1
|
Aguilar Rangel M, Stein K, Frydman J. A machine learning approach uncovers principles and determinants of eukaryotic ribosome pausing. SCIENCE ADVANCES 2024; 10:eado0738. [PMID: 39423268 PMCID: PMC11488575 DOI: 10.1126/sciadv.ado0738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 09/13/2024] [Indexed: 10/21/2024]
Abstract
Nonuniform local translation speed dictates diverse protein biogenesis outcomes. To unify known and uncover unknown principles governing eukaryotic elongation rate, we developed a machine learning pipeline to analyze RiboSeq datasets. We find that the chemical nature of the incoming amino acid determines how codon optimality influences elongation rate, with hydrophobic residues more dependent on transfer RNA (tRNA) levels than charged residues. Unexpectedly, we find that wobble interactions exert a widespread effect on elongation pausing, with wobble-mediated decoding being slower than Watson-Crick decoding, irrespective of tRNA levels. Applying our ribosome pausing principles to ribosome collisions reveals that disomes arise upon apposition of fast-decoding and slow-decoding signatures. We conclude that codon choice and tRNA pools are evolutionarily constrained to harmonize elongation rate with cotranslational folding while minimizing wobble pairing and deleterious stalling.
Collapse
Affiliation(s)
| | - Kevin Stein
- Department of Biology, Stanford University; Stanford, CA 94305, USA
| | - Judith Frydman
- Department of Biology, Stanford University; Stanford, CA 94305, USA
| |
Collapse
|
2
|
Byju S, Hassan A, Whitford PC. The energy landscape of the ribosome. Biopolymers 2024; 115:e23570. [PMID: 38051695 DOI: 10.1002/bip.23570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023]
Abstract
The ribosome is a prototypical assembly that can be used to establish general principles and techniques for the study of biological molecular machines. Motivated by the fact that the dynamics of every biomolecule is governed by an underlying energy landscape, there has been great interest to understand and quantify ribosome energetics. In the present review, we will focus on theoretical and computational strategies for probing the interactions that shape the energy landscape of the ribosome, with an emphasis on more recent studies of the elongation cycle. These efforts include the application of quantum mechanical methods for describing chemical kinetics, as well as classical descriptions to characterize slower (microsecond to millisecond) large-scale (10-100 Å) rearrangements, where motion is described in terms of diffusion across an energy landscape. Together, these studies provide broad insights into the factors that control a diverse range of dynamical processes in this assembly.
Collapse
Affiliation(s)
- Sandra Byju
- Center for Theoretical Biological Physics, Northeastern University, Boston, Massachusetts, USA
- Department of Physics, Northeastern University, Boston, Massachusetts, USA
| | - Asem Hassan
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, United States
| | - Paul C Whitford
- Center for Theoretical Biological Physics, Northeastern University, Boston, Massachusetts, USA
- Department of Physics, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Watson ZL, Knudson IJ, Ward FR, Miller SJ, Cate JHD, Schepartz A, Abramyan AM. Atomistic simulations of the Escherichia coli ribosome provide selection criteria for translationally active substrates. Nat Chem 2023; 15:913-921. [PMID: 37308707 PMCID: PMC10322701 DOI: 10.1038/s41557-023-01226-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/28/2023] [Indexed: 06/14/2023]
Abstract
As genetic code expansion advances beyond L-α-amino acids to backbone modifications and new polymerization chemistries, delineating what substrates the ribosome can accommodate remains a challenge. The Escherichia coli ribosome tolerates non-L-α-amino acids in vitro, but few structural insights that explain how are available, and the boundary conditions for efficient bond formation are so far unknown. Here we determine a high-resolution cryogenic electron microscopy structure of the E. coli ribosome containing α-amino acid monomers and use metadynamics simulations to define energy surface minima and understand incorporation efficiencies. Reactive monomers across diverse structural classes favour a conformational space where the aminoacyl-tRNA nucleophile is <4 Å from the peptidyl-tRNA carbonyl with a Bürgi-Dunitz angle of 76-115°. Monomers with free energy minima that fall outside this conformational space do not react efficiently. This insight should accelerate the in vivo and in vitro ribosomal synthesis of sequence-defined, non-peptide heterooligomers.
Collapse
Affiliation(s)
- Zoe L Watson
- Department of Chemistry, University of California, Berkeley, CA, USA
- Center for Genetically Encoded Materials, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
| | - Isaac J Knudson
- Department of Chemistry, University of California, Berkeley, CA, USA
- Center for Genetically Encoded Materials, University of California, Berkeley, CA, USA
| | - Fred R Ward
- Center for Genetically Encoded Materials, University of California, Berkeley, CA, USA
- Department of Molecular and Cellular Biology, University of California, Berkeley, CA, USA
| | - Scott J Miller
- Center for Genetically Encoded Materials, University of California, Berkeley, CA, USA.
- Department of Chemistry, Yale University, New Haven, CT, USA.
| | - Jamie H D Cate
- Department of Chemistry, University of California, Berkeley, CA, USA.
- Center for Genetically Encoded Materials, University of California, Berkeley, CA, USA.
- Department of Molecular and Cellular Biology, University of California, Berkeley, CA, USA.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Alanna Schepartz
- Department of Chemistry, University of California, Berkeley, CA, USA.
- Center for Genetically Encoded Materials, University of California, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA.
