1
|
de Ruyck J, Roos G, Krammer EM, Prévost M, Lensink MF, Bouckaert J. Molecular Mechanisms of Drug Action: X-ray Crystallography at the Basis of Structure-based and Ligand-based Drug Design. BIOPHYSICAL TECHNIQUES IN DRUG DISCOVERY 2017. [DOI: 10.1039/9781788010016-00067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Biological systems are recognized for their complexity and diversity and yet we sometimes manage to cure disease via the administration of small chemical drug molecules. At first, active ingredients were found accidentally and at that time there did not seem a need to understand the molecular mechanism of drug functioning. However, the urge to develop new drugs, the discovery of multipurpose characteristics of some drugs, and the necessity to remove unwanted secondary drug effects, incited the pharmaceutical sector to rationalize drug design. This did not deliver success in the years directly following its conception, but it drove the evolution of biochemical and biophysical techniques to enable the characterization of molecular mechanisms of drug action. Functional and structural data generated by biochemists and structural biologists became a valuable input for computational biologists, chemists and bioinformaticians who could extrapolate in silico, based on variations in the structural aspects of the drug molecules and their target. This opened up new avenues with much improved predictive power because of a clearer perception of the role and impact of structural elements in the intrinsic affinity and specificity of the drug for its target. In this chapter, we review how crystal structures can initiate structure-based drug design in general.
Collapse
Affiliation(s)
- J. de Ruyck
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille 50 Avenue de Halley 59658 Villeneuve d'Ascq France
| | - G. Roos
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille 50 Avenue de Halley 59658 Villeneuve d'Ascq France
- Université Libre de Bruxelles (ULB), Structure and Function of Biological Membranes CP 206/2, Boulevard du Triomphe, 1050 Brussels Belgium
| | - E.-M. Krammer
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille 50 Avenue de Halley 59658 Villeneuve d'Ascq France
- Université Libre de Bruxelles (ULB), Structure and Function of Biological Membranes CP 206/2, Boulevard du Triomphe, 1050 Brussels Belgium
| | - M. Prévost
- Université Libre de Bruxelles (ULB), Structure and Function of Biological Membranes CP 206/2, Boulevard du Triomphe, 1050 Brussels Belgium
| | - M. F. Lensink
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille 50 Avenue de Halley 59658 Villeneuve d'Ascq France
| | - J. Bouckaert
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille 50 Avenue de Halley 59658 Villeneuve d'Ascq France
| |
Collapse
|
2
|
Elshahawi SI, Ramelot TA, Seetharaman J, Chen J, Singh S, Yang Y, Pederson K, Kharel MK, Xiao R, Lew S, Yennamalli RM, Miller MD, Wang F, Tong L, Montelione GT, Kennedy MA, Bingman CA, Zhu H, Phillips GN, Thorson JS. Structure-guided functional characterization of enediyne self-sacrifice resistance proteins, CalU16 and CalU19. ACS Chem Biol 2014; 9:2347-58. [PMID: 25079510 PMCID: PMC4201346 DOI: 10.1021/cb500327m] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Calicheamicin γ1I (1)
is an enediyne antitumor compound produced by Micromonospora
echinospora spp. calichensis, and its biosynthetic gene cluster
has been previously reported. Despite extensive analysis and biochemical
study, several genes in the biosynthetic gene cluster of 1 remain functionally unassigned. Using a structural genomics approach
and biochemical characterization, two proteins encoded by genes from
the 1 biosynthetic gene cluster assigned as “unknowns”,
CalU16 and CalU19, were characterized. Structure analysis revealed
that they possess the STeroidogenic Acute Regulatory protein related
lipid Transfer (START) domain known mainly to bind and transport lipids
and previously identified as the structural signature of the enediyne
self-resistance protein CalC. Subsequent study revealed calU16 and calU19 to confer resistance to 1, and reminiscent of the prototype CalC, both CalU16 and CalU19 were
cleaved by 1in vitro. Through site-directed
mutagenesis and mass spectrometry, we identified the site of cleavage
in each protein and characterized their function in conferring resistance
against 1. This report emphasizes the importance of structural
genomics as a powerful tool for the functional annotation of unknown
proteins.
Collapse
Affiliation(s)
- Sherif I. Elshahawi
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Center
for Pharmaceutical Research and Innovation (CPRI), College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Theresa A. Ramelot
- Department
of Chemistry and Biochemistry, Northeast Structural Genomics Consortium, Miami University, Oxford, Ohio 45056, United States
| | - Jayaraman Seetharaman
- Department
of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, New York 10027, United States
| | - Jing Chen
- Department of Molecular and Cellular Biochemistry & Center for Structural Biology, College of Medicine, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Shanteri Singh
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Center
for Pharmaceutical Research and Innovation (CPRI), College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Yunhuang Yang
- Department
of Chemistry and Biochemistry, Northeast Structural Genomics Consortium, Miami University, Oxford, Ohio 45056, United States
| | - Kari Pederson
- Complex Carbohydrate
Research Center, Northeast Structural Genomics Consortium, University of Georgia, Athens, Georgia 30602, United States
| | - Madan K. Kharel
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Center
for Pharmaceutical Research and Innovation (CPRI), College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Rong Xiao
- Center
for Advanced Biotechnology and Medicine, Department of Molecular Biology
and Biochemistry, and Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Scott Lew
- Department
of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, New York 10027, United States
| | - Ragothaman M. Yennamalli
- Department
of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, United States
| | - Mitchell D. Miller
- Department
of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, United States
| | - Fengbin Wang
- Department
of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, United States
| | - Liang Tong
- Department
of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, New York 10027, United States
| | - Gaetano T. Montelione
- Center
for Advanced Biotechnology and Medicine, Department of Molecular Biology
and Biochemistry, and Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
- Department
of Biochemistry, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Michael A. Kennedy
- Department
of Chemistry and Biochemistry, Northeast Structural Genomics Consortium, Miami University, Oxford, Ohio 45056, United States
| | - Craig A. Bingman
- Department
of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Haining Zhu
- Department of Molecular and Cellular Biochemistry & Center for Structural Biology, College of Medicine, University of Kentucky, Lexington, Kentucky 40536, United States
| | - George N. Phillips
- Department
of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, United States
| | - Jon S. Thorson
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Center
for Pharmaceutical Research and Innovation (CPRI), College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| |
Collapse
|