1
|
Sobakinskaya E, Müh F. Physical mechanisms of the Sec machinery operation. Phys Chem Chem Phys 2024; 26:27176-27188. [PMID: 39435495 PMCID: PMC11494458 DOI: 10.1039/d4cp03201b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024]
Abstract
The Sec complex, composed of a motor protein SecA and a channel SecYEG, is an ATP-driven molecular machine for the transport of proteins across the plasma membrane in bacteria. Today, there is a consensus about a general "rough" model of the complex activation and operation, which, however, lacks understanding of the physical mechanisms behind it. Molecular dynamics simulations were employed to address a way of allosteric activation, conformational transition of SecYEG from the closed to the open state, and driving forces of protein transport. We found that binding of SecA (in the ATP-bound state) and the protein signal sequence leads to a transmembrane helix rearrangment that weakens contacts inside the hydrophobic core of SecYEG and provides a driving force for plug opening. The conformational transitions are enabled by a delicate interplay between hydrophobic forces on one side and PEES (proton motive force, external - due to binding with the translocation partners - entropic, and solvent-induced) on the other side. In the open state, SecYEG still provides a barrier for bulky residues that contributes to the driving forces of transport. Other important contributions come from SecA and the membrane potential acting in different stages of protein transport to guarantee a nearly constant driving force. Given that the different forces act on different types of residues, the suggested mechanisms taken together provide a directional motion for any substrate, thereby maximizing the efficiency of the Sec machinery.
Collapse
Affiliation(s)
- Ekaterina Sobakinskaya
- Institute for Theoretical Physics, Johannes Kepler University Linz, Altenberger Strasse 69, A-4040 Linz, Austria.
| | - Frank Müh
- Institute for Theoretical Physics, Johannes Kepler University Linz, Altenberger Strasse 69, A-4040 Linz, Austria.
| |
Collapse
|
2
|
Crossley JA, Allen WJ, Watkins DW, Sabir T, Radford SE, Tuma R, Collinson I, Fessl T. Dynamic coupling of fast channel gating with slow ATP-turnover underpins protein transport through the Sec translocon. EMBO J 2024; 43:1-13. [PMID: 38177311 PMCID: PMC10883268 DOI: 10.1038/s44318-023-00004-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 01/06/2024] Open
Abstract
The Sec translocon is a highly conserved membrane assembly for polypeptide transport across, or into, lipid bilayers. In bacteria, secretion through the core channel complex-SecYEG in the inner membrane-is powered by the cytosolic ATPase SecA. Here, we use single-molecule fluorescence to interrogate the conformational state of SecYEG throughout the ATP hydrolysis cycle of SecA. We show that the SecYEG channel fluctuations between open and closed states are much faster (~20-fold during translocation) than ATP turnover, and that the nucleotide status of SecA modulates the rates of opening and closure. The SecY variant PrlA4, which exhibits faster transport but unaffected ATPase rates, increases the dwell time in the open state, facilitating pre-protein diffusion through the pore and thereby enhancing translocation efficiency. Thus, rapid SecYEG channel dynamics are allosterically coupled to SecA via modulation of the energy landscape, and play an integral part in protein transport. Loose coupling of ATP-turnover by SecA to the dynamic properties of SecYEG is compatible with a Brownian-rachet mechanism of translocation, rather than strict nucleotide-dependent interconversion between different static states of a power stroke.
Collapse
Affiliation(s)
- Joel A Crossley
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Faculty of Science, University of South Bohemia, České Budějovice, 370 05, Czech Republic
- School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, LS1 3HE, UK
| | - William J Allen
- School of Biochemistry, University of Bristol, Bristol, BS8 1QU, UK
| | - Daniel W Watkins
- School of Biochemistry, University of Bristol, Bristol, BS8 1QU, UK
| | - Tara Sabir
- School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, LS1 3HE, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Roman Tuma
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Faculty of Science, University of South Bohemia, České Budějovice, 370 05, Czech Republic
| | - Ian Collinson
- School of Biochemistry, University of Bristol, Bristol, BS8 1QU, UK.
| | - Tomas Fessl
- Faculty of Science, University of South Bohemia, České Budějovice, 370 05, Czech Republic.
| |
Collapse
|
3
|
White SH. Fifty Years of Biophysics at the Membrane Frontier. Annu Rev Biophys 2023; 52:21-67. [PMID: 36791747 DOI: 10.1146/annurev-biophys-051622-112341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The author first describes his childhood in the South and the ways in which it fostered the values he has espoused throughout his life, his development of a keen fascination with science, and the influences that supported his progress toward higher education. His experiences in ROTC as a student, followed by two years in the US Army during the Vietnam War, honed his leadership skills. The bulk of the autobiography is a chronological journey through his scientific career, beginning with arrival at the University of California, Irvine in 1972, with an emphasis on the postdoctoral students and colleagues who have contributed substantially to each phase of his lab's progress. White's fundamental findings played a key role in the development of membrane biophysics, helping establish it as fertile ground for research. A story gradually unfolds that reveals the deeply collaborative and painstakingly executed work necessary for a successful career in science.
Collapse
Affiliation(s)
- Stephen H White
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA;
| |
Collapse
|
4
|
Bhadra P, Römisch K, Helms V. Effect of Sec62 on the conformation of the Sec61 channel in yeast. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184050. [PMID: 36116515 DOI: 10.1016/j.bbamem.2022.184050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/22/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Most eukaryotic secretory and membrane proteins are funneled by the Sec61 complex into the secretory pathway. Furthermore, some substrate peptides rely on two essential accessory proteins, Sec62 and Sec63, being present to assist with their translocation via the Sec61 channel in post-translational translocation. Cryo-electron microscopy (cryo-EM) recently succeeded in determining atomistic structures of unbound and signal sequence-engaged Sec complexes from Saccharomyces cerevisiae, involving the Sec61 channel and the proteins Sec62, Sec63, Sec71 and Sec72. In this study, we investigated the conformational effects of Sec62 on Sec61. Indeed, we observed in molecular dynamics simulations that the conformational dynamics of lateral gate, plug and pore region of Sec61 are altered by the presence/absence of Sec62. In molecular dynamics simulations that were started from the cryo-EM structures of Sec61 coordinated to Sec62 or of apo Sec61, we observed that the luminal side of the lateral gate gradually adopts a closed conformation similar to the apo state during unbound state simulations. In contrast, it adopts a wider conformation in the bound state. Furthermore, we demonstrate that the conformation of the active (substrate-bound) state of the Sec61 channel shifts toward an alternative conformation in the absence of the substrate. We suggest that the signal peptide holds/stabilizes the active state conformation of Sec61 during post-translational translocation. Thus, our study explains the effect of Sec62 on the conformation of the Sec61 channel and describes the conformational transitions of Sec61 channel.
Collapse
Affiliation(s)
- Pratiti Bhadra
- Center for Bioinformatics, Saarland University, Saarland Informatics Campus, Saarbrücken, Saarland, Germany
| | - Karin Römisch
- Faculty of Natural Sciences and Technology, Saarland University, Saarbrücken, Saarland, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarland Informatics Campus, Saarbrücken, Saarland, Germany.
| |
Collapse
|
5
|
Bondar AN. Graphs of Hydrogen-Bond Networks to Dissect Protein Conformational Dynamics. J Phys Chem B 2022; 126:3973-3984. [PMID: 35639610 DOI: 10.1021/acs.jpcb.2c00200] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dynamic hydrogen bonds and hydrogen-bond networks are ubiquitous in proteins and protein complexes. Functional roles that have been assigned to hydrogen-bond networks include structural plasticity for protein function, allosteric conformational coupling, long-distance proton transfers, and transient storage of protons. Advances in structural biology provide invaluable insights into architectures of large proteins and protein complexes of direct interest to human physiology and disease, including G Protein Coupled Receptors (GPCRs) and the SARS-Covid-19 spike protein S, and give rise to the challenge of how to identify those interactions that are more likely to govern protein dynamics. This Perspective discusses applications of graph-based algorithms to dissect dynamical hydrogen-bond networks of protein complexes, with illustrations for GPCRs and spike protein S. H-bond graphs provide an overview of sites in GPCR structures where hydrogen-bond dynamics would be required to assemble longer-distance networks between functionally important motifs. In the case of spike protein S, graphs identify regions of the protein where hydrogen bonds rearrange during the reaction cycle and where local hydrogen-bond networks likely change in a virus variant of concern.