- Department of Molecular and Cellular Biology, University of California, Berkeley, CA, USA.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | | |
Collapse
|
4
|
Engineering Toehold-Mediated Switches for Native RNA Detection and Regulation in Bacteria. J Mol Biol 2022; 434:167689. [PMID: 35717997 DOI: 10.1016/j.jmb.2022.167689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/19/2022] [Accepted: 06/09/2022] [Indexed: 01/24/2023]
Abstract
RNA switches are versatile tools in synthetic biology for sensing and regulation applications. The discoveries of RNA-mediated translational and transcriptional control have facilitated the development of complexde novodesigns of RNA switches. Specifically, RNA toehold-mediated switches, in which binding to the toehold sensing domain controls the transition between switch states via strand displacement, have been extensively adapted for coupling systems responses to specifictrans-RNA inputs. This review highlights some of the challenges associated with applying these switches for native RNA detectionin vivo, including transferability between organisms. The applicability and design considerations of toehold-mediated switches are discussed by highlighting twelve recently developed switch designs. This review finishes with future perspectives to address current gaps in the field, particularly regarding the power of structural prediction algorithms for improved in vivo functionality of RNA switches.
Collapse
|
5
|
Guzel P, Yildirim HZ, Yuce M, Kurkcuoglu O. Exploring Allosteric Signaling in the Exit Tunnel of the Bacterial Ribosome by Molecular Dynamics Simulations and Residue Network Model. Front Mol Biosci 2020; 7:586075. [PMID: 33102529 PMCID: PMC7545307 DOI: 10.3389/fmolb.2020.586075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/08/2020] [Indexed: 11/25/2022] Open
Abstract
The bacterial ribosomal tunnel is equipped with numerous sites highly sensitive to the course of the translation process. This study investigates allosteric pathways linking distant functional sites that collaboratively play a role either in translation regulation or recruitment of chaperones. We apply perturbation response scanning (PRS) analysis to 700 ns long and 500 ns long coarse-grained molecular dynamics simulations of E. coli and T. thermophilus large subunits, respectively, to reveal nucleotides/residues with the ability to transmit perturbations by dynamic rationale. We also use the residue network model with the k-shortest pathways method to calculate suboptimal pathways based on the contact topology of the ribosomal tunnel of E. coli crystal structure and 101 ClustENM generated conformers of T. thermophilus large subunit. In the upper part of the tunnel, results suggest that A2062 and A2451 can communicate in both directions for translation stalling, mostly through dynamically coupled C2063, C2064, and A2450. For a similar purpose, U2585 and U2586 are coupled with A2062, while they are also sensitive to uL4 and uL22 at the constriction region through two different pathways at the opposite sides of the tunnel wall. In addition, the constriction region communicates with the chaperone binding site on uL23 at the solvent side but through few nucleotides. Potential allosteric communication pathways between the lower part of the tunnel and chaperone binding site mostly use the flexible loop of uL23, while A1336–G1339 provide a suboptimal pathway. Both species seem to employ similar mechanisms in the long tunnel, where a non-conserved cavity at the bacterial uL23 and 23S rRNA interface is proposed as a novel drug target.
Collapse
Affiliation(s)
- Pelin Guzel
- Department of Chemical Engineering, Istanbul Technical University, Istanbul, Turkey.,Science and Advanced Technology Research and Application Center, Istanbul Medeniyet University, Istanbul, Turkey
| | - Hatice Zeynep Yildirim
- Polymer Research Center and Graduate Program in Computational Science and Engineering, Bogazici University, Istanbul, Turkey
| | - Merve Yuce
- Department of Chemical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Ozge Kurkcuoglu
- Department of Chemical Engineering, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
6
|
Sanbonmatsu KY. Large-scale simulations of nucleoprotein complexes: ribosomes, nucleosomes, chromatin, chromosomes and CRISPR. Curr Opin Struct Biol 2019; 55:104-113. [PMID: 31125796 DOI: 10.1016/j.sbi.2019.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/01/2019] [Indexed: 12/11/2022]
Abstract
Recent advances in biotechnology such as Hi-C, CRISPR/Cas9 and ribosome display have placed nucleoprotein complexes at center stage. Understanding the structural dynamics of these complexes aids in optimizing protocols and interpreting data for these new technologies. The integration of simulation and experiment has helped advance mechanistic understanding of these systems. Coarse-grained simulations, reduced-description models, and explicit solvent molecular dynamics simulations yield useful complementary perspectives on nucleoprotein complex structural dynamics. When combined with Hi-C, cryo-EM, and single molecule measurements, these simulations integrate disparate forms of experimental data into a coherent mechanism.
Collapse
|
7
|
Šponer J, Bussi G, Krepl M, Banáš P, Bottaro S, Cunha RA, Gil-Ley A, Pinamonti G, Poblete S, Jurečka P, Walter NG, Otyepka M. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chem Rev 2018; 118:4177-4338. [PMID: 29297679 PMCID: PMC5920944 DOI: 10.1021/acs.chemrev.7b00427] [Citation(s) in RCA: 386] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 12/14/2022]
Abstract
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Sandro Bottaro
- Structural Biology and NMR Laboratory, Department of Biology , University of Copenhagen , Copenhagen 2200 , Denmark
| | - Richard A Cunha
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Alejandro Gil-Ley
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Giovanni Pinamonti
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Simón Poblete
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| |
Collapse
|
8
|
Chu HY, Sprouffske K, Wagner A. The role of recombination in evolutionary adaptation of Escherichia coli to a novel nutrient. J Evol Biol 2017; 30:1692-1711. [PMID: 28612351 DOI: 10.1111/jeb.13132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/11/2017] [Accepted: 06/05/2017] [Indexed: 12/11/2022]
Abstract
The benefits and detriments of recombination for adaptive evolution have been studied both theoretically and experimentally, with conflicting predictions and observations. Most pertinent experiments examine recombination's effects in an unchanging environment and do not study its genomewide effects. Here, we evolved six replicate populations of either highly recombining R+ or lowly recombining R- E. coli strains in a changing environment, by introducing the novel nutrients L-arabinose or indole into the environment. The experiment's ancestral strains are not viable on these nutrients, but 130 generations of adaptive evolution were sufficient to render them viable. Recombination conferred a more pronounced advantage to populations adapting to indole. To study the genomic changes associated with this advantage, we sequenced the genomes of 384 clones isolated from selected replicates at the end of the experiment. These genomes harbour complex changes that range from point mutations to large-scale DNA amplifications. Among several candidate adaptive mutations, those in the tryptophanase regulator tnaC stand out, because the tna operon in which it resides has a known role in indole metabolism. One of the highly recombining populations also shows a significant excess of large-scale segmental DNA amplifications that include the tna operon. This lineage also shows a unique and potentially adaptive combination of point mutations and DNA amplifications that may have originated independently from one another, to be joined later by recombination. Our data illustrate that the advantages of recombination for adaptive evolution strongly depend on the environment and that they can be associated with complex genomic changes.
