (Glu and Asp) induce RNA-protein 'distance-approach' cycles, controlling key ribosomal movements during translocation. These charged residues play a critical role in modulating electrostatic repulsion between RNA and proteins, thus coordinating ribosomal dynamics. We propose that r-protein networks synchronize ribosomal dynamics through an 'electrostatic domino' effect, extending the concept of allostery to the regulation of movements within supramolecular assemblies.
Collapse
Affiliation(s)
- Youri Timsit
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM110, 163 avenue de Luminy 13288 Marseille, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 Rue Michel-Ange, 75016 Paris, France
| | - Grégoire Sergeant-Perthuis
- Laboratory of Computational and Quantitative Biology (LCQB), Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Daniel Bennequin
- Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG), UMR 7586, CNRS, Université Paris Diderot, 8, Pace Aurélie Nemours, 75013 Paris, France
| |
Collapse
|
5
|
Lazou M, Kozakov D, Joseph-McCarthy D, Vajda S. Which cryptic sites are feasible drug targets? Drug Discov Today 2024; 29:104197. [PMID: 39368697 PMCID: PMC11568903 DOI: 10.1016/j.drudis.2024.104197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Cryptic sites can expand the space of druggable proteins, but the potential usefulness of such sites needs to be investigated before any major effort. Given that the binding pockets are not formed, the druggability of such sites is not well understood. The analysis of proteins and their ligands shows that cryptic sites that are formed primarily by the motion of side chains moving out of the pocket to enable ligand binding generally do not bind drug-sized molecules with sufficient potency. By contrast, sites that are formed by loop or hinge motion are potentially valuable drug targets. Arguments are provided to explain the underlying causes in terms of classical enzyme inhibition theory and the kinetics of side chain motion and ligand binding.
Collapse
Affiliation(s)
- Maria Lazou
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA; Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Diane Joseph-McCarthy
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - Sandor Vajda
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Department of Chemistry, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
6
|
Kalmer T, Ancajas CMF, Cohen CI, McDaniel JM, Oyedele AS, Thirman HL, Walker AS. Statistical Coupling Analysis Predicts Correlated Motions in Dihydrofolate Reductase. J Phys Chem B 2024; 128:10373-10384. [PMID: 39385339 PMCID: PMC11514014 DOI: 10.1021/acs.jpcb.4c04195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/20/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Dihydrofolate reductase (DHFR), due to its universality and the depth with which it has been studied, is a model system in the study of protein dynamics. Myriad previous works have identified networks of residues in positions near to and remote from the active site that are involved in the dynamics. For example, specific mutations on the Met20 loop in Escherichia coli DHFR (N23PP/S148A) are known to disrupt millisecond-time scale motions as well as reduce catalytic activity. However, how and if networks of dynamically coupled residues influence the evolution of DHFR is still an unanswered question. In this study, we first identify, by statistical coupling analysis and molecular dynamic simulations, a network of coevolving residues that possesses increased correlated motions. We then go on to show that allosteric communication in this network is knocked down in N23PP/S148A mutant E. coli DHFR. We also identify two sites in the human DHFR sector which may accommodate the Met20 loop double proline motif. Finally, we demonstrate a concerted evolutionary change in the human DHFR allosteric networks, which maintains dynamic communication. These findings strongly implicate protein dynamics as a driving force for evolution.
Collapse
Affiliation(s)
- Thomas
L. Kalmer
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37240-0002, United
States
| | | | - Cameron I. Cohen
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37240-0002, United
States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United
States
| | - Jade M. McDaniel
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37240-0002, United
States
| | - Abiodun S. Oyedele
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37240-0002, United
States
| | - Hannah L. Thirman
- Department
of Cell and Developmental Biology, Vanderbilt
University, Nashville, Tennessee 37240-7935, United States
- Department
of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Center for Immunobiology, Vanderbilt University
Medical Center, Nashville, Tennessee 37232, United States
- Chemical
& Physical Biology Program, Vanderbilt
University, Nashville, Tennessee 37232-0301, United States
| | - Allison S. Walker
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37240-0002, United
States
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37240-0002, United
States
- Department
of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Evolutionary
Studies Initiative, Vanderbilt University, Nashville, Tennessee 37240-0002, United
States
| |
Collapse
|
7
|
Leusciatti M, Macchi B, Marino-Merlo F, Stefanizzi V, Mastino A, Morra G, Quadrelli P. Inhibition of the SARS-CoV-2 Non-structural Protein 5 (NSP5) Protease by Nitrosocarbonyl-Bases Small Molecules. ACS OMEGA 2024; 9:41599-41615. [PMID: 39398138 PMCID: PMC11465462 DOI: 10.1021/acsomega.4c05480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 10/15/2024]
Abstract
In the present work, we have designed and synthesized potential NSP5 protease allosteric inhibitors exploiting both docking and molecular dynamic data on SARS-CoV-2. The chemical protocols were developed on the basis of 1,3-dipolar cycloaddition reactions as well as the chemistry of nitrosocarbonyl intermediates. Computational studies were first conducted for determining the best candidate for SARS-CoV-2 NSP5 protease inhibition. Selected compounds were submitted to biological tests, showing low cytotoxicity and moderate activity.
Collapse
Affiliation(s)
- Marco Leusciatti
- Department
of Chemistry, INSTM Research Unit of Pavia;
University of Pavia, Viale Taramelli 10-12, Pavia 27100, Italy
- Biocomputing
Lab, SCITEC-Istituto di Scienze e Tecnologie
Chimiche CNR, Via Mario
Bianco 9, Milano 20131, Italy
| | - Beatrice Macchi
- Department
of Chemical Science and Technology, University
of Rome Tor Vergata, Via della ricerca scientifica 1, Roma 00133, Italy
| | - Francesca Marino-Merlo
- Department
of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, Messina 98166, Italy
| | - Valeria Stefanizzi
- Department
of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, Messina 98166, Italy
| | - Antonio Mastino
- Department
of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, Messina 98166, Italy
- The
Institute of Translational Pharmacology, CNR, Via Fosso del Cavaliere 100, Roma 00133, Italy
| | - Giulia Morra
- Biocomputing
Lab, SCITEC-Istituto di Scienze e Tecnologie
Chimiche CNR, Via Mario
Bianco 9, Milano 20131, Italy
| | - Paolo Quadrelli
- Department
of Chemistry, INSTM Research Unit of Pavia;
University of Pavia, Viale Taramelli 10-12, Pavia 27100, Italy
| |
Collapse
|
8
|
Nussinov R, Jang H. The value of protein allostery in rational anticancer drug design: an update. Expert Opin Drug Discov 2024; 19:1071-1085. [PMID: 39068599 PMCID: PMC11390313 DOI: 10.1080/17460441.2024.2384467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION Allosteric drugs are advantageous. However, they still face hurdles, including identification of allosteric sites that will effectively alter the active site. Current strategies largely focus on identifying pockets away from the active sites into which the allosteric ligand will dock and do not account for exactly how the active site is altered. Favorable allosteric inhibitors dock into sites that are nearby the active sites and follow nature, mimicking diverse allosteric regulation strategies. AREAS COVERED The following article underscores the immense significance of allostery in drug design, describes current allosteric strategies, and especially offers a direction going forward. The article concludes with the authors' expert perspectives on the subject. EXPERT OPINION To select a productive venue in allosteric inhibitor development, we should learn from nature. Currently, useful strategies follow this route. Consider, for example, the mechanisms exploited in relieving autoinhibition and in harnessing allosteric degraders. Mimicking compensatory, or rescue mutations may also fall into such a thesis, as can molecular glues that capture features of scaffolding proteins. Capturing nature and creatively tailoring its mimicry can continue to innovate allosteric drug discovery.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
9
|
Kalmer TL, Ancajas CMF, Cohen CI, McDaniel JM, Oyedele AS, Thirman HL, Walker AS. Statistical Coupling Analysis Predicts Correlated Motions in Dihydrofolate Reductase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599103. [PMID: 38948820 PMCID: PMC11213021 DOI: 10.1101/2024.06.18.599103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The role of dynamics in enzymatic function is a highly debated topic. Dihydrofolate reductase (DHFR), due to its universality and the depth with which it has been studied, is a model system in this debate. Myriad previous works have identified networks of residues in positions near to and remote from the active site that are involved in dynamics and others that are important for catalysis. For example, specific mutations on the Met20 loop in E. coli DHFR (N23PP/S148A) are known to disrupt millisecond-timescale motions and reduce catalytic activity. However, how and if networks of dynamically coupled residues influence the evolution of DHFR is still an unanswered question. In this study, we first identify, by statistical coupling analysis and molecular dynamic simulations, a network of coevolving residues, which possess increased correlated motions. We then go on to show that allosteric communication in this network is selectively knocked down in N23PP/S148A mutant E. coli DHFR. Finally, we identify two sites in the human DHFR sector which may accommodate the Met20 loop double proline mutation while preserving dynamics. These findings strongly implicate protein dynamics as a driving force for evolution.
Collapse
Affiliation(s)
- Thomas L. Kalmer
- Department of Chemistry, Vanderbilt University Nashville, TN, USA
| | | | - Cameron I. Cohen
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Jade M. McDaniel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Hannah L. Thirman
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Chemical & Physical Biology Program, Vanderbilt University, Nashville, TN, USA
| | - Allison S. Walker
- Department of Chemistry, Vanderbilt University Nashville, TN, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
10
|
Zebrauskiene D, Sadauskiene E, Dapkunas J, Kairys V, Balciunas J, Konovalovas A, Masiuliene R, Petraityte G, Valeviciene N, Mataciunas M, Barysiene J, Mikstiene V, Tomkuviene M, Preiksaitiene E. Aortic disease and cardiomyopathy in patients with a novel DNMT3A gene variant causing Tatton-Brown-Rahman syndrome. Clin Epigenetics 2024; 16:76. [PMID: 38845031 PMCID: PMC11157947 DOI: 10.1186/s13148-024-01686-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/27/2024] [Indexed: 06/09/2024] Open
Abstract
Tatton-Brown-Rahman syndrome (TBRS) is a rare congenital genetic disorder caused by autosomal dominant pathogenic variants in the DNA methyltransferase DNMT3A gene. Typical TBRS clinical features are overgrowth, intellectual disability, and minor facial anomalies. However, since the syndrome was first described in 2014, a widening spectrum of abnormalities is being described. Cardiovascular abnormalities are less commonly reported but can be a major complication of the syndrome. This article describes a family of three individuals diagnosed with TBRS in adulthood and highlights the variable expression of cardiovascular features. A 34-year-old proband presented with progressive aortic dilatation, mitral valve (MV) regurgitation, left ventricular (LV) dilatation, and ventricular arrhythmias. The affected family members (mother and brother) were diagnosed with MV regurgitation, LV dilatation, and arrhythmias. Exome sequencing and computational protein analysis suggested that the novel familial DNMT3A mutation Ser775Tyr is located in the methyltransferase domain, however, distant from the active site or DNA-binding loops. Nevertheless, this bulky substitution may have a significant effect on DNMT3A protein structure, dynamics, and function. Analysis of peripheral blood cfDNA and transcriptome showed shortened mononucleosome fragments and altered gene expression in a number of genes related to cardiovascular health and of yet undescribed function, including several lncRNAs. This highlights the importance of epigenetic regulation by DNMT3A on cardiovascular system development and function. From the clinical perspective, we suggest that new patients diagnosed with congenital DNMT3A variants and TBRS require close examination and follow-up for aortic dilatation and valvular disease because these conditions can progress rapidly. Moreover, personalized treatments, based on the specific DNMT3A variants and the different pathways of their function loss, can be envisioned in the future.