Collapse
Affiliation(s)
- Ana-Nicoleta Bondar
- University of Bucharest, Faculty of Physics, Str. Atomiştilor 405, 077125 Bucharest-Măgurele, Romania.,Institute for Neuroscience and Medicine and Institute for Advanced Simulations (IAS-5/INM-9), Computational Biomedicine, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
6
|
Bondar AN. Mechanisms of long-distance allosteric couplings in proton-binding membrane transporters. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 128:199-239. [PMID: 35034719 DOI: 10.1016/bs.apcsb.2021.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Membrane transporters that use proton binding and proton transfer for function couple local protonation change with changes in protein conformation and water dynamics. Changes of protein conformation might be required to allow transient formation of hydrogen-bond networks that bridge proton donor and acceptor pairs separated by long distances. Inter-helical hydrogen-bond networks adjust rapidly to protonation change, and ensure rapid response of the protein structure and dynamics. Membrane transporters with known three-dimensional structures and proton-binding groups inform on general principles of protonation-coupled protein conformational dynamics. Inter-helical hydrogen bond motifs between proton-binding carboxylate groups and a polar sidechain are observed in unrelated membrane transporters, suggesting common principles of coupling protonation change with protein conformational dynamics.
Collapse
Affiliation(s)
- Ana-Nicoleta Bondar
- University of Bucharest, Faculty of Physics, Măgurele, Romania; Forschungszentrum Jülich, Institute of Computational Biomedicine, Jülich, Germany.
| |
Collapse
|
7
|
Dynamic Coupling of Tyrosine 185 with the Bacteriorhodopsin Photocycle, as Revealed by Chemical Shifts, Assisted AF-QM/MM Calculations and Molecular Dynamic Simulations. Int J Mol Sci 2021; 22:ijms222413587. [PMID: 34948384 PMCID: PMC8709120 DOI: 10.3390/ijms222413587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/23/2022] Open
Abstract
Aromatic residues are highly conserved in microbial photoreceptors and play crucial roles in the dynamic regulation of receptor functions. However, little is known about the dynamic mechanism of the functional role of those highly conserved aromatic residues during the receptor photocycle. Tyrosine 185 (Y185) is one of the highly conserved aromatic residues within the retinal binding pocket of bacteriorhodopsin (bR). In this study, we explored the molecular mechanism of its dynamic coupling with the bR photocycle by automated fragmentation quantum mechanics/molecular mechanics (AF-QM/MM) calculations and molecular dynamic (MD) simulations based on chemical shifts obtained by 2D solid-state NMR correlation experiments. We observed that Y185 plays a significant role in regulating the retinal cis–trans thermal equilibrium, stabilizing the pentagonal H-bond network, participating in the orientation switch of Schiff Base (SB) nitrogen, and opening the F42 gate by interacting with the retinal and several key residues along the proton translocation channel. Our findings provide a detailed molecular mechanism of the dynamic couplings of Y185 and the bR photocycle from a structural perspective. The method used in this paper may be applied to the study of other microbial photoreceptors.
Collapse
|
8
|
Bertalan É, Lesca E, Schertler GFX, Bondar AN. C-Graphs Tool with Graphical User Interface to Dissect Conserved Hydrogen-Bond Networks: Applications to Visual Rhodopsins. J Chem Inf Model 2021; 61:5692-5707. [PMID: 34670076 DOI: 10.1021/acs.jcim.1c00827] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dynamic hydrogen-bond networks provide proteins with structural plasticity required to translate signals such as ligand binding into a cellular response or to transport ions and larger solutes across membranes and, thus, are of central interest to understand protein reaction mechanisms. Here, we present C-Graphs, an efficient tool with graphical user interface that analyzes data sets of static protein structures or of independent numerical simulations to identify conserved, vs unique, hydrogen bonds and hydrogen-bond networks. For static structures, which may belong to the same protein or to proteins with different sequences, C-Graphs uses a clustering algorithm to identify sites of the hydrogen-bond network where waters are conserved among the structures. Using C-Graphs, we identify an internal protein-water hydrogen-bond network common to static structures of visual rhodopsins and adenosine A2A G protein-coupled receptors (GPCRs). Molecular dynamics simulations of a visual rhodopsin indicate that the conserved hydrogen-bond network from static structure can recruit dynamic hydrogen bonds and extend throughout most of the receptor. We release with this work the code for C-Graphs and its graphical user interface.
Collapse
Affiliation(s)
- Éva Bertalan
- Theoretical Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Elena Lesca
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, ETH Zürich, 5303 Villigen-PSI, Switzerland.,Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Gebhard F X Schertler
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, ETH Zürich, 5303 Villigen-PSI, Switzerland.,Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Ana-Nicoleta Bondar
- Theoretical Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany.,Faculty of Physics, University of Bucharest, Strada Atomiştilor Nr. 405, Măgurele 077125, Romania.,Computational Biomedicine, IAS-5/INM-9, Institute for Neuroscience and Medicine and Institute for Advanced Simulations, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
9
|
|
10
|
Characterization of the Features of Water Inside the SecY Translocon. J Membr Biol 2021; 254:133-139. [PMID: 33811496 DOI: 10.1007/s00232-021-00178-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Despite extended experimental and computational studies, the mechanism regulating membrane protein folding and stability in cell membranes is not fully understood. In this review, I will provide a personal and partial account of the scientific efforts undertaken by Dr. Stephen White to shed light on this topic. After briefly describing the role of water and the hydrophobic effect on cellular processes, I will discuss the physical chemistry of water confined inside the SecY translocon pore. I conclude with a review of recent literature that attempts to answer fundamental questions on the pathway and energetics of translocon-guided membrane protein insertion.
Collapse
|
11
|
Letter to the Editor: Distanced Inspiration from the Career of Stephen H. White. J Membr Biol 2020; 254:1-3. [PMID: 33097980 DOI: 10.1007/s00232-020-00146-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 10/23/2022]
|
12
|
Knyazev DG, Kuttner R, Bondar AN, Zimmerman M, Siligan C, Pohl P. Voltage Sensing in Bacterial Protein Translocation. Biomolecules 2020; 10:E78. [PMID: 31947864 PMCID: PMC7023257 DOI: 10.3390/biom10010078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/25/2019] [Accepted: 01/01/2020] [Indexed: 01/04/2023] Open
Abstract
The bacterial channel SecYEG efficiently translocates both hydrophobic and hydrophilic proteins across the plasma membrane. Translocating polypeptide chains may dislodge the plug, a half helix that blocks the permeation of small molecules, from its position in the middle of the aqueous translocation channel. Instead of the plug, six isoleucines in the middle of the membrane supposedly seal the channel, by forming a gasket around the translocating polypeptide. However, this hypothesis does not explain how the tightness of the gasket may depend on membrane potential. Here, we demonstrate voltage-dependent closings of the purified and reconstituted channel in the presence of ligands, suggesting that voltage sensitivity may be conferred by motor protein SecA, ribosomes, signal peptides, and/or translocating peptides. Yet, the presence of a voltage sensor intrinsic to SecYEG was indicated by voltage driven closure of pores that were forced-open either by crosslinking the plug to SecE or by plug deletion. We tested the involvement of SecY's half-helix 2b (TM2b) in voltage sensing, since clearly identifiable gating charges are missing. The mutation L80D accelerated voltage driven closings by reversing TM2b's dipolar orientation. In contrast, the L80K mutation decelerated voltage induced closings by increasing TM2b's dipole moment. The observations suggest that TM2b is part of a larger voltage sensor. By partly aligning the combined dipole of this sensor with the orientation of the membrane-spanning electric field, voltage may drive channel closure.