Collapse
Affiliation(s)
- H-Y Chu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - K Sprouffske
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - A Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,The Swiss Institute of Bioinformatics, Quartier Sorge, Batiment Genopode, Lausanne, Switzerland.,The Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
9
|
Po P, Delaney E, Gamper H, Szantai-Kis DM, Speight L, Tu L, Kosolapov A, Petersson EJ, Hou YM, Deutsch C. Effect of Nascent Peptide Steric Bulk on Elongation Kinetics in the Ribosome Exit Tunnel. J Mol Biol 2017; 429:1873-1888. [PMID: 28483649 DOI: 10.1016/j.jmb.2017.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/18/2017] [Accepted: 04/28/2017] [Indexed: 12/17/2022]
Abstract
All proteins are synthesized by the ribosome, a macromolecular complex that accomplishes the life-sustaining tasks of faithfully decoding mRNA and catalyzing peptide bond formation at the peptidyl transferase center (PTC). The ribosome has evolved an exit tunnel to host the elongating new peptide, protect it from proteolytic digestion, and guide its emergence. It is here that the nascent chain begins to fold. This folding process depends on the rate of translation at the PTC. We report here that besides PTC events, translation kinetics depend on steric constraints on nascent peptide side chains and that confined movements of cramped side chains within and through the tunnel fine-tune elongation rates.
Collapse
Affiliation(s)
- Pengse Po
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erin Delaney
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Howard Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - D Miklos Szantai-Kis
- Department of Biochemistry and Molecular Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lee Speight
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - LiWei Tu
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrey Kosolapov
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Carol Deutsch
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
The molecular choreography of protein synthesis: translational control, regulation, and pathways. Q Rev Biophys 2016; 49:e11. [PMID: 27658712 DOI: 10.1017/s0033583516000056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Translation of proteins by the ribosome regulates gene expression, with recent results underscoring the importance of translational control. Misregulation of translation underlies many diseases, including cancer and many genetic diseases. Decades of biochemical and structural studies have delineated many of the mechanistic details in prokaryotic translation, and sketched the outlines of eukaryotic translation. However, translation may not proceed linearly through a single mechanistic pathway, but likely involves multiple pathways and branchpoints. The stochastic nature of biological processes would allow different pathways to occur during translation that are biased by the interaction of the ribosome with other translation factors, with many of the steps kinetically controlled. These multiple pathways and branchpoints are potential regulatory nexus, allowing gene expression to be tuned at the translational level. As research focus shifts toward eukaryotic translation, certain themes will be echoed from studies on prokaryotic translation. This review provides a general overview of the dynamic data related to prokaryotic and eukaryotic translation, in particular recent findings with single-molecule methods, complemented by biochemical, kinetic, and structural findings. We will underscore the importance of viewing the process through the viewpoints of regulation, translational control, and heterogeneous pathways.
Collapse
|
11
|
Makarov GI, Golovin AV, Sumbatyan NV, Bogdanov AA. Molecular dynamics investigation of a mechanism of allosteric signal transmission in ribosomes. BIOCHEMISTRY (MOSCOW) 2015; 80:1047-56. [DOI: 10.1134/s0006297915080106] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Lu J, Deutsch C. Regional discrimination and propagation of local rearrangements along the ribosomal exit tunnel. J Mol Biol 2014; 426:4061-4073. [PMID: 25308341 DOI: 10.1016/j.jmb.2014.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/01/2014] [Accepted: 10/02/2014] [Indexed: 11/25/2022]
Abstract
All proteins, from bacteria to man, are made in the ribosome and are elongated, one residue at a time, at the peptidyl transferase center. This growing peptide chain wends its way through the ribosomal tunnel to the exit port, ~100Å from the peptidyl transferase center. We have identified locations in the tunnel that sense and respond to single side chains of the nascent peptide to induce local conformational changes. Moreover, side-chain sterics and rearrangements deep in the tunnel influence the disposition of residues 45Å away at the exit port and are consistent with side-chain-induced axial retraction of the peptide backbone. These coupled responses are neither haphazard nor uniform along the tunnel. Rather, they are confined to discriminating zones in the tunnel and are sequence specific. Such discerning communication may contribute to folding events and mechanisms governing sequence-specific signaling between different regions of the tunnel during translation.