Collapse
Affiliation(s)
- Dovile Zebrauskiene
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Santariskiu 2, 08661, Vilnius, Lithuania.
| | - Egle Sadauskiene
- Clinic of Cardiac and Vascular Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Justas Dapkunas
- Department of Bioinformatics, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Visvaldas Kairys
- Department of Bioinformatics, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Joris Balciunas
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, 10257, Vilnius, Lithuania
| | | | | | - Gunda Petraityte
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Santariskiu 2, 08661, Vilnius, Lithuania
| | - Nomeda Valeviciene
- Department of Radiology, Nuclear Medicine and Medical Physics, Institute of Biomedical Sciences, Vilnius University Faculty of Medicine, Vilnius, Lithuania
| | - Mindaugas Mataciunas
- Department of Radiology, Nuclear Medicine and Medical Physics, Institute of Biomedical Sciences, Vilnius University Faculty of Medicine, Vilnius, Lithuania
| | - Jurate Barysiene
- Clinic of Cardiac and Vascular Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Violeta Mikstiene
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Santariskiu 2, 08661, Vilnius, Lithuania
| | - Migle Tomkuviene
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, 10257, Vilnius, Lithuania.
| | - Egle Preiksaitiene
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Santariskiu 2, 08661, Vilnius, Lithuania
| |
Collapse
|
11
|
Sinha K, Basu I, Shah Z, Shah S, Chakrabarty S. Leveraging Bidirectional Nature of Allostery To Inhibit Protein-Protein Interactions (PPIs): A Case Study of PCSK9-LDLR Interaction. J Chem Inf Model 2024; 64:3923-3932. [PMID: 38615325 DOI: 10.1021/acs.jcim.4c00294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The protein PCSK9 (proprotein convertase subtilisin/Kexin type 9) negatively regulates the recycling of LDLR (low-density lipoprotein receptor), leading to an elevated plasma level of LDL. Inhibition of PCSK9-LDLR interaction has emerged as a promising therapeutic strategy to manage hypercholesterolemia. However, the large interaction surface area between PCSK9 and LDLR makes it challenging to identify a small molecule competitive inhibitor. An alternative strategy would be to identify distal cryptic sites as targets for allosteric inhibitors that can remotely modulate PCSK9-LDLR interaction. Using several microseconds long molecular dynamics (MD) simulations, we demonstrate that on binding with LDLR, there is a significant conformational change (population shift) in a distal loop (residues 211-222) region of PCSK9. Consistent with the bidirectional nature of allostery, we establish a clear correlation between the loop conformation and the binding affinity with LDLR. Using a thermodynamic argument, we establish that the loop conformations predominantly present in the apo state of PCSK9 would have lower LDLR binding affinity, and they would be potential targets for designing allosteric inhibitors. We elucidate the molecular origin of the allosteric coupling between this loop and the LDLR binding interface in terms of the population shift in a set of salt bridges and hydrogen bonds. Overall, our work provides a general strategy toward identifying allosteric hotspots: compare the conformational ensemble of the receptor between the apo and bound states of the protein and identify distal conformational changes, if any. The inhibitors should be designed to bind and stabilize the apo-specific conformations.
Collapse
Affiliation(s)
- Krishnendu Sinha
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700 106, India
| | - Ipsita Basu
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700 106, India
| | - Zacharia Shah
- Hingez Therapeutics Inc., 8000 Towers Crescent Drive, STE 1331, Vienna, Virginia 22182, United States
| | - Salim Shah
- Hingez Therapeutics Inc., 8000 Towers Crescent Drive, STE 1331, Vienna, Virginia 22182, United States
| | - Suman Chakrabarty
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700 106, India
| |
Collapse
|
12
|
Han ISM, Thayer KM. Reconnaissance of Allostery via the Restoration of Native p53 DNA-Binding Domain Dynamics in Y220C Mutant p53 Tumor Suppressor Protein. ACS OMEGA 2024; 9:19837-19847. [PMID: 38737036 PMCID: PMC11079909 DOI: 10.1021/acsomega.3c08509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 05/14/2024]
Abstract
Allosteric regulation of protein dynamics infers a long-range deliberate propagation of information via micro- and macroscale interactions. The Y220C structural mutant is one of the most frequent cancerous p53 mutants. The mutation is distally located from the DNA-binding site of the p53 DNA-binding domain yet causes changes in DNA recognition. This system presents a unique opportunity to examine the allosteric control of mutated proteins under a drug design paradigm. We focus on the key case study of p53 Y220C mutation restoration by a series of new compounds suggested to have Y220C reactivation properties in comparison to our previous findings on the restorative potential of PK11000, a compound studied extensively for reactivation in vitro and in vivo. Previously, we implemented all-atom molecular dynamics (MD) simulations and our lab's techniques of MD-Sectors and MD-Markov state models on the wild type, the Y220C mutant, and Y220C with PK11000 to characterize the effector's restorative properties in terms of conformational dynamics and hydrogen bonding. In this study, we turn to probing the effects made by docking the battery of a new but less well-tested set of aminobenzothiazole derivative compounds reported by Baud et al., which show promise of Y220C rescue. We find that while complete and precise reconstitution of p53 WT molecular dynamics may not be observed as was the case with PK11000, dispersed local reconstitution of loop dynamics provides evidence of rescuing effects by aminobenzothiazole derivative N,2-dihydroxy-3,5-diiodo-4-(1H-pyrrol-1-yl)benzamide, Effector 22, like what we observed for PK11000. Generalizable insights into the mutation and allosteric reactivation of p53 by various effectors by reconstitution of WT dynamics observed in statistical conformational ensemble analysis and network inference are discussed, considering the development of allosteric drug design rooted in first principles.
Collapse
Affiliation(s)
- In Sub M. Han
- College of Integrated Sciences, Wesleyan University, Hall-Atwater Laboratories, Middletown, Connecticut 06459-0180, United States
| | - Kelly M. Thayer
- College of Integrated Sciences, Wesleyan University, Hall-Atwater Laboratories, Middletown, Connecticut 06459-0180, United States
| |
Collapse
|
13
|
Zhang Y, Guo J, Liu Y, Qu Y, Li YQ, Mu Y, Li W. An allosteric mechanism for potent inhibition of SARS-CoV-2 main proteinase. Int J Biol Macromol 2024; 265:130644. [PMID: 38462102 DOI: 10.1016/j.ijbiomac.2024.130644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
The main proteinase (Mpro) of SARS-CoV-2 plays a critical role in cleaving viral polyproteins into functional proteins required for viral replication and assembly, making it a prime drug target for COVID-19. It is well known that noncompetitive inhibition offers potential therapeutic options for treating COVID-19, which can effectively reduce the likelihood of cross-reactivity with other proteins and increase the selectivity of the drug. Therefore, the discovery of allosteric sites of Mpro has both scientific and practical significance. In this study, we explored the binding characteristics and inhibiting process of Mpro activity by two recently reported allosteric inhibitors, pelitinib and AT7519 which were obtained by the X-ray screening experiments, to probe the allosteric mechanism via molecular dynamic (MD) simulations. We found that pelitinib and AT7519 can stably bind to Mpro far from the active site. The binding affinity is estimated to be -24.37 ± 4.14 and - 26.96 ± 4.05 kcal/mol for pelitinib and AT7519, respectively, which is considerably stable compared with orthosteric drugs. Furthermore, the strong binding caused clear changes in the catalytic site of Mpro, thus decreasing the substrate accessibility. The community network analysis also validated that pelitinib and AT7519 strengthened intra- and inter-domain communication of Mpro dimer, resulting in a rigid Mpro, which could negatively impact substrate binding. In summary, our findings provide the detailed working mechanism for the two experimentally observed allosteric sites of Mpro. These allosteric sites greatly enhance the 'druggability' of Mpro and represent attractive targets for the development of new Mpro inhibitors.
Collapse
Affiliation(s)
- Yunju Zhang
- School of Physics, Shandong University, China
| | - Jingjing Guo
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, 999078, Macao
| | - Yang Liu
- School of Physics, Shandong University, China
| | - Yuanyuan Qu
- School of Physics, Shandong University, China
| | | | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Weifeng Li
- School of Physics, Shandong University, China.
| |
Collapse
|
14
|
Wu N, Barahona M, Yaliraki SN. Allosteric communication and signal transduction in proteins. Curr Opin Struct Biol 2024; 84:102737. [PMID: 38171189 DOI: 10.1016/j.sbi.2023.102737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 01/05/2024]
Abstract
Allostery is one of the cornerstones of biological function, as it plays a fundamental role in regulating protein activity. The modelling of allostery has gradually moved from a conformation-based framework, linked to structural changes, to dynamics-based allostery, whereby the effects of ligand binding propagate via signal transduction from the allosteric site to other regions of the protein via inter-residue interactions. Characterising such allosteric signalling pathways, which do not necessarily lead to conformational changes, has been pursued experimentally and complemented by computational analysis of protein networks to detect subtle dynamic propagation paths. Considering allostery from the perspective of signal transduction broadens the understanding of allosteric mechanisms, underscores the importance of protein topology, and can provide insights into allosteric drug design.
Collapse
Affiliation(s)
- Nan Wu
- Department of Chemistry, Imperial College London, United Kingdom
| | - Mauricio Barahona
- Department of Mathematics, Imperial College London, United Kingdom. https://twitter.com/@CMPHImperial
| | | |
Collapse
|
15
|
Guner-Yılmaz OZ, Kurkcuoglu O, Akten ED. Tunnel-like region observed as a potential allosteric site in Staphylococcus aureus Glyceraldehyde-3-phosphate dehydrogenase. Arch Biochem Biophys 2024; 752:109875. [PMID: 38158117 DOI: 10.1016/j.abb.2023.109875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) catalyzing the sixth step of glycolysis has been investigated for allosteric features that might be used as potential target for specific inhibition of Staphylococcus aureus (S.aureus). X-ray structure of bacterial enzyme for which a tunnel-like opening passing through the center previously proposed as an allosteric site has been subjected to six independent 500 ns long Molecular Dynamics simulations. Harmonic bond restraints were employed at key residues to underline the allosteric feature of this region. A noticeable reduction was observed in the mobility of NAD+ binding domains when restrictions were applied. Also, a substantial decrease in cross-correlations between distant Cα fluctuations was detected throughout the structure. Mutual information (MI) analysis revealed a similar decrease in the degree of correspondence in positional fluctuations in all directions everywhere in the receptor. MI between backbone and side-chain torsional variations changed its distribution profile and decreased considerably around the catalytic sites when restraints were employed. Principal component analysis clearly showed that the restrained state sampled a narrower range of conformations than apo state, especially in the first principal mode due to restriction in the conformational flexibility of NAD+ binding domain. Clustering the trajectory based on catalytic site residues displayed a smaller repertoire of conformations for restrained state compared to apo. Representative snapshots subjected to k-shortest pathway analysis revealed the impact of bond restraints on the allosteric communication which displayed distinct optimal and suboptimal pathways for two states, where observed frequencies of critical residues Gln51 and Val283 at the proposed site changed considerably.