Collapse
Affiliation(s)
- Denis G. Knyazev
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, 4020 Linz, Austria
| | - Roland Kuttner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, 4020 Linz, Austria
| | - Ana-Nicoleta Bondar
- Theoretical Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Mirjam Zimmerman
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, 4020 Linz, Austria
| | - Christine Siligan
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, 4020 Linz, Austria
| | - Peter Pohl
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, 4020 Linz, Austria
| |
Collapse
|
13
|
Komarudin AG, Driessen AJM. SecA-Mediated Protein Translocation through the SecYEG Channel. Microbiol Spectr 2019; 7:10.1128/microbiolspec.psib-0028-2019. [PMID: 31373268 PMCID: PMC10957188 DOI: 10.1128/microbiolspec.psib-0028-2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Indexed: 01/02/2023] Open
Abstract
In bacteria, the Sec translocase mediates the translocation of proteins into and across the cytoplasmic membrane. It consists of a protein conducting channel SecYEG, the ATP-dependent motor SecA, and the accessory SecDF complex. Here we discuss the function and structure of the Sec translocase.
Collapse
Affiliation(s)
- Amalina Ghaisani Komarudin
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, and the Zernike Institute of Advanced Materials, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Arnold J M Driessen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, and the Zernike Institute of Advanced Materials, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| |
Collapse
|
14
|
Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019; 119:5607-5774. [PMID: 30859819 PMCID: PMC6727218 DOI: 10.1021/acs.chemrev.8b00538] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/23/2022]
Abstract
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Collapse
Affiliation(s)
- Giray Enkavi
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Matti Javanainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy
of Sciences, Flemingovo naḿesti 542/2, 16610 Prague, Czech Republic
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Waldemar Kulig
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
- MEMPHYS-Center
for Biomembrane Physics
| |
Collapse
|
15
|
Abstract
Membranes surrounding the biological cell and its internal compartments host proteins that catalyze chemical reactions essential for the functioning of the cell. Rather than being a passive structural matrix that holds membrane-embedded proteins in place, the membrane can largely shape the conformational energy landscape of membrane proteins and impact the energetics of their chemical reaction. Here, we highlight the challenges in understanding how lipids impact the conformational energy landscape of macromolecular membrane complexes whose functioning involves chemical reactions including proton transfer. We review here advances in our understanding of how chemical reactions occur at membrane interfaces gleaned with both theoretical and experimental advances using simple protein systems as guides. Our perspective is that of bridging experiments with theory to understand general physicochemical principles of membrane reactions, with a long term goal of furthering our understanding of the role of the lipids on the functioning of complex macromolecular assemblies at the membrane interface.
Collapse
Affiliation(s)
- Ana-Nicoleta Bondar
- Freie Universität Berlin , Department of Physics, Theoretical Molecular Biophysics Group , Arnimallee 14 , D-14195 Berlin , Germany
| | - M Joanne Lemieux
- University of Alberta , Department of Biochemistry, Membrane Protein Disease Research Group , Edmonton , Alberta T6G 2H7 , Canada
| |
Collapse
|
16
|
Knyazev DG, Kuttner R, Zimmermann M, Sobakinskaya E, Pohl P. Driving Forces of Translocation Through Bacterial Translocon SecYEG. J Membr Biol 2018; 251:329-343. [PMID: 29330604 PMCID: PMC6028853 DOI: 10.1007/s00232-017-0012-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 12/22/2017] [Indexed: 11/09/2022]
Abstract
This review focusses on the energetics of protein translocation via the Sec translocation machinery. First we complement structural data about SecYEG's conformational rearrangements by insight obtained from functional assays. These include measurements of SecYEG permeability that allow assessment of channel gating by ligand binding and membrane voltage. Second we will discuss the power stroke and Brownian ratcheting models of substrate translocation and the role that the two models assign to the putative driving forces: (i) ATP (SecA) and GTP (ribosome) hydrolysis, (ii) interaction with accessory proteins, (iii) membrane partitioning and folding, (iv) proton motive force (PMF), and (v) entropic contributions. Our analysis underlines how important energized membranes are for unravelling the translocation mechanism in future experiments.
Collapse
Affiliation(s)
- Denis G Knyazev
- Johannes Kepler University Linz, Institute of Biophysics, Linz, Austria.
| | - Roland Kuttner
- Johannes Kepler University Linz, Institute of Biophysics, Linz, Austria
| | - Mirjam Zimmermann
- Johannes Kepler University Linz, Institute of Biophysics, Linz, Austria
| | | | - Peter Pohl
- Johannes Kepler University Linz, Institute of Biophysics, Linz, Austria
| |
Collapse
|
17
|
Guerra F, Siemers M, Mielack C, Bondar AN. Dynamics of Long-Distance Hydrogen-Bond Networks in Photosystem II. J Phys Chem B 2018; 122:4625-4641. [PMID: 29589763 DOI: 10.1021/acs.jpcb.8b00649] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photosystem II uses the energy of absorbed light to split water molecules, generating molecular oxygen, electrons, and protons. The four protons generated during each reaction cycle are released to the lumen via mechanisms that are poorly understood. Given the complexity of photosystem II, which consists of multiple protein subunits and cofactor molecules and hosts numerous waters, a fundamental issue is finding transient networks of hydrogen bonds that bridge potential proton donor and acceptor groups. Here, we address this issue by performing all-atom molecular dynamics simulations of wild-type and mutant photosystem II monomers, which we analyze using a new protocol designed to facilitate efficient analysis of hydrogen-bond networks. Our computations reveal that local protein/water hydrogen-bond networks can assemble transiently in photosystem II such that the reaction center connects to the lumen. The dynamics of the hydrogen-bond networks couple to the protonation state of specific carboxylate groups and are altered in a mutant with defective proton transfer. Simulations on photosystem II without its extrinsic PsbO subunit provide a molecular interpretation of the elusive functional role of this subunit.
Collapse
Affiliation(s)
- Federico Guerra
- Freie Universität Berlin, Department of Physics , Theoretical Molecular Biophysics Group , Arnimallee 14 , D-14195 Berlin , Germany
| | - Malte Siemers
- Freie Universität Berlin, Department of Physics , Theoretical Molecular Biophysics Group , Arnimallee 14 , D-14195 Berlin , Germany
| | - Christopher Mielack
- Freie Universität Berlin, Department of Physics , Theoretical Molecular Biophysics Group , Arnimallee 14 , D-14195 Berlin , Germany
| | - Ana-Nicoleta Bondar
- Freie Universität Berlin, Department of Physics , Theoretical Molecular Biophysics Group , Arnimallee 14 , D-14195 Berlin , Germany
| |
Collapse
|
18
|
Harris A, Saita M, Resler T, Hughes-Visentin A, Maia R, Pranga-Sellnau F, Bondar AN, Heberle J, Brown LS. Molecular details of the unique mechanism of chloride transport by a cyanobacterial rhodopsin. Phys Chem Chem Phys 2018; 20:3184-3199. [PMID: 29057415 DOI: 10.1039/c7cp06068h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microbial rhodopsins are well known as versatile and ubiquitous light-driven ion transporters and photosensors. While the proton transport mechanism has been studied in great detail, much less is known about various modes of anion transport. Until recently, only two main groups of light-driven anion pumps were known, archaeal halorhodopsins (HRs) and bacterial chloride pumps (known as ClRs or NTQs). Last year, another group of cyanobacterial anion pumps with a very distinct primary structure was reported. Here, we studied the chloride-transporting photocycle of a representative of this new group, Mastigocladopsis repens rhodopsin (MastR), using time-resolved spectroscopy in the infrared and visible ranges and site-directed mutagenesis. We found that, in accordance with its unique amino acid sequence containing many polar residues in the transmembrane region of the protein, its photocycle features a number of unusual molecular events not known for other anion-pumping rhodopsins. It appears that light-driven chloride ion transfers by MastR are coupled with translocation of protons and water molecules as well as perturbation of several polar sidechains. Of particular interest is transient deprotonation of Asp-85, homologous to the cytoplasmic proton donor of light-driven proton pumps (such as Asp-96 of bacteriorhodopsin), which may serve as a regulatory mechanism.