Collapse
Affiliation(s)
- Jianli Lu
- Department of Physiology, University of Pennsylvania, PA 19104, USA
| | - Carol Deutsch
- Department of Physiology, University of Pennsylvania, PA 19104, USA.
| |
Collapse
|
13
|
Molecular Basis for the Ribosome Functioning as an L-Tryptophan Sensor. Cell Rep 2014; 9:469-75. [DOI: 10.1016/j.celrep.2014.09.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/22/2014] [Accepted: 09/05/2014] [Indexed: 11/22/2022] Open
|
14
|
Shishkina A, Makarov G, Tereshchenkov A, Korshunova G, Sumbatyan N, Golovin A, Svetlov M, Bogdanov A. Conjugates of amino acids and peptides with 5-o-mycaminosyltylonolide and their interaction with the ribosomal exit tunnel. Bioconjug Chem 2013; 24:1861-9. [PMID: 24090034 DOI: 10.1021/bc400236n] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During protein synthesis the nascent polypeptide chain (NC) extends through the ribosomal exit tunnel (NPET). Also, the large group of macrolide antibiotics binds in the nascent peptide exit tunnel. In some cases interaction of NC with NPET leads to the ribosome stalling, a significant event in regulation of translation. In other cases NC-ribosome interactions lead to pauses in translation that play an important role in cotranslational folding of polypeptides emerging from the ribosome. The precise mechanism of NC recognition in NPET as well as factors that determine NC conformation in the ribosomal tunnel are unknown. A number of derivatives of the macrolide antibiotic 5-O-mycaminosyltylonolide (OMT) containing N-acylated amino acid or peptide residues were synthesized in order to study potential sites of NC-NPET interactions. The target compounds were prepared by conjugation of protected amino acids and peptides with the C23 hydroxyl group of the macrolide. These OMT derivatives showed high although varying abilities to inhibit the firefly luciferase synthesis in vitro. Three glycil-containing derivatives appeared to be strong inhibitors of translation, more potent than parental OMT. Molecular dynamics (MD) simulation of complexes of tylosin, OMT, and some of OMT derivatives with the large ribosomal subunit of E. coli illuminated a plausible reason for the high inhibitory activity of Boc-Gly-OMT. In addition, the MD study detected a new putative site of interaction of the nascent polypeptide chain with the NPET walls.
Collapse
Affiliation(s)
- Anna Shishkina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University , Leninskie Gory, 1, bldg 40, 119992 Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Martínez AK, Gordon E, Sengupta A, Shirole N, Klepacki D, Martinez-Garriga B, Brown LM, Benedik MJ, Yanofsky C, Mankin AS, Vazquez-Laslop N, Sachs MS, Cruz-Vera LR. Interactions of the TnaC nascent peptide with rRNA in the exit tunnel enable the ribosome to respond to free tryptophan. Nucleic Acids Res 2013; 42:1245-56. [PMID: 24137004 PMCID: PMC3902921 DOI: 10.1093/nar/gkt923] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A transcriptional attenuation mechanism regulates expression of the bacterial tnaCAB operon. This mechanism requires ribosomal arrest induced by the regulatory nascent TnaC peptide in response to free L-tryptophan (L-Trp). In this study we demonstrate, using genetic and biochemical analyses, that in Escherichia coli, TnaC residue I19 and 23S rRNA nucleotide A2058 are essential for the ribosome's ability to sense free L-Trp. We show that the mutational change A2058U in 23S rRNA reduces the concentration dependence of L-Trp-mediated tna operon induction, whereas the TnaC I19L change suppresses this phenotype, restoring the sensitivity of the translating A2058U mutant ribosome to free L-Trp. These findings suggest that interactions between TnaC residue I19 and 23S rRNA nucleotide A2058 contribute to the creation of a regulatory L-Trp binding site within the translating ribosome.
Collapse
Affiliation(s)
- Allyson K Martínez
- Department of Biology, Texas A&M University, College Station, TX 77843, USA, Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL 35899, USA, Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60607, USA, Quantitative Proteomics Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA and Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kim H, Ha T. Single-molecule nanometry for biological physics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2013; 76:016601. [PMID: 23249673 PMCID: PMC3549428 DOI: 10.1088/0034-4885/76/1/016601] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Precision measurement is a hallmark of physics but the small length scale (∼nanometer) of elementary biological components and thermal fluctuations surrounding them challenge our ability to visualize their action. Here, we highlight the recent developments in single-molecule nanometry where the position of a single fluorescent molecule can be determined with nanometer precision, reaching the limit imposed by the shot noise, and the relative motion between two molecules can be determined with ∼0.3 nm precision at ∼1 ms time resolution, as well as how these new tools are providing fundamental insights into how motor proteins move on cellular highways. We will also discuss how interactions between three and four fluorescent molecules can be used to measure three and six coordinates, respectively, allowing us to correlate the movements of multiple components. Finally, we will discuss recent progress in combining angstrom-precision optical tweezers with single-molecule fluorescent detection, opening new windows for multi-dimensional single-molecule nanometry for biological physics.
