1
|
The structure and evolution of eukaryotic chaperonin-containing TCP-1 and its mechanism that folds actin into a protein spring. Biochem J 2018; 475:3009-3034. [DOI: 10.1042/bcj20170378] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/16/2018] [Accepted: 08/28/2018] [Indexed: 12/15/2022]
Abstract
Actin is folded to its native state in eukaryotic cytosol by the sequential allosteric mechanism of the chaperonin-containing TCP-1 (CCT). The CCT machine is a double-ring ATPase built from eight related subunits, CCT1–CCT8. Non-native actin interacts with specific subunits and is annealed slowly through sequential binding and hydrolysis of ATP around and across the ring system. CCT releases a folded but soft ATP-G-actin monomer which is trapped 80 kJ/mol uphill on the folding energy surface by its ATP-Mg2+/Ca2+ clasp. The energy landscape can be re-explored in the actin filament, F-actin, because ATP hydrolysis produces dehydrated and more compact ADP-actin monomers which, upon application of force and strain, are opened and closed like the elements of a spring. Actin-based myosin motor systems underpin a multitude of force generation processes in cells and muscles. We propose that the water surface of F-actin acts as a low-binding energy, directional waveguide which is recognized specifically by the myosin lever-arm domain before the system engages to form the tight-binding actomyosin complex. Such a water-mediated recognition process between actin and myosin would enable symmetry breaking through fast, low energy initial binding events. The origin of chaperonins and the subsequent emergence of the CCT–actin system in LECA (last eukaryotic common ancestor) point to the critical role of CCT in facilitating phagocytosis during early eukaryotic evolution and the transition from the bacterial world. The coupling of CCT-folding fluxes to the cell cycle, cell size control networks and cancer are discussed together with directions for further research.
Collapse
|
2
|
Molugu SK, Hildenbrand ZL, Morgan DG, Sherman MB, He L, Georgopoulos C, Sernova NV, Kurochkina LP, Mesyanzhinov VV, Miroshnikov KA, Bernal RA. Ring Separation Highlights the Protein-Folding Mechanism Used by the Phage EL-Encoded Chaperonin. Structure 2016; 24:537-546. [PMID: 26996960 DOI: 10.1016/j.str.2016.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/01/2016] [Accepted: 02/17/2016] [Indexed: 01/05/2023]
Abstract
Chaperonins are ubiquitous, ATP-dependent protein-folding molecular machines that are essential for all forms of life. Bacteriophage φEL encodes its own chaperonin to presumably fold exceedingly large viral proteins via profoundly different nucleotide-binding conformations. Our structural investigations indicate that ATP likely binds to both rings simultaneously and that a misfolded substrate acts as the trigger for ATP hydrolysis. More importantly, the φEL complex dissociates into two single rings resulting from an evolutionarily altered residue in the highly conserved ATP-binding pocket. Conformational changes also more than double the volume of the single-ring internal chamber such that larger viral proteins are accommodated. This is illustrated by the fact that φEL is capable of folding β-galactosidase, a 116-kDa protein. Collectively, the architecture and protein-folding mechanism of the φEL chaperonin are significantly different from those observed in group I and II chaperonins.
Collapse
Affiliation(s)
- Sudheer K Molugu
- Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968, USA
| | | | - David Gene Morgan
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Michael B Sherman
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Lilin He
- Neutron Scattering Science Division, Oak Ridge National Laboratory, C23, Building 7964K, Oak Ridge, TN 37831-6430, USA
| | - Costa Georgopoulos
- Department of Biochemistry, University of Utah, 4100 EEJMRB, Salt Lake City, UT 84112-5650, USA
| | - Natalia V Sernova
- Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoi Karetny Pereulok, 19, Moscow 127994, Russia
| | - Lidia P Kurochkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Vadim V Mesyanzhinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Konstantin A Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Ricardo A Bernal
- Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968, USA.
| |
Collapse
|