Collapse
Affiliation(s)
- Andrew Harris
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bondar AN, Smith JC. Protonation-state-Coupled Conformational Dynamics in Reaction Mechanisms of Channel and Pump Rhodopsins. Photochem Photobiol 2017; 93:1336-1344. [DOI: 10.1111/php.12790] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 04/20/2017] [Indexed: 01/27/2023]
Affiliation(s)
- Ana-Nicoleta Bondar
- Theoretical Molecular Biophysics Group; Department of Physics; Freie Universität Berlin; Berlin Germany
| | - Jeremy C. Smith
- University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics; Oak Ridge TN
- Department of Biochemistry and Cellular and Molecular Biology; University of Tennessee; Knoxville TN
| |
Collapse
|
20
|
Stone TA, Schiller N, Workewych N, von Heijne G, Deber CM. Hydrophobic Clusters Raise the Threshold Hydrophilicity for Insertion of Transmembrane Sequences in Vivo. Biochemistry 2016; 55:5772-5779. [PMID: 27620701 DOI: 10.1021/acs.biochem.6b00650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Insertion of a nascent membrane protein segment by the translocon channel into the bilayer is naturally promoted by high segmental hydrophobicity, but its selection as a transmembrane (TM) segment is complicated by the diverse environments (aqueous vs lipidic) the protein encounters and by the fact that most TM segments contain a substantial amount (∼30%) of polar residues, as required for protein structural stabilization and/or function. To examine the contributions of these factors systematically, we designed and synthesized a peptide library consisting of pairs of compositionally identical, but sequentially different, peptides with 19-residue core sequences varying (i) in Leu positioning (with five or seven Leu residues clustered into a contiguous "block" in the middle of the segment or "scrambled" throughout the sequence) and (ii) in Ser content (0-6 residues). The library was analyzed by a combination of biophysical and biological techniques, including HPLC retention times, circular dichroism measurements of helicity in micelle and phospholipid bilayer media, and relative blue shifts in Trp fluorescence maxima, as well as by the extent of membrane insertion in a translocon-mediated assay using microsomal membranes from dog pancreas endoplasmic reticulum. We found that local blocks of high hydrophobicity heighten the translocon's propensity to insert moderately hydrophilic sequences, until a "threshold hydrophilicity" is surpassed whereby segments no longer insert even in the presence of Leu blocks. This study codifies the prerequisites of apolar/polar content and residue positioning that define nascent TM segments, illustrates the accuracy in their prediction, and highlights how a single disease-causing mutation can tip the balance toward anomalous translocation/insertion.
Collapse
Affiliation(s)
- Tracy A Stone
- Division of Molecular Structure & Function, Research Institute, Hospital for Sick Children , Toronto M5G 0A4, Ontario, Canada.,Department of Biochemistry, University of Toronto , Toronto M5S 1A8, Ontario, Canada
| | - Nina Schiller
- Department of Biochemistry and Biophysics, Stockholm University , SE-106 91 Stockholm, Sweden.,Science for Life Laboratory, Stockholm University , Box 1031, SE-171 21 Solna, Sweden
| | - Natalie Workewych
- Division of Molecular Structure & Function, Research Institute, Hospital for Sick Children , Toronto M5G 0A4, Ontario, Canada
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University , SE-106 91 Stockholm, Sweden.,Science for Life Laboratory, Stockholm University , Box 1031, SE-171 21 Solna, Sweden
| | - Charles M Deber
- Division of Molecular Structure & Function, Research Institute, Hospital for Sick Children , Toronto M5G 0A4, Ontario, Canada.,Department of Biochemistry, University of Toronto , Toronto M5S 1A8, Ontario, Canada
| |
Collapse
|
21
|
Collinson I, Corey RA, Allen WJ. Channel crossing: how are proteins shipped across the bacterial plasma membrane? Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0025. [PMID: 26370937 PMCID: PMC4632601 DOI: 10.1098/rstb.2015.0025] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The structure of the first protein-conducting channel was determined more than a decade ago. Today, we are still puzzled by the outstanding problem of protein translocation—the dynamic mechanism underlying the consignment of proteins across and into membranes. This review is an attempt to summarize and understand the energy transducing capabilities of protein-translocating machines, with emphasis on bacterial systems: how polypeptides make headway against the lipid bilayer and how the process is coupled to the free energy associated with ATP hydrolysis and the transmembrane protein motive force. In order to explore how cargo is driven across the membrane, the known structures of the protein-translocation machines are set out against the background of the historic literature, and in the light of experiments conducted in their wake. The paper will focus on the bacterial general secretory (Sec) pathway (SecY-complex), and its eukaryotic counterpart (Sec61-complex), which ferry proteins across the membrane in an unfolded state, as well as the unrelated Tat system that assembles bespoke channels for the export of folded proteins.
Collapse
Affiliation(s)
- Ian Collinson
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Robin A Corey
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - William J Allen
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
22
|
Milenkovic S, Bondar AN. Mechanism of conformational coupling in SecA: Key role of hydrogen-bonding networks and water interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:374-85. [PMID: 26607006 DOI: 10.1016/j.bbamem.2015.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 11/05/2015] [Accepted: 11/18/2015] [Indexed: 11/16/2022]
Abstract
SecA uses the energy yielded by the binding and hydrolysis of adenosine triphosphate (ATP) to push secretory pre-proteins across the plasma membrane in bacteria. Hydrolysis of ATP occurs at the nucleotide-binding site, which contains the conserved carboxylate groups of the DEAD-box helicases. Although crystal structures provide valuable snapshots of SecA along its reaction cycle, the mechanism that ensures conformational coupling between the nucleotide-binding site and the other domains of SecA remains unclear. The observation that SecA contains numerous hydrogen-bonding groups raises important questions about the role of hydrogen-bonding networks and hydrogen-bond dynamics in long-distance conformational couplings. To address these questions, we explored the molecular dynamics of SecA from three different organisms, with and without bound nucleotide, in water. By computing two-dimensional hydrogen-bonding maps we identify networks of hydrogen bonds that connect the nucleotide-binding site to remote regions of the protein, and sites in the protein that respond to specific perturbations. We find that the nucleotide-binding site of ADP-bound SecA has a preferred geometry whereby the first two carboxylates of the DEAD motif bridge via hydrogen-bonding water. Simulations of a mutant with perturbed ATP hydrolysis highlight the water-bridged geometry as a key structural element of the reaction path.