Collapse
Affiliation(s)
- Hajin Kim
- Howard Hughes Medical Institute, Urbana, IL 61801, USA
| | | |
Collapse
|
17
|
Mahadevi AS, Sastry GN. Cation-π interaction: its role and relevance in chemistry, biology, and material science. Chem Rev 2012; 113:2100-38. [PMID: 23145968 DOI: 10.1021/cr300222d] [Citation(s) in RCA: 782] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- A Subha Mahadevi
- Molecular Modeling Group, CSIR-Indian Institute of Chemical Technology Tarnaka, Hyderabad 500 607, Andhra Pradesh, India
| | | |
Collapse
|
18
|
Chan KY, Trabuco LG, Schreiner E, Schulten K. Cryo-electron microscopy modeling by the molecular dynamics flexible fitting method. Biopolymers 2012; 97:678-86. [PMID: 22696404 PMCID: PMC3376020 DOI: 10.1002/bip.22042] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The increasing power and popularity of cryo-electron microscopy (cryo-EM) in structural biology brought about the development of so-called hybrid methods, which permit the interpretation of cryo-EM density maps beyond their nominal resolution in terms of atomic models. The Cryo-EM Modeling Challenge 2010 is the first community effort to bring together developers of hybrid methods as well as cryo-EM experimentalists. Participating in the challenge, the molecular dynamics flexible fitting (MDFF) method was applied to a number of cryo-EM density maps. The results are described here with special emphasis on the use of symmetry-based restraints to improve the quality of atomic models derived from density maps of symmetric complexes; on a comparison of the stereochemical quality of atomic models resulting from different hybrid methods; and on application of MDFF to electron crystallography data.
Collapse
Affiliation(s)
- Kwok-Yan Chan
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Eduard Schreiner
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Klaus Schulten
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
19
|
Gumbart J, Schreiner E, Wilson DN, Beckmann R, Schulten K. Mechanisms of SecM-mediated stalling in the ribosome. Biophys J 2012; 103:331-41. [PMID: 22853911 DOI: 10.1016/j.bpj.2012.06.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 06/01/2012] [Accepted: 06/05/2012] [Indexed: 02/05/2023] Open
Abstract
Nascent-peptide modulation of translation is a common regulatory mechanism of gene expression. In this mechanism, while the nascent peptide is still in the exit tunnel of the ribosome, it induces translational pausing, thereby controlling the expression of downstream genes. One example is SecM, which inhibits peptide-bond formation in the ribosome's peptidyl transferase center (PTC) during its own translation, upregulating the expression of the protein translocase SecA. Although biochemical experiments and cryo-electron microscopy data have led to the identification of some residues involved in SecM recognition, the full pathway of interacting residues that connect SecM to the PTC through the ribosome has not yet been conclusively established. Here, using the cryo-electron microscopy data, we derived the first (to our knowledge) atomic model of the SecM-stalled ribosome via molecular-dynamics flexible fitting, complete with P- and A-site tRNAs. Subsequently, we carried out simulations of native and mutated SecM-stalled ribosomes to investigate possible interaction pathways between a critical SecM residue, R163, and the PTC. In particular, the simulations reveal the role of SecM in altering the position of the tRNAs in the ribosome, and thus demonstrate how the presence of SecM in the exit tunnel induces stalling. Finally, steered molecular-dynamics simulations in which SecM was pulled toward the tunnel exit suggest how SecA interacting with SecM from outside the ribosome relieves stalling.
Collapse
Affiliation(s)
- James Gumbart
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois, USA
| | | | | | | | | |
Collapse
|
20
|
Burton B, Zimmermann MT, Jernigan RL, Wang Y. A computational investigation on the connection between dynamics properties of ribosomal proteins and ribosome assembly. PLoS Comput Biol 2012; 8:e1002530. [PMID: 22654657 PMCID: PMC3359968 DOI: 10.1371/journal.pcbi.1002530] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 04/10/2012] [Indexed: 11/19/2022] Open
Abstract
Assembly of the ribosome from its protein and RNA constituents has been studied extensively over the past 50 years, and experimental evidence suggests that prokaryotic ribosomal proteins undergo conformational changes during assembly. However, to date, no studies have attempted to elucidate these conformational changes. The present work utilizes computational methods to analyze protein dynamics and to investigate the linkage between dynamics and binding of these proteins during the assembly of the ribosome. Ribosomal proteins are known to be positively charged and we find the percentage of positive residues in r-proteins to be about twice that of the average protein: Lys+Arg is 18.7% for E. coli and 21.2% for T. thermophilus. Also, positive residues constitute a large proportion of RNA contacting residues: 39% for E. coli and 46% for T. thermophilus. This affirms the known importance of charge-charge interactions in the assembly of the ribosome. We studied the dynamics of three primary proteins from E. coli and T. thermophilus 30S subunits that bind early in the assembly (S15, S17, and S20) with atomic molecular dynamic simulations, followed by a study of all r-proteins using elastic network models. Molecular dynamics simulations show that solvent-exposed proteins (S15 and S17) tend to adopt more stable solution conformations than an RNA-embedded protein (S20). We also find protein residues that contact the 16S rRNA are generally more mobile in comparison with the other residues. This is because there is a larger proportion of contacting residues located in flexible loop regions. By the use of elastic network models, which are computationally more efficient, we show that this trend holds for most of the 30S r-proteins. Ribosomes are complex cellular machines that synthesize new proteins in the cell. The accurate and efficient assembly of ribosomal proteins (r-proteins) and ribosomal RNA (rRNA) to form a functional ribosome is important for cell growth, metabolic reactions, and other cellular processes. Additionally, some antibacterial drugs are believed to target the bacterial ribosome during its construction. Hence, ribosomal assembly has been an active research topic for many years because understanding the assembly mechanisms can provide insight into protein/RNA recognitions important in many other cellular processes, as well as optimize the development of antibacterial therapeutics. Experimental studies thus far have provided still limited understanding about the assembly process. To further understand the assembly process, we have computationally studied the dynamic properties that r-proteins exhibit during assembly and the relationship between dynamics, physical properties, and binding propensity. We observe significant charged interactions between r-proteins and rRNA. We also detect a strong correlation between contact residues and their dynamic mobilities. Protein residues contacting with rRNA are observed to be more mobile in comparison with other residues. We also relate the location of the r-protein in the fully assembled ribosome to its susceptibility for large conformational changes prior to binding.