Collapse
Affiliation(s)
| | - Ozge Kurkcuoglu
- Department of Chemical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Ebru Demet Akten
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul, Turkey.
| |
Collapse
|
16
|
Henriksen HC, Sowers AJ, Travis CR, Vulpis TD, Cope TA, Ouslander SK, Russell AF, Gagné MR, Pophristic V, Liu Z, Waters ML. Stimulus-Induced Relief of Intentionally Incorporated Frustration Drives Refolding of a Water-Soluble Biomimetic Foldamer. J Am Chem Soc 2023; 145:27672-27679. [PMID: 38054648 PMCID: PMC11407234 DOI: 10.1021/jacs.3c09883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Frustrated, or nonoptimal, interactions have been proposed to be essential to a protein's ability to display responsive behavior such as allostery, conformational signaling, and signal transduction. However, the intentional incorporation of frustrated noncovalent interactions has not been explored as a design element in the field of dynamic foldamers. Here, we report the design, synthesis, characterization, and molecular dynamics simulations of the first dynamic water-soluble foldamer that, in response to a stimulus, exploits relief of frustration in its noncovalent network to structurally rearrange from a pleated to an intercalated columnar structure. Thus, relief of frustration provides the energetic driving force for structural rearrangement. This work represents a previously unexplored design element for the development of stimulus-responsive systems that has potential application to materials chemistry, synthetic biology, and molecular machines.
Collapse
Affiliation(s)
- Hanne C Henriksen
- Department of Chemistry, CB 3290, UNC Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Adam J Sowers
- Department of Chemistry, CB 3290, UNC Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Christopher R Travis
- Department of Chemistry, CB 3290, UNC Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Troy D Vulpis
- Department of Chemistry, CB 3290, UNC Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Thomas A Cope
- Department of Chemistry, CB 3290, UNC Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sarah K Ouslander
- Department of Chemistry, CB 3290, UNC Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alexander F Russell
- Department of Chemistry, CB 3290, UNC Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Michel R Gagné
- Department of Chemistry, CB 3290, UNC Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Vojislava Pophristic
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028-1701 , United States
| | - Zhiwei Liu
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028-1701 , United States
| | - Marcey L Waters
- Department of Chemistry, CB 3290, UNC Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
17
|
Li M, Lan X, Lu X, Zhang J. A Structure-Based Allosteric Modulator Design Paradigm. HEALTH DATA SCIENCE 2023; 3:0094. [PMID: 38487194 PMCID: PMC10904074 DOI: 10.34133/hds.0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/11/2023] [Indexed: 03/17/2024]
Abstract
Importance: Allosteric drugs bound to topologically distal allosteric sites hold a substantial promise in modulating therapeutic targets deemed undruggable at their orthosteric sites. Traditionally, allosteric modulator discovery has predominantly relied on serendipitous high-throughput screening. Nevertheless, the landscape has undergone a transformative shift due to recent advancements in our understanding of allosteric modulation mechanisms, coupled with a significant increase in the accessibility of allosteric structural data. These factors have extensively promoted the development of various computational methodologies, especially for machine-learning approaches, to guide the rational design of structure-based allosteric modulators. Highlights: We here presented a comprehensive structure-based allosteric modulator design paradigm encompassing 3 critical stages: drug target acquisition, allosteric binding site, and modulator discovery. The recent advances in computational methods in each stage are encapsulated. Furthermore, we delve into analyzing the successes and obstacles encountered in the rational design of allosteric modulators. Conclusion: The structure-based allosteric modulator design paradigm holds immense potential for the rational design of allosteric modulators. We hope that this review would heighten awareness of the use of structure-based computational methodologies in advancing the field of allosteric drug discovery.
Collapse
Affiliation(s)
- Mingyu Li
- College of Pharmacy,
Ningxia Medical University, Yinchuan, NingxiaHui Autonomous Region, China
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaobin Lan
- College of Pharmacy,
Ningxia Medical University, Yinchuan, NingxiaHui Autonomous Region, China
- Medicinal Chemistry and Bioinformatics Center,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xun Lu
- College of Pharmacy,
Ningxia Medical University, Yinchuan, NingxiaHui Autonomous Region, China
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jian Zhang
- College of Pharmacy,
Ningxia Medical University, Yinchuan, NingxiaHui Autonomous Region, China
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
18
|
Nussinov R, Liu Y, Zhang W, Jang H. Protein conformational ensembles in function: roles and mechanisms. RSC Chem Biol 2023; 4:850-864. [PMID: 37920394 PMCID: PMC10619138 DOI: 10.1039/d3cb00114h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/02/2023] [Indexed: 11/04/2023] Open
Abstract
The sequence-structure-function paradigm has dominated twentieth century molecular biology. The paradigm tacitly stipulated that for each sequence there exists a single, well-organized protein structure. Yet, to sustain cell life, function requires (i) that there be more than a single structure, (ii) that there be switching between the structures, and (iii) that the structures be incompletely organized. These fundamental tenets called for an updated sequence-conformational ensemble-function paradigm. The powerful energy landscape idea, which is the foundation of modernized molecular biology, imported the conformational ensemble framework from physics and chemistry. This framework embraces the recognition that proteins are dynamic and are always interconverting between conformational states with varying energies. The more stable the conformation the more populated it is. The changes in the populations of the states are required for cell life. As an example, in vivo, under physiological conditions, wild type kinases commonly populate their more stable "closed", inactive, conformations. However, there are minor populations of the "open", ligand-free states. Upon their stabilization, e.g., by high affinity interactions or mutations, their ensembles shift to occupy the active states. Here we discuss the role of conformational propensities in function. We provide multiple examples of diverse systems, including protein kinases, lipid kinases, and Ras GTPases, discuss diverse conformational mechanisms, and provide a broad outlook on protein ensembles in the cell. We propose that the number of molecules in the active state (inactive for repressors), determine protein function, and that the dynamic, relative conformational propensities, rather than the rigid structures, are the hallmark of cell life.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research Frederick MD 21702 USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University Tel Aviv 69978 Israel
- Cancer Innovation Laboratory, National Cancer Institute Frederick MD 21702 USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute Frederick MD 21702 USA
| | - Wengang Zhang
- Cancer Innovation Laboratory, National Cancer Institute Frederick MD 21702 USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research Frederick MD 21702 USA
- Cancer Innovation Laboratory, National Cancer Institute Frederick MD 21702 USA
| |
Collapse
|
19
|
Naz S, Liu P, Farooq U, Ma H. Insight into de-regulation of amino acid feedback inhibition: a focus on structure analysis method. Microb Cell Fact 2023; 22:161. [PMID: 37612753 PMCID: PMC10464499 DOI: 10.1186/s12934-023-02178-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/13/2023] [Indexed: 08/25/2023] Open
Abstract
Regulation of amino acid's biosynthetic pathway is of significant importance to maintain homeostasis and cell functions. Amino acids regulate their biosynthetic pathway by end-product feedback inhibition of enzymes catalyzing committed steps of a pathway. Discovery of new feedback resistant enzyme variants to enhance industrial production of amino acids is a key objective in industrial biotechnology. Deregulation of feedback inhibition has been achieved for various enzymes using in vitro and in silico mutagenesis techniques. As enzyme's function, its substrate binding capacity, catalysis activity, regulation and stability are dependent on its structural characteristics, here, we provide detailed structural analysis of all feedback sensitive enzyme targets in amino acid biosynthetic pathways. Current review summarizes information regarding structural characteristics of various enzyme targets and effect of mutations on their structures and functions especially in terms of deregulation of feedback inhibition. Furthermore, applicability of various experimental as well as computational mutagenesis techniques to accomplish feedback resistance has also been discussed in detail to have an insight into various aspects of research work reported in this particular field of study.
Collapse
Affiliation(s)
- Sadia Naz
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Pi Liu
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Umar Farooq
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Islamabad, 22060, Pakistan
| | - Hongwu Ma
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
20
|
Sora V, Tiberti M, Beltrame L, Dogan D, Robbani SM, Rubin J, Papaleo E. PyInteraph2 and PyInKnife2 to Analyze Networks in Protein Structural Ensembles. J Chem Inf Model 2023; 63:4237-4245. [PMID: 37437128 DOI: 10.1021/acs.jcim.3c00574] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Due to the complex nature of noncovalent interactions and their long-range effects, analyzing protein conformations using network theory can be enlightening. Protein Structure Networks (PSNs) provide a convenient formalism to study protein structures in relation to essential properties such as key residues for structural stability, allosteric communication, and the effects of modifications of the protein. PSNs can be defined according to very different principles, and the available tools have limitations in input formats, supported models, and version control. Other outstanding problems are related to the definition of network cutoffs and the assessment of the stability of the network properties. The protein science community could benefit from a common framework to carry out these analyses and make them easier to reproduce, reuse, and evaluate. We here provide two open-source software packages, PyInteraph2 and PyInKnife2, to implement and analyze PSNs in a reproducible and documented manner. PyInteraph2 interfaces with multiple formats for protein ensembles and incorporates different network models with the possibility of integrating them into a macronetwork and performing various downstream analyses, including hubs, connected components, and several other centrality measures, and visualizes the networks or further analyzes them thanks to compatibility with Cytoscape.PyInKnife2 that supports the network models implemented in PyInteraph2. It employs a jackknife resampling approach to estimate the convergence of network properties and streamline the selection of distance cutoffs. We foresee that the modular structure of the code and the supported version control system will promote the transition to a community-driven effort, boost reproducibility, and establish common protocols in the PSN field. As developers, we will guarantee the introduction of new functionalities and maintenance, assistance, and training of new contributors.