Collapse
Affiliation(s)
- Stefan Milenkovic
- Theoretical Molecular Biophysics, Department of Physics, Freie Universitaet Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Ana-Nicoleta Bondar
- Theoretical Molecular Biophysics, Department of Physics, Freie Universitaet Berlin, Arnimallee 14, D-14195 Berlin, Germany.
| |
Collapse
|
23
|
Cournia Z, Allen TW, Andricioaei I, Antonny B, Baum D, Brannigan G, Buchete NV, Deckman JT, Delemotte L, del Val C, Friedman R, Gkeka P, Hege HC, Hénin J, Kasimova MA, Kolocouris A, Klein ML, Khalid S, Lemieux MJ, Lindow N, Roy M, Selent J, Tarek M, Tofoleanu F, Vanni S, Urban S, Wales DJ, Smith JC, Bondar AN. Membrane Protein Structure, Function, and Dynamics: a Perspective from Experiments and Theory. J Membr Biol 2015; 248:611-40. [PMID: 26063070 PMCID: PMC4515176 DOI: 10.1007/s00232-015-9802-0] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/26/2015] [Indexed: 01/05/2023]
Abstract
Membrane proteins mediate processes that are fundamental for the flourishing of biological cells. Membrane-embedded transporters move ions and larger solutes across membranes; receptors mediate communication between the cell and its environment and membrane-embedded enzymes catalyze chemical reactions. Understanding these mechanisms of action requires knowledge of how the proteins couple to their fluid, hydrated lipid membrane environment. We present here current studies in computational and experimental membrane protein biophysics, and show how they address outstanding challenges in understanding the complex environmental effects on the structure, function, and dynamics of membrane proteins.
Collapse
Affiliation(s)
- Zoe Cournia
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527, Athens, Greece
| | - Toby W. Allen
- School of Applied Sciences & Health Innovations Research Institute, RMIT University, GPO Box 2476, Melbourne, Vic, 3001, Australia; and Department of Chemistry, University of California, Davis. Davis, CA 95616, USA
| | - Ioan Andricioaei
- Department of Chemistry, University of California, Irvine, CA 92697
| | - Bruno Antonny
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia-Antipolis and Centre National de la Recherche Scientifique, UMR 7275, 06560 Valbonne, France
| | - Daniel Baum
- Department of Visualization and Data Analysis, Zuse Institute Berlin, Takustrasse 7, D-14195 Berlin, Germany
| | - Grace Brannigan
- Center for Computational and Integrative Biology and Department of Physics, Rutgers University-Camden, Camden, NJ, USA
| | - Nicolae-Viorel Buchete
- School of Physics and Complex and Adaptive Systems Laboratory, University College Dublin, Belfield, Dublin 4, Ireland
| | | | - Lucie Delemotte
- Institute of Computational and Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Coral del Val
- Department of Artificial Intelligence, University of Granada, E-18071 Granada, Spain
| | - Ran Friedman
- Linnæus University, Department of Chemistry and Biomedical Sciences & Centre for Biomaterials Chemistry, 391 82 Kalmar, Sweden
| | - Paraskevi Gkeka
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527, Athens, Greece
| | - Hans-Christian Hege
- Department of Visualization and Data Analysis, Zuse Institute Berlin, Takustrasse 7, D-14195 Berlin, Germany
| | - Jérôme Hénin
- Laboratoire de Biochimie Théorique, IBPC and CNRS, Paris, France
| | - Marina A. Kasimova
- Université de Lorraine, SRSMC, UMR 7565, Vandoeuvre-lès-Nancy, F-54500, France
- Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Antonios Kolocouris
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Athens, Panepistimioupolis-Zografou, 15771 Athens, Greece
| | - Michael L. Klein
- Institute of Computational and Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Syma Khalid
- Department of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - M. Joanne Lemieux
- Department of Biochemistry, Faculty of Medicine & Dentistry, Membrane Protein Disease Research Group, and Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7
| | - Norbert Lindow
- Department of Visualization and Data Analysis, Zuse Institute Berlin, Takustrasse 7, D-14195 Berlin, Germany
| | - Mahua Roy
- Department of Chemistry, University of California, Irvine
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, IMIM (Hospital del Mar Medical Research Institute), Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - Mounir Tarek
- Université de Lorraine, SRSMC, UMR 7565, Vandoeuvre-lès-Nancy, F-54500, France
- CNRS, SRSMC, UMR 7565, Vandoeuvre-lès-Nancy, F-54500, France
| | - Florentina Tofoleanu
- School of Physics and Complex and Adaptive Systems Laboratory, University College Dublin, Belfield, Dublin 4, Ireland
| | - Stefano Vanni
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia-Antipolis and Centre National de la Recherche Scientifique, UMR 7275, 06560 Valbonne, France
| | - Sinisa Urban
- Johns Hopkins University School of Medicine, Howard Hughes Medical Institute, Department of Molecular Biology & Genetics, 725 N. Wolfe Street, 507 Preclinical Teaching Building, Baltimore, MD 21205, USA
| | - David J. Wales
- University Chemical Laboratories, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Jeremy C. Smith
- Oak Ridge National Laboratory, PO BOX 2008 MS6309, Oak Ridge, TN 37831-6309, USA
| | - Ana-Nicoleta Bondar
- Theoretical Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| |
Collapse
|
24
|
Abstract
The heterotrimeric SecY translocon complex is required for the cotranslational assembly of membrane proteins in bacteria and archaea. The insertion of transmembrane (TM) segments during nascent-chain passage through the translocon is generally viewed as a simple partitioning process between the water-filled translocon and membrane lipid bilayer, suggesting that partitioning is driven by the hydrophobic effect. Indeed, the apparent free energy of partitioning of unnatural aliphatic amino acids on TM segments is proportional to accessible surface area, which is a hallmark of the hydrophobic effect [Öjemalm K, et al. (2011) Proc Natl Acad Sci USA 108(31):E359-E364]. However, the apparent partitioning solvation parameter is less than one-half the value expected for simple bulk partitioning, suggesting that the water in the translocon departs from bulk behavior. To examine the state of water in a SecY translocon complex embedded in a lipid bilayer, we carried out all-atom molecular-dynamics simulations of the Pyrococcus furiosus SecYE, which was determined to be in a "primed" open state [Egea PF, Stroud RM (2010) Proc Natl Acad Sci USA 107(40):17182-17187]. Remarkably, SecYE remained in this state throughout our 450-ns simulation. Water molecules within SecY exhibited anomalous diffusion, had highly retarded rotational dynamics, and aligned their dipoles along the SecY transmembrane axis. The translocon is therefore not a simple water-filled pore, which raises the question of how anomalous water behavior affects the mechanism of translocon function and, more generally, the partitioning of hydrophobic molecules. Because large water-filled cavities are found in many membrane proteins, our findings may have broader implications.
Collapse
|
25
|
Reithinger JH, Yim C, Kim S, Lee H, Kim H. Structural and functional profiling of the lateral gate of the Sec61 translocon. J Biol Chem 2014; 289:15845-55. [PMID: 24753257 PMCID: PMC4140938 DOI: 10.1074/jbc.m113.533794] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 04/17/2014] [Indexed: 11/06/2022] Open
Abstract
The evolutionarily conserved Sec61 translocon mediates the translocation and membrane insertion of proteins. For the integration of proteins into the membrane, the Sec61 translocon opens laterally to the lipid bilayer. Previous studies suggest that the lateral opening of the channel is mediated by the helices TM2b and TM7 of a pore-forming subunit of the Sec61 translocon. To map key residues in TM2b and TM7 in yeast Sec61 that modulate lateral gating activity, we performed alanine scanning and in vivo site-directed photocross-linking experiments. Alanine scanning identified two groups of critical residues in the lateral gate, one group that leads to defects in the translocation and membrane insertion of proteins and the other group that causes faster translocation and facilitates membrane insertion. Photocross-linking data show that the former group of residues is located at the interface of the lateral gate. Furthermore, different degrees of defects for the membrane insertion of single- and double-spanning membrane proteins were observed depending on whether the mutations were located in TM2b or TM7. These results demonstrate subtle differences in the molecular mechanism of the signal sequence binding/opening of the lateral gate and membrane insertion of a succeeding transmembrane segment in a polytopic membrane protein.