Collapse
Affiliation(s)
- Brittany Burton
- Department of Chemistry, The University of Memphis, Memphis, Tennessee, United States of America
| | - Michael T. Zimmermann
- Laurence H. Baker Center for Bioinformatics and Biological Statistics, Department of Biochemistry, Biophysics and Molecular Biology, Bioinformatics and Computational Biology Graduate Program, Iowa State University, Ames, Iowa, United States of America
| | - Robert L. Jernigan
- Laurence H. Baker Center for Bioinformatics and Biological Statistics, Department of Biochemistry, Biophysics and Molecular Biology, Bioinformatics and Computational Biology Graduate Program, Iowa State University, Ames, Iowa, United States of America
- * E-mail: (RLJ); (YW)
| | - Yongmei Wang
- Department of Chemistry, The University of Memphis, Memphis, Tennessee, United States of America
- * E-mail: (RLJ); (YW)
| |
Collapse
|
21
|
Sanbonmatsu KY. Computational studies of molecular machines: the ribosome. Curr Opin Struct Biol 2012; 22:168-74. [PMID: 22336622 DOI: 10.1016/j.sbi.2012.01.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/19/2012] [Accepted: 01/19/2012] [Indexed: 01/22/2023]
Abstract
The past decade has produced an avalanche of experimental data on the structure and dynamics of the ribosome. Groundbreaking studies in structural biology and kinetics have placed important constraints on ribosome structural dynamics. However, a gulf remains between static structures and time dependent data. In particular, X-ray crystallography and cryo-EM studies produce static models of the ribosome in various states, but lack dynamic information. Single molecule studies produce information on the rates of transitions between these states but do not have high-resolution spatial information. Computational studies have aided in bridging this gap by providing atomic resolution simulations of structural fluctuations and transitions between configurations.
Collapse
|
22
|
Wu C, Wei J, Lin PJ, Tu L, Deutsch C, Johnson AE, Sachs MS. Arginine changes the conformation of the arginine attenuator peptide relative to the ribosome tunnel. J Mol Biol 2012; 416:518-33. [PMID: 22244852 DOI: 10.1016/j.jmb.2011.12.064] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/13/2011] [Accepted: 12/30/2011] [Indexed: 11/26/2022]
Abstract
The fungal arginine attenuator peptide (AAP) is a regulatory peptide that controls ribosome function. As a nascent peptide within the ribosome exit tunnel, it acts to stall ribosomes in response to arginine (Arg). We used three approaches to probe the molecular basis for stalling. First, PEGylation assays revealed that the AAP did not undergo overall compaction in the tunnel in response to Arg. Second, site-specific photocross-linking showed that Arg altered the conformation of the wild-type AAP, but not of nonfunctional mutants, with respect to the tunnel. Third, using time-resolved spectral measurements with a fluorescent probe placed in the nascent AAP, we detected sequence-specific changes in the disposition of the AAP near the peptidyltransferase center in response to Arg. These data provide evidence that an Arg-induced change in AAP conformation and/or environment in the ribosome tunnel is important for stalling.
Collapse
Affiliation(s)
- Cheng Wu
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Martínez AK, Shirole NH, Murakami S, Benedik MJ, Sachs MS, Cruz-Vera LR. Crucial elements that maintain the interactions between the regulatory TnaC peptide and the ribosome exit tunnel responsible for Trp inhibition of ribosome function. Nucleic Acids Res 2011; 40:2247-57. [PMID: 22110039 PMCID: PMC3299997 DOI: 10.1093/nar/gkr1052] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Translation of the TnaC nascent peptide inhibits ribosomal activity in the presence of l-tryptophan, inducing expression of the tnaCAB operon in Escherichia coli. Using chemical methylation, this work reveals how interactions between TnaC and the ribosome are affected by mutations in both molecules. The presence of the TnaC-tRNAPro peptidyl-tRNA within the ribosome protects the 23S rRNA nucleotide U2609 against chemical methylation. Such protection was not observed in mutant ribosomes containing changes in 23S rRNA nucleotides of the A748–A752 region. Nucleotides A752 and U2609 establish a base-pair interaction. Most replacements of either A752 or U2609 affected Trp induction of a TnaC-regulated LacZ reporter. However, the single change A752G, or the dual replacements A752G and U2609C, maintained Trp induction. Replacements at the conserved TnaC residues W12 and D16 also abolished the protection of U2609 by TnaC-tRNAPro against chemical methylation. These data indicate that the TnaC nascent peptide in the ribosome exit tunnel interacts with the U2609 nucleotide when the ribosome is Trp responsive. This interaction is affected by mutational changes in exit tunnel nucleotides of 23S rRNA, as well as in conserved TnaC residues, suggesting that they affect the structure of the exit tunnel and/or the nascent peptide configuration in the tunnel.
Collapse
Affiliation(s)
- Allyson K Martínez
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | |
Collapse
|
24
|
Strunk BS, Loucks CR, Su M, Vashisth H, Cheng S, Schilling J, Brooks CL, Karbstein K, Skiniotis G. Ribosome assembly factors prevent premature translation initiation by 40S assembly intermediates. Science 2011; 333:1449-53. [PMID: 21835981 DOI: 10.1126/science.1208245] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Ribosome assembly in eukaryotes requires approximately 200 essential assembly factors (AFs) and occurs through ordered events that initiate in the nucleolus and culminate in the cytoplasm. Here, we present the electron cryo-microscopy (cryo-EM) structure of a late cytoplasmic 40S ribosome assembly intermediate from Saccharomyces cerevisiae at 18 angstrom resolution. We obtained cryo-EM reconstructions of preribosomal complexes lacking individual components to define the positions of all seven AFs bound to this intermediate. These late-binding AFs are positioned to prevent each step in the translation initiation pathway. Together, they obstruct the binding sites for initiation factors, prevent the opening of the messenger RNA channel, block 60S subunit joining, and disrupt the decoding site. These redundant mechanisms probably ensure that pre-40S particles do not enter the translation pathway, which would result in their rapid degradation.