Collapse
Affiliation(s)
- Valentina Sora
- Cancer Structural Biology, Danish Cancer Institute, Strandboulevarden 49, 2100 Copenhagen, Denmark
- Cancer Systems Biology, Section of Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Matteo Tiberti
- Cancer Structural Biology, Danish Cancer Institute, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Ludovica Beltrame
- Cancer Systems Biology, Section of Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Deniz Dogan
- Cancer Structural Biology, Danish Cancer Institute, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Shahriyar Mahdi Robbani
- Cancer Structural Biology, Danish Cancer Institute, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Joshua Rubin
- Cancer Structural Biology, Danish Cancer Institute, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Elena Papaleo
- Cancer Structural Biology, Danish Cancer Institute, Strandboulevarden 49, 2100 Copenhagen, Denmark
- Cancer Systems Biology, Section of Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800 Lyngby, Denmark
| |
Collapse
|
21
|
Alao JP, Obaseki I, Amankwah YS, Nguyen Q, Sugoor M, Unruh E, Popoola HO, Tehver R, Kravats AN. Insight into the Nucleotide Based Modulation of the Grp94 Molecular Chaperone Using Multiscale Dynamics. J Phys Chem B 2023; 127:5389-5409. [PMID: 37294929 PMCID: PMC10292203 DOI: 10.1021/acs.jpcb.3c00260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/17/2023] [Indexed: 06/11/2023]
Abstract
Grp94, an ER-localized molecular chaperone, is required for the folding and activation of many membrane and secretory proteins. Client activation by Grp94 is mediated by nucleotide and conformational changes. In this work, we aim to understand how microscopic changes from nucleotide hydrolysis can potentiate large-scale conformational changes of Grp94. We performed all-atom molecular dynamics simulations on the ATP-hydrolysis competent state of the Grp94 dimer in four different nucleotide bound states. We found that Grp94 was the most rigid when ATP was bound. ATP hydrolysis or nucleotide removal enhanced mobility of the N-terminal domain and ATP lid, resulting in suppression of interdomain communication. In an asymmetric conformation with one hydrolyzed nucleotide, we identified a more compact state, similar to experimental observations. We also identified a potential regulatory role of the flexible linker, as it formed electrostatic interactions with the Grp94 M-domain helix near the region where BiP is known to bind. These studies were complemented with normal-mode analysis of an elastic network model to investigate Grp94's large-scale conformational changes. SPM analysis identified residues that are important in signaling conformational change, many of which have known functional relevance in ATP coordination and catalysis, client binding, and BiP binding. Our findings suggest that ATP hydrolysis in Grp94 alters allosteric wiring and facilitates conformational changes.
Collapse
Affiliation(s)
- John Paul Alao
- Department
of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Ikponwmosa Obaseki
- Department
of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Yaa Sarfowah Amankwah
- Department
of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Quinn Nguyen
- Department
of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697, United States
| | - Meghana Sugoor
- Department
of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Erin Unruh
- Department
of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
- Cell,
Molecular, and Structural Biology Program, Department of Chemistry
& Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | | | - Riina Tehver
- Department
of Physics, Denison University, Granville, Ohio 43023, United States
| | - Andrea N. Kravats
- Department
of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
- Cell,
Molecular, and Structural Biology Program, Department of Chemistry
& Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
22
|
Li S, Zhang H, Zhu M, Kuang Z, Li X, Xu F, Miao S, Zhang Z, Lou X, Li H, Xia F. Electrochemical Biosensors for Whole Blood Analysis: Recent Progress, Challenges, and Future Perspectives. Chem Rev 2023. [PMID: 37262362 DOI: 10.1021/acs.chemrev.1c00759] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Whole blood, as one of the most significant biological fluids, provides critical information for health management and disease monitoring. Over the past 10 years, advances in nanotechnology, microfluidics, and biomarker research have spurred the development of powerful miniaturized diagnostic systems for whole blood testing toward the goal of disease monitoring and treatment. Among the techniques employed for whole-blood diagnostics, electrochemical biosensors, as known to be rapid, sensitive, capable of miniaturization, reagentless and washing free, become a class of emerging technology to achieve the target detection specifically and directly in complex media, e.g., whole blood or even in the living body. Here we are aiming to provide a comprehensive review to summarize advances over the past decade in the development of electrochemical sensors for whole blood analysis. Further, we address the remaining challenges and opportunities to integrate electrochemical sensing platforms.
Collapse
Affiliation(s)
- Shaoguang Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hongyuan Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Man Zhu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhujun Kuang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xun Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Siyuan Miao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zishuo Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hui Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
23
|
Nussinov R, Zhang M, Liu Y, Jang H. AlphaFold, allosteric, and orthosteric drug discovery: Ways forward. Drug Discov Today 2023; 28:103551. [PMID: 36907321 PMCID: PMC10238671 DOI: 10.1016/j.drudis.2023.103551] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Drug discovery is arguably a highly challenging and significant interdisciplinary aim. The stunning success of the artificial intelligence-powered AlphaFold, whose latest version is buttressed by an innovative machine-learning approach that integrates physical and biological knowledge about protein structures, raised drug discovery hopes that unsurprisingly, have not come to bear. Even though accurate, the models are rigid, including the drug pockets. AlphaFold's mixed performance poses the question of how its power can be harnessed in drug discovery. Here we discuss possible ways of going forward wielding its strengths, while bearing in mind what AlphaFold can and cannot do. For kinases and receptors, an input enriched in active (ON) state models can better AlphaFold's chance of rational drug design success.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| |
Collapse
|
24
|
Escobedo N, Monzon AM, Fornasari MS, Palopoli N, Parisi G. Combining Protein Conformational Diversity and Phylogenetic Information Using CoDNaS and CoDNaS-Q. Curr Protoc 2023; 3:e764. [PMID: 37184204 DOI: 10.1002/cpz1.764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
CoDNaS (http://ufq.unq.edu.ar/codnas/) and CoDNaS-Q (http://ufq.unq.edu.ar/codnasq) are repositories of proteins with different degrees of conformational diversity. Following the ensemble nature of the native state, conformational diversity represents the structural differences between the conformers in the ensemble. Each entry in CoDNaS and CoDNaS-Q contains a redundant collection of experimentally determined conformers obtained under different conditions. These conformers represent snapshots of the protein dynamism. While CoDNaS contains examples of conformational diversity at the tertiary level, a recent development, CoDNaS-Q, contains examples at the quaternary level. In the emerging age of accurate protein structure prediction by machine learning approaches, many questions remain open regarding the characterization of protein dynamism. In this context, most bioinformatics resources take advantage of distinct features derived from protein alignments, however, the complexity and heterogeneity of information makes it difficult to recover reliable biological signatures. Here we present five protocols to explore tertiary and quaternary conformational diversity at the individual protein level as well as for the characterization of the distribution of conformational diversity at the protein family level in a phylogenetic context. These protocols can provide curated protein families with experimentally known conformational diversity, facilitating the exploration of sequence determinants of protein dynamism. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Assessing conformational diversity with CoDNaS Alternate Protocol 1: Assessing conformational diversity at the quaternary level with CoDNaS-Q Basic Protocol 2: Exploring conformational diversity in a protein family Alternate Protocol 2: Exploring quaternary conformational diversity in a protein family Basic Protocol 3: Representing conformational diversity in a phylogenetic context.
Collapse
Affiliation(s)
- Nahuel Escobedo
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - María Silvina Fornasari
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Nicolas Palopoli
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Gustavo Parisi
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
25
|
Cowan B, Beveridge DL, Thayer KM. Allosteric Signaling in PDZ Energetic Networks: Embedding Error Analysis. J Phys Chem B 2023; 127:623-633. [PMID: 36626697 PMCID: PMC9884075 DOI: 10.1021/acs.jpcb.2c06546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/23/2022] [Indexed: 01/12/2023]
Abstract
Allosteric signaling in proteins has been known for some half a century, yet how the signal traverses the protein remains an active area of research. Recently, the importance of electrostatics to achieve long-range signaling has become increasingly appreciated. Our laboratory has been working on developing network approaches to capture such interactions. In this study, we turn our attention to the well-studied allosteric model protein, PDZ. We study the allosteric dynamics on a per-residue basis in key constructs involving the PDZ domain, its allosteric effector, and its peptide ligand. We utilize molecular dynamics trajectories to create the networks for the constructs to explore the allosteric effect by plotting the heat kernel results onto axes defined by principal components. We introduce a new metric to quantitate the volume sampled by a residue in the latent space. We relate our findings to PDZ and the greater field of allostery.
Collapse
Affiliation(s)
- Benjamin
S. Cowan
- Department
of Computer Science, Wesleyan University, Middletown, Connecticut06457, United States
- College
of Integrative Sciences, Wesleyan University, Middletown, Connecticut06457, United States
| | - David L. Beveridge
- Molecular
Biophysics Program, Wesleyan University, Middletown, Connecticut06457, United States
- Department
of Chemistry, Wesleyan University, Middletown, Connecticut06457, United States
| | - Kelly M. Thayer
- Department
of Computer Science, Wesleyan University, Middletown, Connecticut06457, United States
- Molecular
Biophysics Program, Wesleyan University, Middletown, Connecticut06457, United States
- Department
of Chemistry, Wesleyan University, Middletown, Connecticut06457, United States
- College
of Integrative Sciences, Wesleyan University, Middletown, Connecticut06457, United States
| |
Collapse
|
26
|
Fabry J, Thayer KM. Network Analysis of Molecular Dynamics Sectors in the p53 Protein. ACS OMEGA 2023; 8:571-587. [PMID: 36643471 PMCID: PMC9835189 DOI: 10.1021/acsomega.2c05635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Design of allosteric regulators is an emergent field in the area of drug discovery holding promise for currently untreated diseases. Allosteric regulators bind to a protein in one location and affect a distant site. The ubiquitous presence of allosteric effectors in biology and the success of serendipitously identified allosteric compounds point to the potential they hold. Although the mechanism of transmission of an allosteric signal is not unequivocally determined, one hypothesis suggests that groups of evolutionarily covarying residues within a protein, termed sectors, are conduits. A long-term goal of our lab is to allosterically modulate the activity of proteins by binding small molecules at points of allosteric control. However, methods to consistently identify such points remain unclear. Sector residues on the surfaces of proteins are a promising source of allosteric targets. Recently, we introduced molecular dynamics (MD)-based sectors; MD sectors capitalize on covariance of motion, in place of evolutionary covariance. By focusing on motional covariance, MD sectors tap into the framework of statistical mechanics afforded by the Boltzmann ensemble of structural conformations comprising the underlying data set. We hypothesized that the method of MD sectors can be used to identify a cohesive network of motionally covarying residues capable of transmitting an allosteric signal in a protein. While our initial qualitative results showed promise for the method to predict sectors, that a network of cohesively covarying residues had been produced remained an untested assumption. In this work, we apply network theory to rigorously analyze MD sectors, allowing us to quantitatively assess the biologically relevant property of network cohesiveness of sectors in the context of the tumor suppressor protein, p53. We revised the methodology for assessing and improving MD sectors. Specifically, we introduce a metric to calculate the cohesive properties of the network. Our new approach separates residues into two categories: sector residues and non-sector residues. The relatedness within each respective group is computed with a distance metric. Cohesive sector networks are identified as those that have high relatedness among the sector residues which exceeds the relatedness of the residues to the non-sector residues in terms of the correlation of motions. Our major finding was that the revised means of obtaining sectors was more efficacious than previous iterations, as evidenced by the greater cohesion of the networks. These results are discussed in the context of the development of allosteric regulators of p53 in particular and the expected applicability of the method to the drug design field in general.