Collapse
Affiliation(s)
- Johannes H Reithinger
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Chewon Yim
- From the School of Biological Sciences, Seoul National University, Seoul 151-747, South Korea and
| | - Sungmin Kim
- From the School of Biological Sciences, Seoul National University, Seoul 151-747, South Korea and
| | - Hunsang Lee
- From the School of Biological Sciences, Seoul National University, Seoul 151-747, South Korea and
| | - Hyun Kim
- From the School of Biological Sciences, Seoul National University, Seoul 151-747, South Korea and
| |
Collapse
|
26
|
Coupling between inter-helical hydrogen bonding and water dynamics in a proton transporter. J Struct Biol 2014; 186:95-111. [DOI: 10.1016/j.jsb.2014.02.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/13/2014] [Accepted: 02/15/2014] [Indexed: 12/20/2022]
|
27
|
Del Val C, Royuela-Flor J, Milenkovic S, Bondar AN. Channelrhodopsins: a bioinformatics perspective. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:643-55. [PMID: 24252597 DOI: 10.1016/j.bbabio.2013.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 11/07/2013] [Accepted: 11/09/2013] [Indexed: 12/28/2022]
Abstract
Channelrhodopsins are microbial-type rhodopsins that function as light-gated cation channels. Understanding how the detailed architecture of the protein governs its dynamics and specificity for ions is important, because it has the potential to assist in designing site-directed channelrhodopsin mutants for specific neurobiology applications. Here we use bioinformatics methods to derive accurate alignments of channelrhodopsin sequences, assess the sequence conservation patterns and find conserved motifs in channelrhodopsins, and use homology modeling to construct three-dimensional structural models of channelrhodopsins. The analyses reveal that helices C and D of channelrhodopsins contain Cys, Ser, and Thr groups that can engage in both intra- and inter-helical hydrogen bonds. We propose that these polar groups participate in inter-helical hydrogen-bonding clusters important for the protein conformational dynamics and for the local water interactions. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Coral Del Val
- Department of Computer Science and Artificial Intelligence, University of Granada, 18071 Granada, Spain.
| | - José Royuela-Flor
- Theoretical Molecular Biophysics, Department of Physics, Freie Universitaet Berlin, 14195 Berlin, Germany
| | - Stefan Milenkovic
- Theoretical Molecular Biophysics, Department of Physics, Freie Universitaet Berlin, 14195 Berlin, Germany
| | - Ana-Nicoleta Bondar
- Theoretical Molecular Biophysics, Department of Physics, Freie Universitaet Berlin, 14195 Berlin, Germany.
| |
Collapse
|
28
|
Hizlan D, Robson A, Whitehouse S, Gold VA, Vonck J, Mills D, Kühlbrandt W, Collinson I. Structure of the SecY complex unlocked by a preprotein mimic. Cell Rep 2013; 1:21-8. [PMID: 22576621 PMCID: PMC3333808 DOI: 10.1016/j.celrep.2011.11.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 10/06/2011] [Accepted: 11/08/2011] [Indexed: 11/26/2022] Open
Abstract
The Sec complex forms the core of a conserved machinery coordinating the passage of proteins across or into biological membranes. The bacterial complex SecYEG interacts with the ATPase SecA or translating ribosomes to translocate secretory and membrane proteins accordingly. A truncated preprotein competes with the physiological full-length substrate and primes the protein-channel complex for transport. We have employed electron cryomicroscopy of two-dimensional crystals to determine the structure of the complex unlocked by the preprotein. Its visualization in the native environment of the membrane preserves the active arrangement of SecYEG dimers, in which only one of the two channels is occupied by the polypeptide substrate. The signal sequence could be identified along with the corresponding conformational changes in SecY, including relocation of transmembrane segments 2b and 7 as well as the plug, which presumably then promote channel opening. Therefore, we propose that the structure describes the translocon unlocked by preprotein and poised for protein translocation.
Collapse
Affiliation(s)
- Dilem Hizlan
- Max Planck Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Straße 3, D-60438 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Trueman SF, Mandon EC, Gilmore R. A gating motif in the translocation channel sets the hydrophobicity threshold for signal sequence function. ACTA ACUST UNITED AC 2013; 199:907-18. [PMID: 23229898 PMCID: PMC3518225 DOI: 10.1083/jcb.201207163] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An apolar patch and a polar cluster in the protein translocation channel cooperate to discriminate between signal sequences and less hydrophobic segments of cytosolic proteins. A critical event in protein translocation across the endoplasmic reticulum is the structural transition between the closed and open conformations of Sec61, the eukaryotic translocation channel. Channel opening allows signal sequence insertion into a gap between the N- and C-terminal halves of Sec61. We have identified a gating motif that regulates the transition between the closed and open channel conformations. Polar amino acid substitutions in the gating motif cause a gain-of-function phenotype that permits translocation of precursors with marginally hydrophobic signal sequences. In contrast, hydrophobic substitutions at certain residues in the gating motif cause a protein translocation defect. We conclude that the gating motif establishes the hydrophobicity threshold for functional insertion of a signal sequence into the Sec61 complex, thereby allowing the wild-type translocation channel to discriminate between authentic signal sequences and the less hydrophobic amino acid segments in cytosolic proteins. Bioinformatic analysis indicates that the gating motif is conserved between eubacterial and archaebacterial SecY and eukaryotic Sec61.
Collapse
Affiliation(s)
- Steven F Trueman
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | |
Collapse
|
30
|
Breaking on through to the other side: protein export through the bacterial Sec system. Biochem J 2013; 449:25-37. [PMID: 23216251 DOI: 10.1042/bj20121227] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
More than one-third of cellular proteomes traffic into and across membranes. Bacteria have invented several sophisticated secretion systems that guide various proteins to extracytoplasmic locations and in some cases inject them directly into hosts. Of these, the Sec system is ubiquitous, essential and by far the best understood. Secretory polypeptides are sorted from cytoplasmic ones initially due to characteristic signal peptides. Then they are targeted to the plasma membrane by chaperones/pilots. The translocase, a dynamic nanomachine, lies at the centre of this process and acts as a protein-conducting channel with a unique property; allowing both forward transfer of secretory proteins but also lateral release into the lipid bilayer with high fidelity and efficiency. This process, tightly orchestrated at the expense of energy, ensures fundamental cell processes such as membrane biogenesis, cell division, motility, nutrient uptake and environmental sensing. In the present review, we examine this fascinating process, summarizing current knowledge on the structure, function and mechanics of the Sec pathway.
Collapse
|
31
|
Abstract
The elucidation of the molecular nature of the translocon-assisted protein insertion is a challenging problem due to the complexity of this process. Furthermore, the limited availability of crucial structural information makes it hard to interpret the hints about the insertion mechanism provided by biochemical studies. At present, it is not practical to explore the insertion process by brute force simulation approaches due to the extremely lengthy process and very complex landscape. Thus, this work uses our previously developed coarse-grained model and explores the energetics of the membrane insertion and translocation paths. The trend in the calculated free-energy profiles is verified by evaluating the correlation between the calculated and observed effect of mutations as well as the effect of inverting the signal peptide that reflects the "positive-inside" rule. Furthermore, the effect of the tentative opening induced by the ribosome is found to reduce the kinetic barrier. Significantly, the trend of the forward and backward energy barriers provides a powerful way to analyze key energetics information. Thus, it is concluded that the insertion process is most likely a nonequilibrium process. Moreover, we provided a general formulation for the analysis of the elusive apparent membrane insertion energy, ΔG(app), and conclude that this important parameter is unlikely to correspond to the free-energy difference between the translocon and membrane. Our formulation seems to resolve the controversy about ΔG(app) for Arg.