Collapse
Affiliation(s)
- Bethany S Strunk
- Chemical Biology Doctoral Program, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lu J, Hua Z, Kobertz WR, Deutsch C. Nascent peptide side chains induce rearrangements in distinct locations of the ribosomal tunnel. J Mol Biol 2011; 411:499-510. [PMID: 21663746 DOI: 10.1016/j.jmb.2011.05.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 05/24/2011] [Accepted: 05/24/2011] [Indexed: 10/18/2022]
Abstract
Although we have numerous structures of ribosomes, none disclose side-chain rearrangements of the nascent peptide during chain elongation. This study reports for the first time that rearrangement of the peptide and/or tunnel occurs in distinct regions of the tunnel and is directed by the unique primary sequence of each nascent peptide. In the tunnel mid-region, the accessibility of an introduced cysteine to a series of novel hydrophilic maleimide reagents increases with increasing volume of the adjacent chain residue, a sensitivity not manifest at the constriction and exit port. This surprising result reveals molecular movements not yet resolvable from structural studies. These findings map solvent-accessible volumes along the tunnel and provide novel insights critical to our understanding of allosteric communication within the ribosomal tunnel, translational arrest, chaperone interaction, folding, and rates of elongation.
Collapse
Affiliation(s)
- Jianli Lu
- Department of Physiology, University of Pennsylvania, PA 19104, USA
| | | | | | | |
Collapse
|
26
|
Gumbart J, Chipot C, Schulten K, Qian MX, Wang RQ, Lu SZ, Liu J, Li GH, Chen YD. Free energy of nascent-chain folding in the translocon. J Am Chem Soc 2011; 133:7602-7. [PMID: 21524073 DOI: 10.1021/ja2019299] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
During their synthesis, many water-soluble proteins and nearly all membrane proteins transit through a protein-conducting channel in the membrane, the Sec translocon, from where they are inserted into the lipid bilayer. Increasing evidence indicates that folding of the nascent protein begins already within the ribosomal exit tunnel in a sequence- and environment-dependent fashion. To examine the effects of the translocon on the nascent-chain folding, we have calculated the potential of mean force for α-helix formation of a 10-alanine oligopeptide as a function of its position within the translocon channel. We find that the predominant conformational states, α-helical and extended, reflect those found for the peptide in water. However, the translocon, via its surface properties and its variable diameter, shifts the equilibrium in favor of the α-helical state. Thus, we suggest that the translocon facilitates not only the insertion of membrane proteins into the bilayer but also their folding.
Collapse
Affiliation(s)
- James Gumbart
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Nascent polypeptide sequences that influence ribosome function. Curr Opin Microbiol 2011; 14:160-6. [PMID: 21342782 DOI: 10.1016/j.mib.2011.01.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 01/28/2011] [Indexed: 11/23/2022]
Abstract
Ribosomes catalyze protein synthesis using transfer RNAs and auxiliary proteins. Historically, ribosomes have been considered nonspecific translational machines, having no regulatory functions. However, a new class of regulatory mechanisms has been discovered that is based on interactions occurring within the ribosomal peptide exit tunnel that result in ribosome stalling during translation of an appropriate mRNA segment. These discoveries reveal an unexpectedly dynamic role ribosomes play in regulating their own activity. By using nascent leader peptides in combination with bound specific amino acids or antibiotics, ribosome functions can be altered significantly resulting in regulated expression of downstream coding regions. This review summarizes relevant findings in recent articles and outlines our current understanding of nascent peptide-induced ribosome stalling in regulating gene expression.
Collapse
|
28
|
Bogdanov AA, Sumbatyan NV, Shishkina AV, Karpenko VV, Korshunova GA. Ribosomal tunnel and translation regulation. BIOCHEMISTRY (MOSCOW) 2011; 75:1501-16. [DOI: 10.1134/s0006297910130018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
29
|
Whitford PC, Onuchic JN, Sanbonmatsu KY. Connecting energy landscapes with experimental rates for aminoacyl-tRNA accommodation in the ribosome. J Am Chem Soc 2010; 132:13170-1. [PMID: 20806913 DOI: 10.1021/ja1061399] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using explicit-solvent simulations of the 70S ribosome, the barrier-crossing attempt frequency was calculated for aminoacyl-tRNA elbow-accommodation. In seven individual trajectories (200-300 ns, each, for an aggregate time of 2.1 μs), the relaxation time of tRNA structural fluctuations was determined to be ∼10 ns, and the barrier-crossing attempt frequency of tRNA accommodation is ∼1-10 μs(-1). These calculations provide a quantitative relationship between the free-energy barrier and experimentally measured rates of accommodation, which demonstrate that the free-energy barrier of elbow-accommodation is less than 15 k(B)T, in vitro and in vivo.