Collapse
Affiliation(s)
- Jonathan
D. Fabry
- Department
of Mathematics and Computer Science, Wesleyan
University, Middletown, Connecticut06457United States
- Department
of Chemistry, Wesleyan University, Middletown, Connecticut06457, United States
| | - Kelly M. Thayer
- Department
of Mathematics and Computer Science, Wesleyan
University, Middletown, Connecticut06457United States
- Department
of Chemistry, Wesleyan University, Middletown, Connecticut06457, United States
- College
of Integrative Sciences, Wesleyan University, Middletown, Connecticut06457, United States
| |
Collapse
|
27
|
Armour-Garb I, Han ISM, Cowan BS, Thayer KM. Variable Regions of p53 Isoforms Allosterically Hard Code DNA Interaction. J Phys Chem B 2022; 126:8495-8507. [PMID: 36245142 PMCID: PMC9623584 DOI: 10.1021/acs.jpcb.2c06229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Allosteric regulation of protein activity pervades biology as the "second secret of life." We have been examining the allosteric regulation and mutant reactivation of the tumor suppressor protein p53. We have found that generalizing the definition of allosteric effector to include entire proteins and expanding the meaning of binding site to include the interface of a transcription factor with its DNA to be useful in understanding the modulation of protein activity. Here, we cast the variable regions of p53 isoforms as allosteric regulators of p53 interactions with its consensus DNA. We implemented molecular dynamics simulations and our lab's new techniques of molecular dynamics (MD) sectors and MD-Markov state models to investigate the effects of nine naturally occurring splice variant isoforms of p53. We find that all of the isoforms differ from wild type in their dynamic properties and how they interact with the DNA. We consider the implications of these findings on allostery and cancer treatment.
Collapse
Affiliation(s)
- Isabel Armour-Garb
- †Department
of Mathematics and Computer Science, ‡Department of Chemistry, and §College of Integrative
Sciences, Wesleyan University, Middletown, Connecticut 06457, United States
| | - In Sub Mark Han
- †Department
of Mathematics and Computer Science, ‡Department of Chemistry, and §College of Integrative
Sciences, Wesleyan University, Middletown, Connecticut 06457, United States
| | - Benjamin S. Cowan
- †Department
of Mathematics and Computer Science, ‡Department of Chemistry, and §College of Integrative
Sciences, Wesleyan University, Middletown, Connecticut 06457, United States
| | - Kelly M. Thayer
- †Department
of Mathematics and Computer Science, ‡Department of Chemistry, and §College of Integrative
Sciences, Wesleyan University, Middletown, Connecticut 06457, United States,
| |
Collapse
|
28
|
Strömich L, Wu N, Barahona M, Yaliraki SN. Allosteric Hotspots in the Main Protease of SARS-CoV-2. J Mol Biol 2022; 434:167748. [PMID: 35843284 PMCID: PMC9288249 DOI: 10.1016/j.jmb.2022.167748] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023]
Abstract
Inhibiting the main protease of SARS-CoV-2 is of great interest in tackling the COVID-19 pandemic caused by the virus. Most efforts have been centred on inhibiting the binding site of the enzyme. However, considering allosteric sites, distant from the active or orthosteric site, broadens the search space for drug candidates and confers the advantages of allosteric drug targeting. Here, we report the allosteric communication pathways in the main protease dimer by using two novel fully atomistic graph-theoretical methods: Bond-to-bond propensity, which has been previously successful in identifying allosteric sites in extensive benchmark data sets without a priori knowledge, and Markov transient analysis, which has previously aided in finding novel drug targets in catalytic protein families. Using statistical bootstrapping, we score the highest ranking sites against random sites at similar distances, and we identify four statistically significant putative allosteric sites as good candidates for alternative drug targeting.
Collapse
Affiliation(s)
- Léonie Strömich
- Department of Chemistry Imperial College London, United Kingdom
| | - Nan Wu
- Department of Chemistry Imperial College London, United Kingdom
| | | | | |
Collapse
|
29
|
Nussinov R, Zhang M, Maloney R, Liu Y, Tsai CJ, Jang H. Allostery: Allosteric Cancer Drivers and Innovative Allosteric Drugs. J Mol Biol 2022; 434:167569. [PMID: 35378118 PMCID: PMC9398924 DOI: 10.1016/j.jmb.2022.167569] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/11/2022] [Accepted: 03/25/2022] [Indexed: 01/12/2023]
Abstract
Here, we discuss the principles of allosteric activating mutations, propagation downstream of the signals that they prompt, and allosteric drugs, with examples from the Ras signaling network. We focus on Abl kinase where mutations shift the landscape toward the active, imatinib binding-incompetent conformation, likely resulting in the high affinity ATP outcompeting drug binding. Recent pharmacological innovation extends to allosteric inhibitor (GNF-5)-linked PROTAC, targeting Bcr-Abl1 myristoylation site, and broadly, allosteric heterobifunctional degraders that destroy targets, rather than inhibiting them. Designed chemical linkers in bifunctional degraders can connect the allosteric ligand that binds the target protein and the E3 ubiquitin ligase warhead anchor. The physical properties and favored conformational state of the engineered linker can precisely coordinate the distance and orientation between the target and the recruited E3. Allosteric PROTACs, noncompetitive molecular glues, and bitopic ligands, with covalent links of allosteric ligands and orthosteric warheads, increase the effective local concentration of productively oriented and placed ligands. Through covalent chemical or peptide linkers, allosteric drugs can collaborate with competitive drugs, degrader anchors, or other molecules of choice, driving innovative drug discovery.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Ryan Maloney
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Yonglan Liu
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
30
|
Wang J, Sachpatzidis A, Christian TD, Lomakin IB, Garen A, Konigsberg WH. Insight into the Tumor Suppression Mechanism from the Structure of Human Polypyrimidine Splicing Factor (PSF/SFPQ) Complexed with a 30mer RNA from Murine Virus-like 30S Transcript-1. Biochemistry 2022; 61:1723-1734. [PMID: 35998361 DOI: 10.1021/acs.biochem.2c00192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human polypyrimidine-binding splicing factor (PSF/SFPQ) is a tumor suppressor protein that regulates the gene expression of several proto-oncogenes and binds to the 5'-polyuridine negative-sense template (5'-PUN) of some RNA viruses. The activity of PSF is negatively regulated by long-noncoding RNAs, human metastasis associated in lung adenocarcinoma transcript-1 and murine virus-like 30S transcript-1 (VL30-1). PSF is a 707-amino acid protein that has a DNA-binding domain and two RNA recognition motifs (RRMs). Although the structure of the apo-truncated PSF is known, how PSF recognizes RNA remains elusive. Here, we report the 2.8 Å and 3.5 Å resolution crystal structures of a biologically active truncated construct of PSF (sPSF, consisting of residues 214-598) alone and in a complex with a 30mer fragment of VL30-1 RNA, respectively. The structure of the complex reveals how the 30mer RNA is recognized at two U-specific induced-fit binding pockets, located at the previously unrecognized domain-swapped, inter-subunit RRM1 (of the first subunit)-RRM2 (of the second subunit) interfaces that do not exist in the apo structure. Thus, the sPSF dimer appears to have two conformations in solution: one in a low-affinity state for RNA binding, as seen in the apo-structure, and the other in a high-affinity state for RNA binding, as seen in the sPSF-RNA complex. PSF undergoes an all or nothing transition between having two or no RNA-binding pockets. We predict that the RNA binds with a high degree of positive cooperativity. These structures provide an insight into a new regulatory mechanism that is likely involved in promoting malignancies and other human diseases.
Collapse
Affiliation(s)
- Jimin Wang
- Department of Molecular Biophysics and Biochemistry, School of Medicine, Yale University, 333 Cedar Street, New Haven, Connecticut 06520-8114, USA
| | - Aristidis Sachpatzidis
- Department of Molecular Biophysics and Biochemistry, School of Medicine, Yale University, 333 Cedar Street, New Haven, Connecticut 06520-8114, USA
| | - Thomas D Christian
- Department of Molecular Biophysics and Biochemistry, School of Medicine, Yale University, 333 Cedar Street, New Haven, Connecticut 06520-8114, USA
| | - Ivan B Lomakin
- Department of Molecular Biophysics and Biochemistry, School of Medicine, Yale University, 333 Cedar Street, New Haven, Connecticut 06520-8114, USA
| | - Alan Garen
- Department of Molecular Biophysics and Biochemistry, School of Medicine, Yale University, 333 Cedar Street, New Haven, Connecticut 06520-8114, USA
| | - William H Konigsberg
- Department of Molecular Biophysics and Biochemistry, School of Medicine, Yale University, 333 Cedar Street, New Haven, Connecticut 06520-8114, USA
| |
Collapse
|
31
|
Wu N, Yaliraki SN, Barahona M. Prediction of Protein Allosteric Signalling Pathways and Functional Residues Through Paths of Optimised Propensity. J Mol Biol 2022; 434:167749. [PMID: 35841931 DOI: 10.1016/j.jmb.2022.167749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022]
Abstract
Allostery commonly refers to the mechanism that regulates protein activity through the binding of a molecule at a different, usually distal, site from the orthosteric site. The omnipresence of allosteric regulation in nature and its potential for drug design and screening render the study of allostery invaluable. Nevertheless, challenges remain as few computational methods are available to effectively predict allosteric sites, identify signalling pathways involved in allostery, or to aid with the design of suitable molecules targeting such sites. Recently, bond-to-bond propensity analysis has been shown successful at identifying allosteric sites for a large and diverse group of proteins from knowledge of the orthosteric sites and its ligands alone by using network analysis applied to energy-weighted atomistic protein graphs. To address the identification of signalling pathways, we propose here a method to compute and score paths of optimised propensity that link the orthosteric site with the identified allosteric sites, and identifies crucial residues that contribute to those paths. We showcase the approach with three well-studied allosteric proteins: h-Ras, caspase-1, and 3-phosphoinositide-dependent kinase-1 (PDK1). Key residues in both orthosteric and allosteric sites were identified and showed agreement with experimental results, and pivotal signalling residues along the pathway were also revealed, thus providing alternative targets for drug design. By using the computed path scores, we were also able to differentiate the activity of different allosteric modulators.