Collapse
|
32
|
Zhang B, Miller TF. Long-timescale dynamics and regulation of Sec-facilitated protein translocation. Cell Rep 2012; 2:927-37. [PMID: 23084746 PMCID: PMC3483636 DOI: 10.1016/j.celrep.2012.08.039] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 07/21/2012] [Accepted: 08/31/2012] [Indexed: 01/11/2023] Open
Abstract
We present a coarse-grained modeling approach that spans the nanosecond- to minute-timescale dynamics of cotranslational protein translocation. The method enables direct simulation of both integral membrane protein topogenesis and transmembrane domain (TM) stop-transfer efficiency. Simulations reveal multiple kinetic pathways for protein integration, including a mechanism in which the nascent protein undergoes slow-timescale reorientation, or flipping, in the confined environment of the translocon channel. Competition among these pathways gives rise to the experimentally observed dependence of protein topology on ribosomal translation rate and protein length. We further demonstrate that sigmoidal dependence of stop-transfer efficiency on TM hydrophobicity arises from local equilibration of the TM across the translocon lateral gate, and it is predicted that slowing ribosomal translation yields decreased stop-transfer efficiency in long proteins. This work reveals the balance between equilibrium and nonequilibrium processes in protein targeting, and it provides insight into the molecular regulation of the Sec translocon.
Collapse
Affiliation(s)
- Bin Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
33
|
Prediction of Lipid-Binding Regions in Cytoplasmic and Extracellular Loops of Membrane Proteins as Exemplified by Protein Translocation Membrane Proteins. J Membr Biol 2012; 246:21-9. [DOI: 10.1007/s00232-012-9498-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 08/18/2012] [Indexed: 02/07/2023]
|
34
|
Zhang B, Miller TF. Direct simulation of early-stage Sec-facilitated protein translocation. J Am Chem Soc 2012; 134:13700-7. [PMID: 22852862 DOI: 10.1021/ja3034526] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Direct simulations reveal key mechanistic features of early-stage protein translocation and membrane integration via the Sec-translocon channel. We present a novel computational protocol that combines non-equilibrium growth of the nascent protein with microsecond timescale molecular dynamics trajectories. Analysis of multiple, long timescale simulations elucidates molecular features of protein insertion into the translocon, including signal-peptide docking at the translocon lateral gate (LG), large lengthscale conformational rearrangement of the translocon LG helices, and partial membrane integration of hydrophobic nascent-protein sequences. Furthermore, the simulations demonstrate the role of specific molecular interactions in the regulation of protein secretion, membrane integration, and integral membrane protein topology. Salt-bridge contacts between the nascent-protein N-terminus, cytosolic translocon residues, and phospholipid head groups are shown to favor conformations of the nascent protein upon early-stage insertion that are consistent with the Type II (N(cyt)/C(exo)) integral membrane protein topology, and extended hydrophobic contacts between the nascent protein and the membrane lipid bilayer are shown to stabilize configurations that are consistent with the Type III (N(exo)/C(cyt)) topology. These results provide a detailed, mechanistic basis for understanding experimentally observed correlations between integral membrane protein topology, translocon mutagenesis, and nascent-protein sequence.
Collapse
Affiliation(s)
- Bin Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA
| | | |
Collapse
|
35
|
Del Val C, White SH, Bondar AN. Ser/Thr motifs in transmembrane proteins: conservation patterns and effects on local protein structure and dynamics. J Membr Biol 2012; 245:717-30. [PMID: 22836667 DOI: 10.1007/s00232-012-9452-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 06/04/2012] [Indexed: 01/16/2023]
Abstract
We combined systematic bioinformatics analyses and molecular dynamics simulations to assess the conservation patterns of Ser and Thr motifs in membrane proteins, and the effect of such motifs on the structure and dynamics of α-helical transmembrane (TM) segments. We find that Ser/Thr motifs are often present in β-barrel TM proteins. At least one Ser/Thr motif is present in almost half of the sequences of α-helical proteins analyzed here. The extensive bioinformatics analyses and inspection of protein structures led to the identification of molecular transporters with noticeable numbers of Ser/Thr motifs within the TM region. Given the energetic penalty for burying multiple Ser/Thr groups in the membrane hydrophobic core, the observation of transporters with multiple membrane-embedded Ser/Thr is intriguing and raises the question of how the presence of multiple Ser/Thr affects protein local structure and dynamics. Molecular dynamics simulations of four different Ser-containing model TM peptides indicate that backbone hydrogen bonding of membrane-buried Ser/Thr hydroxyl groups can significantly change the local structure and dynamics of the helix. Ser groups located close to the membrane interface can hydrogen bond to solvent water instead of protein backbone, leading to an enhanced local solvation of the peptide.
Collapse
Affiliation(s)
- Coral Del Val
- Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain.
| | | | | |
Collapse
|
36
|
Lycklama A Nijeholt JA, Driessen AJM. The bacterial Sec-translocase: structure and mechanism. Philos Trans R Soc Lond B Biol Sci 2012; 367:1016-28. [PMID: 22411975 DOI: 10.1098/rstb.2011.0201] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Most bacterial secretory proteins pass across the cytoplasmic membrane via the translocase, which consists of a protein-conducting channel SecYEG and an ATP-dependent motor protein SecA. The ancillary SecDF membrane protein complex promotes the final stages of translocation. Recent years have seen a major advance in our understanding of the structural and biochemical basis of protein translocation, and this has led to a detailed model of the translocation mechanism.
Collapse
Affiliation(s)
- Jelger A Lycklama A Nijeholt
- Department of Molecular Microbiology, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands.
| | | |
Collapse
|
37
|
Extended protein/water H-bond networks in photosynthetic water oxidation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1177-90. [PMID: 22503827 DOI: 10.1016/j.bbabio.2012.03.031] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/19/2012] [Accepted: 03/28/2012] [Indexed: 11/23/2022]
Abstract
Oxidation of water molecules in the photosystem II (PSII) protein complex proceeds at the manganese-calcium complex, which is buried deeply in the lumenal part of PSII. Understanding the PSII function requires knowledge of the intricate coupling between the water-oxidation chemistry and the dynamic proton management by the PSII protein matrix. Here we assess the structural basis for long-distance proton transfer in the interior of PSII and for proton management at its surface. Using the recent high-resolution crystal structure of PSII, we investigate prominent hydrogen-bonded networks of the lumenal side of PSII. This analysis leads to the identification of clusters of polar groups and hydrogen-bonded networks consisting of amino acid residues and water molecules. We suggest that long-distance proton transfer and conformational coupling is facilitated by hydrogen-bonded networks that often involve more than one protein subunit. Proton-storing Asp/Glu dyads, such as the D1-E65/D2-E312 dyad connected to a complex water-wire network, may be particularly important for coupling protonation states to the protein conformation. Clusters of carboxylic amino acids could participate in proton management at the lumenal surface of PSII. We propose that rather than having a classical hydrophobic protein interior, the lumenal side of PSII resembles a complex polyelectrolyte with evolutionary optimized hydrogen-bonding networks. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
|
38
|
Lycklama A Nijeholt JA, Wu ZC, Driessen AJM. Conformational dynamics of the plug domain of the SecYEG protein-conducting channel. J Biol Chem 2011; 286:43881-43890. [PMID: 22033919 PMCID: PMC3243504 DOI: 10.1074/jbc.m111.297507] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 10/20/2011] [Indexed: 11/06/2022] Open
Abstract
The central pore of the SecYEG preprotein-conducting channel is closed at the periplasmic face of the membrane by a plug domain. To study its conformational dynamics, the plug was labeled site-specifically with an environment-sensitive fluorophore. In the presence of a stable preprotein translocation inter-mediate, the SecY plug showed an enhanced solvent exposure consistent with a displacement from the hydrophobic central pore region. In contrast, binding and insertion of a ribosome-bound nascent membrane protein did not alter the plug conformation. These data indicate different plug dynamics depending on the ligand bound state of the SecYEG channel.