Collapse
Affiliation(s)
- Paul C Whitford
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, MS K710, Los Alamos, New Mexico 87545, USA.
| | | | | |
Collapse
|
30
|
Trylska J. Coarse-grained models to study dynamics of nanoscale biomolecules and their applications to the ribosome. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:453101. [PMID: 21339588 DOI: 10.1088/0953-8984/22/45/453101] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Biopolymers are of dynamic nature and undergo functional motions spanning a large spectrum of timescales. To study the internal dynamics of nano-sized molecular complexes that exceed hundred thousands of atoms with atomic detail is computationally inefficient. Therefore, to achieve both the spatial and temporal scales of biological interest coarse-grained models of macromolecules are often used. By uniting groups of atoms into single interacting centers one decreases the resolution of the system and gets rid of the irrelevant degrees of freedom. This simplification, even though it requires parameterization, makes the studies of biomolecular dynamics computationally tractable and allows us to reach beyond the microsecond time frame. Here, I review the coarse-grained models of macromolecules composed of proteins and nucleic acids. I give examples of one-bead models that were developed to investigate the internal dynamics and focus on their applications to the ribosome--the nanoscale protein synthesis machine.
Collapse
Affiliation(s)
- Joanna Trylska
- Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawinskiego 5A, Warsaw 02-106, Poland.
| |
Collapse
|
31
|
Trabuco LG, Schreiner E, Gumbart J, Hsin J, Villa E, Schulten K. Applications of the molecular dynamics flexible fitting method. J Struct Biol 2010; 173:420-7. [PMID: 20932910 DOI: 10.1016/j.jsb.2010.09.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Revised: 09/19/2010] [Accepted: 09/28/2010] [Indexed: 12/12/2022]
Abstract
In recent years, cryo-electron microscopy (cryo-EM) has established itself as a key method in structural biology, permitting the structural characterization of large biomolecular complexes in various functional states. The data obtained through single-particle cryo-EM has recently seen a leap in resolution thanks to landmark advances in experimental and computational techniques, resulting in sub-nanometer resolution structures being obtained routinely. The remaining gap between these data and revealing the mechanisms of molecular function can be closed through hybrid modeling tools that incorporate known atomic structures into the cryo-EM data. One such tool, molecular dynamics flexible fitting (MDFF), uses molecular dynamics simulations to combine structures from X-ray crystallography with cryo-EM density maps to derive atomic models of large biomolecular complexes. The structures furnished by MDFF can be used subsequently in computational investigations aimed at revealing the dynamics of the complexes under study. In the present work, recent applications of MDFF are presented, including the interpretation of cryo-EM data of the ribosome at different stages of translation and the structure of a membrane-curvature-inducing photosynthetic complex.
Collapse
Affiliation(s)
- Leonardo G Trabuco
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
32
|
Faraudo J, Calero C, Aguilella-Arzo M. Ionic partition and transport in multi-ionic channels: a molecular dynamics simulation study of the OmpF bacterial porin. Biophys J 2010; 99:2107-15. [PMID: 20923644 PMCID: PMC3042589 DOI: 10.1016/j.bpj.2010.07.058] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/29/2010] [Accepted: 07/30/2010] [Indexed: 11/15/2022] Open
Abstract
We performed all-atom molecular dynamics simulations studying the partition of ions and the ionic current through the bacterial porin OmpF and two selected mutants. The study is motivated by new, interesting experimental findings concerning their selectivity and conductance behavior at neutral pH. The mutations considered here are designed to study the effect of removal of negative charges present in the constriction zone of the wild-type OmpF channel (which contains, on one side, a cluster with three positive residues, and on the other side, two negatively charged residues). Our results show that these mutations induce an exclusion of cations from the constriction zone of the channel, substantially reducing the flow of cations. In fact, the partition of ions inside the mutant channels is strongly inhomogeneous, with regions containing an excess of cations and regions containing an excess of anions. Interestingly, the overall number of cations inside the channel is larger than the number of anions, this excess being different for each protein channel. We found that the differences in ionic charge inside these channels are justified by the differences in electric charge between the wild-type OmpF and the mutants, following an electroneutral balance.
Collapse
Affiliation(s)
- Jordi Faraudo
- Institut de Ciència de Materials de Barcelona, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Carles Calero
- Institut de Ciència de Materials de Barcelona, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | |
Collapse
|
33
|
Stone JE, Hardy DJ, Ufimtsev IS, Schulten K. GPU-accelerated molecular modeling coming of age. J Mol Graph Model 2010; 29:116-25. [PMID: 20675161 PMCID: PMC2934899 DOI: 10.1016/j.jmgm.2010.06.010] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 06/24/2010] [Accepted: 06/30/2010] [Indexed: 12/19/2022]
Abstract
Graphics processing units (GPUs) have traditionally been used in molecular modeling solely for visualization of molecular structures and animation of trajectories resulting from molecular dynamics simulations. Modern GPUs have evolved into fully programmable, massively parallel co-processors that can now be exploited to accelerate many scientific computations, typically providing about one order of magnitude speedup over CPU code and in special cases providing speedups of two orders of magnitude. This paper surveys the development of molecular modeling algorithms that leverage GPU computing, the advances already made and remaining issues to be resolved, and the continuing evolution of GPU technology that promises to become even more useful to molecular modeling. Hardware acceleration with commodity GPUs is expected to benefit the overall computational biology community by bringing teraflops performance to desktop workstations and in some cases potentially changing what were formerly batch-mode computational jobs into interactive tasks.
Collapse
Affiliation(s)
- John E. Stone
- Beckman Institute, University of Illinois at Urbana-Champaign, 405N. Mathews Ave., Urbana, IL, 61801
| | - David J. Hardy
- Beckman Institute, University of Illinois at Urbana-Champaign, 405N. Mathews Ave., Urbana, IL, 61801
| | - Ivan S. Ufimtsev
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA 94305
| | - Klaus Schulten
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green, Urbana, IL, 61801
| |
Collapse
|