Collapse
Affiliation(s)
- Nan Wu
- Department of Chemistry Imperial College London, United Kingdom
| | | | | |
Collapse
|
32
|
Haliloglu T, Hacisuleyman A, Erman B. Prediction of Allosteric Communication Pathways in Proteins. Bioinformatics 2022; 38:3590-3599. [PMID: 35674396 DOI: 10.1093/bioinformatics/btac380] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/12/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Allostery in proteins is an essential phenomenon in biological processes. In this paper, we present a computational model to predict paths of maximum information transfer between active and allosteric sites. In this information theoretic study, we use mutual information as the measure of information transfer, where transition probability of information from one residue to its contacting neighbors is proportional to the magnitude of mutual information between the two residues. Starting from a given residue and using a Hidden Markov Model, we successively determine the neighboring residues that eventually lead to a path of optimum information transfer. The Gaussian approximation of mutual information between residue pairs is adopted. The limits of validity of this approximation are discussed in terms of a nonlinear theory of mutual information and its reduction to the Gaussian form. RESULTS Predictions of the model are tested on six widely studied cases, CheY Bacterial Chemotaxis, B-cell Lymphoma extra-large Bcl-xL, Human proline isomerase cyclophilin A (CypA), Dihydrofolate reductase DHFR, HRas GTPase, and Caspase-1. The communication transmission rendering the propagation of local fluctuations from the active sites throughout the structure in multiple paths correlate well with the known experimental data. Distinct paths originating from the active site may likely represent a multi functionality such as involving more than one allosteric site and/or preexistence of some other functional states. Our model is computationally fast and simple, and can give allosteric communication pathways, which are crucial for the understanding and control of protein functionality. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Turkan Haliloglu
- Polymer Research Center and Chemical Engineering Department, Bogazici University, 34342, Turkey
| | - Aysima Hacisuleyman
- Institute of Bioengineering, Swiss Federal Institute of Technology (EPFL), 1015, Switzerland
| | - Burak Erman
- Chemical and Biological Engineering, Koc University, 34450, Turkey
| |
Collapse
|
33
|
Cancer-related Mutations with Local or Long-range Effects on an Allosteric Loop of p53. J Mol Biol 2022; 434:167663. [PMID: 35659507 DOI: 10.1016/j.jmb.2022.167663] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 12/31/2022]
Abstract
The tumor protein 53 (p53) is involved in transcription-dependent and independent processes. Several p53 variants related to cancer have been found to impact protein stability. Other variants, on the contrary, might have little impact on structural stability and have local or long-range effects on the p53 interactome. Our group previously identified a loop in the DNA binding domain (DBD) of p53 (residues 207-213) which can recruit different interactors. Experimental structures of p53 in complex with other proteins strengthen the importance of this interface for protein-protein interactions. We here characterized with structure-based approaches somatic and germline variants of p53 which could have a marginal effect in terms of stability and act locally or allosterically on the region 207-213 with consequences on the cytosolic functions of this protein. To this goal, we studied 1132 variants in the p53 DBD with structure-based approaches, accounting also for protein dynamics. We focused on variants predicted with marginal effects on structural stability. We then investigated each of these variants for their impact on DNA binding, dimerization of the p53 DBD, and intramolecular contacts with the 207-213 region. Furthermore, we identified variants that could modulate long-range the conformation of the region 207-213 using a coarse-grain model for allostery and all-atom molecular dynamics simulations. Our predictions have been further validated using enhanced sampling methods for 15 variants. The methodologies used in this study could be more broadly applied to other p53 variants or cases where conformational changes of loop regions are essential in the function of disease-related proteins.
Collapse
|
34
|
Saldaño T, Escobedo N, Marchetti J, Zea DJ, Mac Donagh J, Velez Rueda AJ, Gonik E, García Melani A, Novomisky Nechcoff J, Salas MN, Peters T, Demitroff N, Fernandez Alberti S, Palopoli N, Fornasari MS, Parisi G. Impact of protein conformational diversity on AlphaFold predictions. Bioinformatics 2022; 38:2742-2748. [PMID: 35561203 DOI: 10.1093/bioinformatics/btac202] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/10/2022] [Accepted: 03/31/2022] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION After the outstanding breakthrough of AlphaFold in predicting protein 3D models, new questions appeared and remain unanswered. The ensemble nature of proteins, for example, challenges the structural prediction methods because the models should represent a set of conformers instead of single structures. The evolutionary and structural features captured by effective deep learning techniques may unveil the information to generate several diverse conformations from a single sequence. Here, we address the performance of AlphaFold2 predictions obtained through ColabFold under this ensemble paradigm. RESULTS Using a curated collection of apo-holo pairs of conformers, we found that AlphaFold2 predicts the holo form of a protein in ∼70% of the cases, being unable to reproduce the observed conformational diversity with the same error for both conformers. More importantly, we found that AlphaFold2's performance worsens with the increasing conformational diversity of the studied protein. This impairment is related to the heterogeneity in the degree of conformational diversity found between different members of the homologous family of the protein under study. Finally, we found that main-chain flexibility associated with apo-holo pairs of conformers negatively correlates with the predicted local model quality score plDDT, indicating that plDDT values in a single 3D model could be used to infer local conformational changes linked to ligand binding transitions. AVAILABILITY AND IMPLEMENTATION Data and code used in this manuscript are publicly available at https://gitlab.com/sbgunq/publications/af2confdiv-oct2021. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Tadeo Saldaño
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Nahuel Escobedo
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Julia Marchetti
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | - Juan Mac Donagh
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Ana Julia Velez Rueda
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Eduardo Gonik
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- INIFTA (CONICET-UNLP) - Fotoquímica y Nanomateriales para el Ambiente y la Biología (nanoFOT), La Plata, Argentina
| | | | | | - Martín N Salas
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Tomás Peters
- Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires, Argentina
| | - Nicolás Demitroff
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires, Argentina
| | - Sebastian Fernandez Alberti
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Nicolas Palopoli
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Maria Silvina Fornasari
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Gustavo Parisi
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
35
|
Hacisuleyman A, Erman B. Information Flow and Allosteric Communication in Proteins. J Chem Phys 2022; 156:185101. [DOI: 10.1063/5.0088522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Based on Schreiber's work on transfer entropy, a molecular theory of nonlinear information transfer in proteins is developed. The joint distribution function for residue fluctuations is expressed in terms of tensor Hermite polynomials which conveniently separate harmonic and nonlinear contributions to information transfer. The harmonic part of information transfer is expressed as the difference between time dependent and independent mutual information. Third order nonlinearities are discussed in detail. Amount and speed of information transfer between residues, important for understanding allosteric activity in proteins, are discussed. While mutual information shows the maximum amount of information that may be transferred between two residues, it does not explain the actual amount of transfer nor the transfer rate of information. For this, dynamic equations of the system are needed. The solution of the Langevin equation and molecular dynamics trajectories are used in the present work for this purpose. Allosteric communication in Human NAD-dependent isocitrate dehydrogenase is studied as an example. Calculations show that several paths contribute collectively to information transfer. Important residues on these paths are identified. Time resolved information transfer between these residues, their amplitudes and transfer rates, which are in agreement with time resolved ultraviolet resonance Raman measurements in general, are estimated. Estimated transfer rates are in the order of 1-20 megabits per second. Information transfer from third order contributions are one to two orders of magnitude smaller than the harmonic terms, showing that harmonic analysis is a good approximation to information transfer.
Collapse
Affiliation(s)
- Aysima Hacisuleyman
- Chemical and Biological Engineering, Koc University College of Engineering, Turkey
| | - Burak Erman
- College of Engineering, Koc University, Turkey
| |
Collapse
|
36
|
SenseNet, a tool for analysis of protein structure networks obtained from molecular dynamics simulations. PLoS One 2022; 17:e0265194. [PMID: 35298511 PMCID: PMC8929561 DOI: 10.1371/journal.pone.0265194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/25/2022] [Indexed: 12/05/2022] Open
Abstract
Computational methods play a key role for investigating allosteric mechanisms in proteins, with the potential of generating valuable insights for innovative drug design. Here we present the SenseNet (“Structure ENSEmble NETworks”) framework for analysis of protein structure networks, which differs from established network models by focusing on interaction timelines obtained by molecular dynamics simulations. This approach is evaluated by predicting allosteric residues reported by NMR experiments in the PDZ2 domain of hPTP1e, a reference system for which previous computational predictions have shown considerable variance. We applied two models based on the mutual information between interaction timelines to estimate the conformational influence of each residue on its local environment. In terms of accuracy our prediction model is comparable to the top performing model published for this system, but by contrast benefits from its independence from NMR structures. Our results are complementary to experimental data and the consensus of previous predictions, demonstrating the potential of our new analysis tool SenseNet. Biochemical interpretation of our model suggests that allosteric residues in the PDZ2 domain form two distinct clusters of contiguous sidechain surfaces. SenseNet is provided as a plugin for the network analysis software Cytoscape, allowing for ease of future application and contributing to a system of compatible tools bridging the fields of system and structural biology.
Collapse
|
37
|
Nussinov R, Zhang M, Maloney R, Tsai C, Yavuz BR, Tuncbag N, Jang H. Mechanism of activation and the rewired network: New drug design concepts. Med Res Rev 2022; 42:770-799. [PMID: 34693559 PMCID: PMC8837674 DOI: 10.1002/med.21863] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/06/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022]
Abstract
Precision oncology benefits from effective early phase drug discovery decisions. Recently, drugging inactive protein conformations has shown impressive successes, raising the cardinal questions of which targets can profit and what are the principles of the active/inactive protein pharmacology. Cancer driver mutations have been established to mimic the protein activation mechanism. We suggest that the decision whether to target an inactive (or active) conformation should largely rest on the protein mechanism of activation. We next discuss the recent identification of double (multiple) same-allele driver mutations and their impact on cell proliferation and suggest that like single driver mutations, double drivers also mimic the mechanism of activation. We further suggest that the structural perturbations of double (multiple) in cis mutations may reveal new surfaces/pockets for drug design. Finally, we underscore the preeminent role of the cellular network which is deregulated in cancer. Our structure-based review and outlook updates the traditional Mechanism of Action, informs decisions, and calls attention to the intrinsic activation mechanism of the target protein and the rewired tumor-specific network, ushering innovative considerations in precision medicine.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer ImmunometabolismNational Cancer InstituteFrederickMarylandUSA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
| | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer ImmunometabolismNational Cancer InstituteFrederickMarylandUSA
| | - Ryan Maloney
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer ImmunometabolismNational Cancer InstituteFrederickMarylandUSA
| | - Chung‐Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer ImmunometabolismNational Cancer InstituteFrederickMarylandUSA
| | - Bengi Ruken Yavuz
- Department of Health Informatics, Graduate School of InformaticsMiddle East Technical UniversityAnkaraTurkey
| | - Nurcan Tuncbag
- Department of Health Informatics, Graduate School of InformaticsMiddle East Technical UniversityAnkaraTurkey
- Department of Chemical and Biological Engineering, College of EngineeringKoc UniversityIstanbulTurkey
- Koc University Research Center for Translational Medicine, School of MedicineKoc UniversityIstanbulTurkey
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer ImmunometabolismNational Cancer InstituteFrederickMarylandUSA
| |
Collapse
|
38
|
Byun JA, VanSchouwen B, Huang J, Baryar U, Melacini G. Divergent allostery reveals critical differences between structurally homologous regulatory domains of Plasmodium falciparum and human protein kinase G. J Biol Chem 2022; 298:101691. [PMID: 35143840 PMCID: PMC8931422 DOI: 10.1016/j.jbc.2022.101691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/24/2022] Open
Abstract
Malaria is a life-threatening infectious disease primarily caused by the Plasmodium falciparum parasite. The increasing resistance to current antimalarial drugs and their side effects has led to an urgent need for novel malaria drug targets, such as the P. falciparum cGMP-dependent protein kinase (pfPKG). However, PKG plays an essential regulatory role also in the human host. Human PKG (hPKG) and pfPKG are controlled by structurally homologs cGMP-binding domains (CBDs). Here, we show that despite the structural similarities between the essential CBDs in pfPKG and hPKG, their respective allosteric networks differ significantly. Through comparative analyses of CHESCA, molecular dynamics simulations, and backbone internal dynamics measurements, we found that conserved allosteric elements within the essential CBDs are wired differently in pfPKG and hPKG to implement cGMP-dependent kinase activation. Such pfPKG vs. hPKG rewiring of allosteric networks was unexpected due to the structural similarity between the two essential CBDs. Yet, such finding provides crucial information on which elements to target for selective inhibition of pfPKG vs. hPKG, which may potentially reduce undesired side-effects in malaria treatments.