Collapse
Affiliation(s)
- Jelger A Lycklama A Nijeholt
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology institute, and the Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Zht Cheng Wu
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology institute, and the Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Arnold J M Driessen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology institute, and the Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
39
|
Fernández-Ballester G, Fernández-Carvajal A, González-Ros JM, Ferrer-Montiel A. Ionic channels as targets for drug design: a review on computational methods. Pharmaceutics 2011; 3:932-53. [PMID: 24309315 PMCID: PMC3857065 DOI: 10.3390/pharmaceutics3040932] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 10/26/2011] [Accepted: 11/30/2011] [Indexed: 01/21/2023] Open
Abstract
Ion channels are involved in a broad range of physiological and pathological processes. The implications of ion channels in a variety of diseases, including diabetes, epilepsy, hypertension, cancer and even chronic pain, have signaled them as pivotal drug targets. Thus far, drugs targeting ion channels were developed without detailed knowledge of the molecular interactions between the lead compounds and the target channels. In recent years, however, the emergence of high-resolution structures for a plethora of ion channels paves the way for computer-assisted drug design. Currently, available functional and structural data provide an attractive platform to generate models that combine substrate-based and protein-based approaches. In silico approaches include homology modeling, quantitative structure-activity relationships, virtual ligand screening, similarity and pharmacophore searching, data mining, and data analysis tools. These strategies have been frequently used in the discovery and optimization of novel molecules with enhanced affinity and specificity for the selected therapeutic targets. In this review we summarize recent applications of in silico methods that are being used for the development of ion channel drugs.
Collapse
|
40
|
Bondar AN, White SH. Hydrogen bond dynamics in membrane protein function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:942-50. [PMID: 22178866 DOI: 10.1016/j.bbamem.2011.11.035] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 11/22/2011] [Accepted: 11/30/2011] [Indexed: 11/30/2022]
Abstract
Changes in inter-helical hydrogen bonding are associated with the conformational dynamics of membrane proteins. The function of the protein depends on the surrounding lipid membrane. Here we review through specific examples how dynamical hydrogen bonds can ensure an elegant and efficient mechanism of long-distance intra-protein and protein-lipid coupling, contributing to the stability of discrete protein conformational substates and to rapid propagation of structural perturbations. This article is part of a Special Issue entitled: Protein Folding in Membranes.
Collapse
Affiliation(s)
- Ana-Nicoleta Bondar
- Theoretical Molecular Biophysics, Freie Universität Berlin, Department of Physics, Arnimallee 14, 14195 Berlin, Germany.
| | | |
Collapse
|
41
|
Dalal K, Duong F. The SecY complex: conducting the orchestra of protein translocation. Trends Cell Biol 2011; 21:506-14. [DOI: 10.1016/j.tcb.2011.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 04/11/2011] [Accepted: 04/18/2011] [Indexed: 10/18/2022]
|
42
|
Trueman SF, Mandon EC, Gilmore R. Translocation channel gating kinetics balances protein translocation efficiency with signal sequence recognition fidelity. Mol Biol Cell 2011; 22:2983-93. [PMID: 21737680 PMCID: PMC3164448 DOI: 10.1091/mbc.e11-01-0070] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The transition between the closed and open conformations of the protein translocation channel controls the efficiency of protein translocation and the fidelity of signal sequence recognition. Mutations in Sec61 that delay or accelerate this structural transition have antagonistic effects on translocation efficiency and fidelity. The transition between the closed and open conformations of the Sec61 complex permits nascent protein insertion into the translocation channel. A critical event in this structural transition is the opening of the lateral translocon gate that is formed by four transmembrane (TM) spans (TM2, TM3, TM7, and TM8 in Sec61p) to expose the signal sequence–binding site. To gain mechanistic insight into lateral gate opening, mutations were introduced into a lumenal loop (L7) that connects TM7 and TM8. The sec61 L7 mutants were found to have defects in both the posttranslational and cotranslational translocation pathways due to a kinetic delay in channel gating. The translocation defect caused by L7 mutations could be suppressed by the prl class of sec61 alleles, which reduce the fidelity of signal sequence recognition. The prl mutants are proposed to act by destabilizing the closed conformation of the translocation channel. Our results indicate that the equilibrium between the open and closed conformations of the protein translocation channel maintains a balance between translocation activity and signal sequence recognition fidelity.
Collapse
Affiliation(s)
- Steven F Trueman
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605-2324, USA
| | | | | |
Collapse
|
43
|
Schow EV, Freites JA, Myint PC, Bernsel A, von Heijne G, White SH, Tobias DJ. Arginine in membranes: the connection between molecular dynamics simulations and translocon-mediated insertion experiments. J Membr Biol 2010; 239:35-48. [PMID: 21127848 PMCID: PMC3030942 DOI: 10.1007/s00232-010-9330-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 11/05/2010] [Indexed: 01/09/2023]
Abstract
Several laboratories have carried out molecular dynamics (MD) simulations of arginine interactions with lipid bilayers and found that the energetic cost of placing arginine in lipid bilayers is an order of magnitude greater than observed in molecular biology experiments in which Arg-containing transmembrane helices are inserted across the endoplasmic reticulum membrane by the Sec61 translocon. We attempt here to reconcile the results of the two approaches. We first present MD simulations of guanidinium groups alone in lipid bilayers, and then, to mimic the molecular biology experiments, we present simulations of hydrophobic helices containing single Arg residues at different positions along the helix. We discuss the simulation results in the context of molecular biology results and show that the energetic discrepancy is reduced, but not eliminated, by considering free energy differences between Arg at the interface and at the center of the model helices. The reduction occurs because Arg snorkeling to the interface prevents Arg from residing in the bilayer center where the energetic cost of desolvation is highest. We then show that the problem with MD simulations is that they measure water-to-bilayer free energies, whereas the molecular biology experiments measure the energetics of partitioning from translocon to bilayer, which raises the fundamental question of the relationship between water-to-bilayer and water-to-translocon partitioning. We present two thermodynamic scenarios as a foundation for reconciliation of the simulation and molecular biology results. The simplest scenario is that translocon-to-bilayer partitioning is independent of water-to-bilayer partitioning; there is no thermodynamic cycle connecting the two paths.
Collapse
Affiliation(s)
- Eric V. Schow
- Department of Chemistry, University of California, Irvine, CA 92697 USA
- Department of Physics, University of California, Irvine, CA 92697 USA
| | - J. Alfredo Freites
- Department of Chemistry, University of California, Irvine, CA 92697 USA
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697 USA
| | - Philip C. Myint
- Department of Bioengineering, University of California, Irvine, CA 92697 USA
| | - Andreas Bernsel
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Stephen H. White
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697 USA
- Center for Biomembrane Systems, University of California, Irvine, CA 92697 USA
| | - Douglas J. Tobias
- Department of Chemistry, University of California, Irvine, CA 92697 USA
- Center for Biomembrane Systems, University of California, Irvine, CA 92697 USA
| |
Collapse
|
44
|
Lateral opening of a translocon upon entry of protein suggests the mechanism of insertion into membranes. Proc Natl Acad Sci U S A 2010; 107:17182-7. [PMID: 20855604 DOI: 10.1073/pnas.1012556107] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structure of the protein-translocating channel SecYEβ from Pyrococcus furiosus at 3.1-Å resolution suggests a mechanism for chaperoning transmembrane regions of a protein substrate during its lateral delivery into the lipid bilayer. Cytoplasmic segments of SecY orient the C-terminal α-helical region of another molecule, suggesting a general binding mode and a promiscuous guiding surface capable of accommodating diverse nascent chains at the exit of the ribosomal tunnel. To accommodate this putative nascent chain mimic, the cytoplasmic vestibule widens, and a lateral exit portal is opened throughout its entire length for partition of transmembrane helical segments to the lipid bilayer. In this primed channel, the central plug still occludes the pore while the lateral gate is opened, enabling topological arbitration during early protein insertion. In vivo, a 15 amino acid truncation of the cytoplasmic C-terminal helix of SecY fails to rescue a secY-deficient strain, supporting the essential role of this helix as suggested from the structure.
Collapse
|