Collapse
Affiliation(s)
- Jung Ah Byun
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St. W. Hamilton, Canada
| | - Bryan VanSchouwen
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W. Hamilton, Canada
| | - Jinfeng Huang
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W. Hamilton, Canada
| | - Ubaidullah Baryar
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W. Hamilton, Canada
| | - Giuseppe Melacini
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St. W. Hamilton, Canada; Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W. Hamilton, Canada.
| |
Collapse
|
39
|
Chen ZM, Mou Q, Wu SH, Xie Y, Salminen K, Sun JJ. Real-Time Tunable Dynamic Range for Calibration-Free Biomolecular Measurements with a Temperature-Modulated Electrochemical Aptamer-Based Sensor in an Unprocessed Actual Sample. Anal Chem 2021; 94:1397-1405. [PMID: 34962777 DOI: 10.1021/acs.analchem.1c04697] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The sensing technologies for monitoring molecular analytes in biological fluids with high frequency and in real time could enable a broad range of applications in personalized healthcare and clinical diagnosis. However, due to the limited dynamic range (less than 81-fold), real-time analysis of biomolecular concentration varying over multiple orders of magnitude is a severe challenge faced by this class of analytical platforms. For the first time, we describe here that temperature-modulated electrochemical aptamer-based sensors with a dynamically adjustable calibration-free detection window could enable continuous, real-time, and accurate response for the several-hundredfold target concentration changes in unprocessed actual samples. Specifically, we could regulate the electrode surface temperature of sensors to obtain the corresponding dynamic range because of the temperature-dependent affinity variations. This temperature modulation method relies on an alternate hot and cold electrode reported by our group, whose surface could actively be heated and cooled without the need for altering ambient temperature, thus likewise applying for the flowing system. We then performed dual-frequency calibration-free measurements at different interface temperatures, thus achieving an extended detection window from 25 to 2500 μM for procaine in undiluted urine, 1-500 μM for adenosine triphosphate, and 5-2000 μM for adenosine in undiluted serum. The resulting sensor architecture could drastically expand the real-time response range accessible to these continuous, reagent-less biosensors.
Collapse
Affiliation(s)
- Zhi-Min Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Qi Mou
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Sheng-Hong Wu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Yu Xie
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Kalle Salminen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Jian-Jun Sun
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
| |
Collapse
|
40
|
Kurisaki I, Takahashi Y, Kitamura Y, Nagaoka M. Chloride Ions Stabilize Human Adult Hemoglobin in the T-State, Competing with Allosteric Interaction of Oxygen Molecules. J Phys Chem B 2021; 125:12670-12677. [PMID: 34756042 DOI: 10.1021/acs.jpcb.1c07520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the context of a molecular-level understanding of the allostery mechanisms, human adult hemoglobin (HbA) has been extensively studied for over half a century. Chloride ions (Cl-) have been known as one of HbA allosteric effectors, which stabilizes the T-state preferable to release oxygen molecules. The functional mechanisms were individually proposed by Ueno and Perutz several decades ago. Ueno considered that the site-specific Cl- binding is essential, while Perutz proposed the non-site-specific interaction between HbA and Cl-. Each speculation explains the mechanism plausibly since each was tightly associated with its reasonable experimental observation. However, both mechanisms themselves still seem to make their speculations controversial. In the present study, we have theoretically reconsidered these apart from their approaches. Our atomistic molecular dynamics simulations then showed that the increase of Cl- concentration suppresses the conformational conversion from the T-state. Interestingly, chloride ions loosely interact with the amino acid residues inside the HbA central cavity, suggesting that both Perutz's and Ueno's speculations are involved in understanding the microscopic roles of Cl-. In conclusion, we theoretically certified that the effect of Cl- competes against that of solvated O2, i.e., the destabilization of T-state through the non-site-specific interaction, implying the concerted regulation of HbA under physiological conditions.
Collapse
Affiliation(s)
- Ikuo Kurisaki
- Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Yume Takahashi
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yukichi Kitamura
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.,Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku Naka-ku, Hamamatsu 432-8561, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Honmachi, Kawaguchi 332-0012, Japan
| | - Masataka Nagaoka
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Honmachi, Kawaguchi 332-0012, Japan.,Future Value Creation Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
41
|
Celebi M, Inan T, Kurkcuoglu O, Akten ED. Potential allosteric sites captured in glycolytic enzymes via residue-based network models: Phosphofructokinase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase. Biophys Chem 2021; 280:106701. [PMID: 34736071 DOI: 10.1016/j.bpc.2021.106701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 01/05/2023]
Abstract
Likelihood of new allosteric sites for glycolytic enzymes, phosphofructokinase (PFK), glyceraldehyde-3-phosphate dehydrogenase (GADPH) and pyruvate kinase (PK) was evaluated for bacterial, parasitic and human species. Allosteric effect of a ligand binding at a site was revealed on the basis of low-frequency normal modes via Cα-harmonic residue network model. In bacterial PFK, perturbation of the proposed allosteric site outperformed the known allosteric one, producing a high amount of stabilization or reduced dynamics, on all catalytic regions. Another proposed allosteric spot at the dimer interface in parasitic PFK exhibited major stabilization effect on catalytic regions. In parasitic GADPH, the most desired allosteric response was observed upon perturbation of its tunnel region which incorporated key residues for functional regulation. Proposed allosteric site in bacterial PK produced a satisfactory allosteric response on all catalytic regions, whereas in human and parasitic PKs, a partial inhibition was observed. Residue network model based solely on contact topology identified the 'hub residues' with high betweenness tracing plausible allosteric communication pathways between distant functional sites. For both bacterial PFK and PK, proposed sites accommodated hub residues twice as much as the known allosteric site. Tunnel region in parasitic GADPH with the strongest allosteric effect among species, incorporated the highest number of hub residues. These results clearly suggest a one-to-one correspondence between the degree of allosteric effect and the number of hub residues in that perturbation site, which increases the likelihood of its allosteric nature.
Collapse
Affiliation(s)
- Metehan Celebi
- Graduate Program of Computational Biology and Bioinformatics, Graduate School of Science and Engineering, Kadir Has University, Istanbul, Turkey
| | - Tugce Inan
- Department of Chemical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Ozge Kurkcuoglu
- Department of Chemical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Ebru Demet Akten
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul, Turkey.
| |
Collapse
|
42
|
Yuce M, Cicek E, Inan T, Dag AB, Kurkcuoglu O, Sungur FA. Repurposing of FDA-approved drugs against active site and potential allosteric drug-binding sites of COVID-19 main protease. Proteins 2021; 89:1425-1441. [PMID: 34169568 PMCID: PMC8441840 DOI: 10.1002/prot.26164] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 02/06/2023]
Abstract
The novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) still has serious negative effects on health, social life, and economics. Recently, vaccines from various companies have been urgently approved to control SARS-CoV-2 infections. However, any specific antiviral drug has not been confirmed so far for regular treatment. An important target is the main protease (Mpro ), which plays a major role in replication of the virus. In this study, Gaussian and residue network models are employed to reveal two distinct potential allosteric sites on Mpro that can be evaluated as drug targets besides the active site. Then, Food and Drug Administration (FDA)-approved drugs are docked to three distinct sites with flexible docking using AutoDock Vina to identify potential drug candidates. Fourteen best molecule hits for the active site of Mpro are determined. Six of these also exhibit high docking scores for the potential allosteric regions. Full-atom molecular dynamics simulations with MM-GBSA method indicate that compounds docked to active and potential allosteric sites form stable interactions with high binding free energy (∆Gbind ) values. ∆Gbind values reach -52.06 kcal/mol for the active site, -51.08 kcal/mol for the potential allosteric site 1, and - 42.93 kcal/mol for the potential allosteric site 2. Energy decomposition calculations per residue elucidate key binding residues stabilizing the ligands that can further serve to design pharmacophores. This systematic and efficient computational analysis successfully determines ivermectine, diosmin, and selinexor currently subjected to clinical trials, and further proposes bromocriptine, elbasvir as Mpro inhibitor candidates to be evaluated against SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Merve Yuce
- Department of Chemical EngineeringIstanbul Technical UniversityIstanbulTurkey
| | - Erdem Cicek
- Computational Science and Engineering DivisionInformatics Institute, Istanbul Technical UniversityIstanbulTurkey
| | - Tugce Inan
- Department of Chemical EngineeringIstanbul Technical UniversityIstanbulTurkey
| | - Aslihan Basak Dag
- Department of Molecular Biology and GeneticsIstanbul Technical UniversityIstanbulTurkey
| | - Ozge Kurkcuoglu
- Department of Chemical EngineeringIstanbul Technical UniversityIstanbulTurkey
| | - Fethiye Aylin Sungur
- Computational Science and Engineering DivisionInformatics Institute, Istanbul Technical UniversityIstanbulTurkey
| |
Collapse
|
43
|
Song H, Wutthinitikornkit Y, Zhou X, Li J. Impacts of mutations on dynamic allostery of adenylate kinase. J Chem Phys 2021; 155:035101. [PMID: 34293874 DOI: 10.1063/5.0053715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Escherichia coli adenylate kinase (AK) is composed of CORE domain and two branch domains: LID and AMP-binding domain (AMPbd). AK exhibits considerable allostery in a reversible phosphoryl transfer reaction, which is largely attributed to the relative motion of LID and AMPbd with respect to CORE. Such an allosteric conformational change is also evident in the absence of ligands. Recent studies showed that the mutations in branch domains can adjust dynamic allostery and alter the substrate affinity and enzyme activity. In this work, we use all-atom molecular dynamics simulation to study the impacts of mutations in branch domains on AK's dynamic allostery by comparing two double mutants, i.e., LID mutant (Val135Gly, Val142Gly) and AMPbd mutant (Ala37Gly, Ala55Gly), with wild-type. Two mutants undergo considerable conformational fluctuation and exhibit deviation from the initially extended apo state to more compact structures. The LID domain in the LID mutant adjusts its relative position and firmly adheres to CORE. More strikingly, AMPbd mutations affect the relative positions of both the AMPbd domain and remote LID domain. Both domains undergo considerable movement, especially the inherent hinge swing motion of the flexible LID domain. In both mutants, the mutations can enhance the inter-domain interaction. The results about the conformation change of AK in both mutants are in line with the experiment of AK's affinity and activity. As revealed by our findings, the flexibility of branch domains and their inherent motions, especially LID domain, is highly relevant to dynamic allostery in the AK system.
Collapse
Affiliation(s)
- Haoyu Song
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Yanee Wutthinitikornkit
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Xiaozhou Zhou
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Jingyuan Li
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| |
Collapse
|
44
|
Mersmann S, Strömich L, Song FJ, Wu N, Vianello F, Barahona M, Yaliraki S. ProteinLens: a web-based application for the analysis of allosteric signalling on atomistic graphs of biomolecules. Nucleic Acids Res 2021; 49:W551-W558. [PMID: 33978752 PMCID: PMC8661402 DOI: 10.1093/nar/gkab350] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 11/28/2022] Open
Abstract
The investigation of allosteric effects in biomolecular structures is of great current interest in diverse areas, from fundamental biological enquiry to drug discovery. Here we present ProteinLens, a user-friendly and interactive web application for the investigation of allosteric signalling based on atomistic graph-theoretical methods. Starting from the PDB file of a biomolecule (or a biomolecular complex) ProteinLens obtains an atomistic, energy-weighted graph description of the structure of the biomolecule, and subsequently provides a systematic analysis of allosteric signalling and communication across the structure using two computationally efficient methods: Markov Transients and bond-to-bond propensities. ProteinLens scores and ranks every bond and residue according to the speed and magnitude of the propagation of fluctuations emanating from any site of choice (e.g. the active site). The results are presented through statistical quantile scores visualised with interactive plots and adjustable 3D structure viewers, which can also be downloaded. ProteinLens thus allows the investigation of signalling in biomolecular structures of interest to aid the detection of allosteric sites and pathways. ProteinLens is implemented in Python/SQL and freely available to use at: www.proteinlens.io.
Collapse
Affiliation(s)
- Sophia F Mersmann
- Department of Mathematics, Imperial College London, Huxley Building, 180 Queen’s Gate, London SW7 2AZ, UK
| | - Léonie Strömich
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK
| | - Florian J Song
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK
| | - Nan Wu
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK
| | - Francesca Vianello
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK
| | - Mauricio Barahona
- Department of Mathematics, Imperial College London, Huxley Building, 180 Queen’s Gate, London SW7 2AZ, UK
| | - Sophia N Yaliraki
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK
| |
Collapse
|
45
|
Chatzigoulas A, Cournia Z. Rational design of allosteric modulators: Challenges and successes. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1529] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alexios Chatzigoulas
- Biomedical Research Foundation Academy of Athens Athens Greece
- Department of Informatics and Telecommunications National and Kapodistrian University of Athens Athens Greece
| | - Zoe Cournia
- Biomedical Research Foundation Academy of Athens Athens Greece
| |
Collapse
|
46
|
Kutlu Y, Ben-Tal N, Haliloglu T. Global Dynamics Renders Protein Sites with High Functional Response. J Phys Chem B 2021; 125:4734-4745. [PMID: 33914546 DOI: 10.1021/acs.jpcb.1c02511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Deep mutational scanning enables examination of the effects of many mutations at each amino acid position in a query protein, readily disclosing positions that are particularly sensitive. Mutations in these positions alter protein function the most. Here, on the premise that dynamics underlie function, we explore to what extent the measured sensitivity to mutations could be linked to-perhaps be explained by-the structural dynamics of the protein. We employ a minimalist perturbation-response approach based on the Gaussian Network Model (GNM) on a data set of seven proteins with deep mutational scanning data. The analysis shows that the mutation-sensitive positions are often of capacity to modulate the global dynamics and to intermediate allosteric interactions in the structure. With that, upon strain perturbation, these positions decrease residue fluctuations the most, affecting function via entropy changes. This is particularly relevant for positions that are distant from binding sites or other functional regions of the protein and are sensitive to mutations, nevertheless. Our results indicate that mutations in these positions allosterically manipulate protein function.
Collapse
Affiliation(s)
- Yiǧit Kutlu
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Nir Ben-Tal
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Turkan Haliloglu
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, Bebek, Istanbul 34342, Turkey
| |
Collapse
|
47
|
Sora V, Sanchez D, Papaleo E. Bcl-xL Dynamics under the Lens of Protein Structure Networks. J Phys Chem B 2021; 125:4308-4320. [PMID: 33848145 DOI: 10.1021/acs.jpcb.0c11562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Understanding the finely orchestrated interactions leading to or preventing programmed cell death (apoptosis) is of utmost importance in cancer research because the failure of these systems could eventually lead to the onset of the disease. In this regard, the maintenance of a delicate balance between the promoters and inhibitors of mitochondrial apoptosis is crucial, as demonstrated by the interplay among the Bcl-2 family members. In particular, B-cell lymphoma extra-large (Bcl-xL) is a target of interest due to the forefront role of its dysfunctions in cancer development. Bcl-xL prevents apoptosis by binding both the pro-apoptotic BH3-only proteins, like PUMA, and the noncanonical partners, such as p53, at different sites. An allosteric communication between the BH3-only protein binding pocket and the p53 binding site, mediating the release of p53 from Bcl-xL upon PUMA binding, has been postulated and supported by nuclear magnetic resonance and other biophysical data. The molecular details of this mechanism, especially at the residue level, remain unclear. In this work, we investigated the distal communication between these two sites in Bcl-xL in its free state and when bound to PUMA. We also evaluated how missense mutations of Bcl-xL found in cancer samples might impair this communication and therefore the allosteric mechanism. We employed all-atom explicit solvent microsecond molecular dynamics simulations, analyzed through a Protein Structure Network approach and integrated with calculations of changes in free energies upon cancer-related mutations identified by genomics studies. We found a subset of candidate residues responsible for both maintaining protein stability and for conveying structural information between the two binding sites and hypothesized possible communication routes between specific residues at both sites.
Collapse
Affiliation(s)
- Valentina Sora
- Computational Biology Laboratory, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark.,Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Dionisio Sanchez
- Computational Biology Laboratory, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Elena Papaleo
- Computational Biology Laboratory, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark.,Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800 Lyngby, Denmark
| |
Collapse
|
48
|
Ravikumar A, de Brevern AG, Srinivasan N. Conformational Strain Indicated by Ramachandran Angles for the Protein Backbone Is Only Weakly Related to the Flexibility. J Phys Chem B 2021; 125:2597-2606. [PMID: 33666418 DOI: 10.1021/acs.jpcb.1c00168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Studies on energy associated with free dipeptides have shown that conformers with unfavorable (ϕ,ψ) torsion angles have higher energy compared to conformers with favorable (ϕ,ψ) angles. It is expected that higher energy confers higher dynamics and flexibility to that part of the protein. Here, we explore a potential relationship between conformational strain in a residue due to unfavorable (ϕ,ψ) angles and its flexibility and dynamics in the context of protein structures. We compared flexibility of strained and relaxed residues, which are recognized based on outlier/allowed and favorable (ϕ,ψ) angles respectively, using normal-mode analysis (NMA). We also performed in-depth analysis on flexibility and dynamics at catalytic residues in protein kinases, which exhibit different strain status in different kinase structures using NMA and molecular dynamics simulations. We underline that strain of a residue, as defined by backbone torsion angles, is almost unrelated to the flexibility and dynamics associated with it. Even the overall trend observed among all high-resolution structures in which relaxed residues tend to have slightly higher flexibility than strained residues is counterintuitive. Consequently, we propose that identifying strained residues based on (ϕ,ψ) values is not an effective way to recognize energetic strain in protein structures.
Collapse
Affiliation(s)
- Ashraya Ravikumar
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, India, 560012
| | - Alexandre G de Brevern
- INSERM, U 1134, DSIMB, Paris F-75739, France.,University of Paris, Paris F-75739, France.,Institut National de la Transfusion Sanguine (INTS), Paris F-75739, France.,Laboratoire d'Excellence GR-Ex, Paris F-75739, France
| | | |
Collapse
|
49
|
Hacisuleyman A, Erkip A, Erman B, Erman B. Synchronous and Asynchronous Response in Dynamically Perturbed Proteins. J Phys Chem B 2021; 125:729-739. [PMID: 33464898 DOI: 10.1021/acs.jpcb.0c08409] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We present a dynamic perturbation-response model of proteins based on the Gaussian Network Model, where a residue is perturbed periodically, and the dynamic response of other residues is determined. The model shows that periodic perturbation causes a synchronous response in phase with the perturbation and an asynchronous response that is out of phase. The asynchronous component results from the viscous effects of the solvent and other dispersive factors in the system. The model is based on the solution of the Langevin equation in the presence of solvent, noise, and perturbation. We introduce several novel ideas: The concept of storage and loss compliance of the protein and their dependence on structure and frequency; the amount of work lost and the residues that contribute significantly to the lost work; new dynamic correlations that result from perturbation; causality, that is, the response of j when i is perturbed is not equal to the response of i when j is perturbed. As examples, we study two systems, namely, bovine rhodopsin and the class of nanobodies. The general results obtained are (i) synchronous and asynchronous correlations depend strongly on the frequency of perturbation, their magnitude decreases with increasing frequency, (ii) time-delayed mean-squared fluctuations of residues have only synchronous components. Asynchronicity is present only in cross correlations, that is, correlations between different residues, (iii) perturbation of loop residues leads to a large dissipation of work, (iv) correlations satisfy the hypothesis of pre-existing pathways according to which information transfer by perturbation rides on already existing equilibrium correlations in the system, (v) dynamic perturbation can introduce a selective response in the system, where the perturbation of each residue excites different sets of responding residues, and (vi) it is possible to identify nondissipative residues whose perturbation does not lead to dissipation in the protein. Despite its simplicity, the model explains several features of allosteric manipulation.
Collapse
Affiliation(s)
- Aysima Hacisuleyman
- Department of Chemical and Biological Engineering, Koc University, Sariyer, Istanbul 34450, Turkey
| | - Albert Erkip
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Batu Erman
- Department of Molecular Biology and Genetics, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Burak Erman
- Department of Chemical and Biological Engineering, Koc University, Sariyer, Istanbul 34450, Turkey
| |
Collapse
|
50
|
Abstract
Community network analysis (CNA) of correlated protein motions allows modeling of signals propagation in allosteric proteic systems. From standard classical molecular dynamics (MD) simulations, protein motions can be analysed by means of mutual information between pairs of amino acid residues, providing dynamical weighted networks that contains fundamental information of the communication among amino acids. The CNA method has been successfully applied to a variety of allosteric systems including an enzyme, a nuclear receptor and a bacterial adaptive immune system, providing characterization of the allosteric pathways. This method is complementary to network analyses based on different metrics and it is particularly powerful for studying large proteic systems, as it provides a coarse-grained view of the communication flows within large and complex networks.
Collapse
Affiliation(s)
- Ivan Rivalta
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Bologna, Italy.
- Univ Lyon, Ens de Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie UMR 5182, Lyon, France.
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT, USA
- Energy Sciences Institute, Yale University, New Haven, CT, USA
| |
Collapse
|