1
|
Tainer JA, Tsutakawa SE. RNA sculpting by the primordial Helix-clasp-Helix-Strand-Loop (HcH-SL) motif enforces chemical recognition enabling diverse KH domain functions. J Biol Chem 2025; 301:108474. [PMID: 40185232 DOI: 10.1016/j.jbc.2025.108474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 04/07/2025] Open
Abstract
In all domains of life, the ancient K homology (KH) domain superfamily is central to RNA processes including splicing, transcription, posttranscriptional gene regulation, signaling, and translation. Proteins with 1 to 15 KH domains bind single-strand (ss) RNA or DNA with base sequence specificity. Here, we examine over 40 KH domain experimental structures in complex with nucleic acid (NA) and define a novel Helix-clasp-Helix-Strand-Loop (HcH-SL) NA recognition motif binding 4 to 5 nucleotides using 10 to 18 residues. HcH-SL includes and extends the Gly-X-X-Gly (GXXG) signature sequence "clasp" that brings together two helices as an ∼90° helical corner. The first helix primarily provides side chain interactions to unstack and sculpt 2 to 3 bases on the 5' end for recognition of sequence and chemistry. The clasp and second helix amino dipole recognize a central phosphodiester. Following the helical corner, a beta strand and its loop extension recognize the two 3' nucleotides, primarily through main chain interactions. The HcH-SL structural motif forms a right-handed triangle and concave functional interface for NA interaction that unexpectedly splays four bound nucleotides into conformations matching RNA recognition motif (RRM) bound RNA structures. Evolutionary analyses and its ability to recognize base sequence and chemistry make HcH-SL a primordial NA binding motif distinguished by its binding mode from other NA structural recognition motifs: helix-turn-helix, helix-hairpin-helix, and beta strand RRM motifs. Combined results explain its vulnerability as a viral hijacking target and how mutations and expression defects lead to diverse diseases spanning cancer, cardiovascular, fragile X syndrome, neurodevelopmental disorders, and paraneoplastic disease.
Collapse
Affiliation(s)
- John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
| | - Susan E Tsutakawa
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
| |
Collapse
|
2
|
Tessmer I. The roles of non-productive complexes of DNA repair proteins with DNA lesions. DNA Repair (Amst) 2023; 129:103542. [PMID: 37453245 DOI: 10.1016/j.dnarep.2023.103542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
A multitude of different types of lesions is continuously introduced into the DNA inside our cells, and their rapid and efficient repair is fundamentally important for the maintenance of genomic stability and cellular viability. This is achieved by a number of DNA repair systems that each involve different protein factors and employ versatile strategies to target different types of DNA lesions. Intriguingly, specialized DNA repair proteins have also evolved to form non-functional complexes with their target lesions. These proteins allow the marking of innocuous lesions to render them visible for DNA repair systems and can serve to directly recruit DNA repair cascades. Moreover, they also provide links between different DNA repair mechanisms or even between DNA lesions and transcription regulation. I will focus here in particular on recent findings from single molecule analyses on the alkyltransferase-like protein ATL, which is believed to initiate nucleotide excision repair (NER) of non-native NER target lesions, and the base excision repair (BER) enzyme hOGG1, which recruits the oncogene transcription factor Myc to gene promoters under oxidative stress.
Collapse
Affiliation(s)
- Ingrid Tessmer
- Rudolf Virchow Center, University of Würzburg, Josef Schneider Str. 2, 97080 Würzburg, Germany
| |
Collapse
|
3
|
Hoitsma NM, Whitaker AM, Beckwitt EC, Jang S, Agarwal P, Van Houten B, Freudenthal BD. AP-endonuclease 1 sculpts DNA through an anchoring tyrosine residue on the DNA intercalating loop. Nucleic Acids Res 2020; 48:7345-7355. [PMID: 32542366 PMCID: PMC7367167 DOI: 10.1093/nar/gkaa496] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023] Open
Abstract
Base excision repair (BER) maintains genomic stability through the repair of DNA damage. Within BER, AP-endonuclease 1 (APE1) is a multifunctional enzyme that processes DNA intermediates through its backbone cleavage activity. To accomplish these repair activities, APE1 must recognize and accommodate several diverse DNA substrates. This is hypothesized to occur through a DNA sculpting mechanism where structural adjustments of the DNA substrate are imposed by the protein; however, how APE1 uniquely sculpts each substrate within a single rigid active site remains unclear. Here, we utilize structural and biochemical approaches to probe the DNA sculpting mechanism of APE1, specifically by characterizing a protein loop that intercalates the minor groove of the DNA (termed the intercalating loop). Pre-steady-state kinetics reveal a tyrosine residue within the intercalating loop (Y269) that is critical for AP-endonuclease activity. Using X-ray crystallography and molecular dynamics simulations, we determined the Y269 residue acts to anchor the intercalating loop on abasic DNA. Atomic force microscopy reveals the Y269 residue is required for proper DNA bending by APE1, providing evidence for the importance of this mechanism. We conclude that this previously unappreciated tyrosine residue is key to anchoring the intercalating loop and stabilizing the DNA in the APE1 active site.
Collapse
Affiliation(s)
- Nicole M Hoitsma
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Amy M Whitaker
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Emily C Beckwitt
- Program in Molecular Biophysics and Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Laboratory of DNA Replication, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Sunbok Jang
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Pratul K Agarwal
- Department of Physiological Sciences and High-Performance Computing Center, Oklahoma State University, Stillwater, OK 74078, USA
| | - Bennett Van Houten
- Program in Molecular Biophysics and Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
4
|
Senoo T, Kawano S, Ikeda S. DNA base excision repair and nucleotide excision repair synergistically contribute to survival of stationary-phase cells of the fission yeast Schizosaccharomyces pombe. Cell Biol Int 2016; 41:276-286. [PMID: 28032397 DOI: 10.1002/cbin.10722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/21/2016] [Indexed: 11/05/2022]
Abstract
Defects of genome maintenance may causally contribute to aging. In general, base excision repair (BER) is involved in the repair of subtle base lesions and AP sites, and bulky helix-distorting lesions are restored by nucleotide excision repair (NER). Here, we measured the chronological lifespan (CLS) of BER- and NER-deficient mutants of the fission yeast Schizosaccharomyces pombe, and observed the aging process of cells. The CLS of the nth1 (gene for DNA glycosylase/AP lyase) mutant and the rad16 (a homolog of human XPF) mutant were slightly shorter than that of the wild-type (WT) strain. However, survival of the nth1Δ rad16Δ double mutant was significantly reduced after entry into the stationary phase. Deletion of rad16 in an AP endonuclease mutant apn2Δ also accelerated chronological aging. These results indicate that BER and NER synergistically contribute to genome maintenance in non-dividing cells. Reactive oxygen species (ROS) accumulated in cells during the stationary phase, and nth1Δ rad16Δ cells produced more ROS than WT cells. High mutation frequencies and nuclear DNA fragmentation were observed in nth1Δ rad16Δ stationary-phase cells concurrent with apoptotic-like cell death. Calorie restriction significantly reduced the level of ROS in the stationary phase and extended the CLS of nth1Δ rad16Δ cells. Therefore, ROS production critically affects the survival of the DNA repair mutant during chronological aging.
Collapse
Affiliation(s)
- Takanori Senoo
- Department of Biochemistry, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Shinji Kawano
- Department of Biochemistry, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Shogo Ikeda
- Department of Biochemistry, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| |
Collapse
|
5
|
Mullins EA, Shi R, Parsons ZD, Yuen PK, David SS, Igarashi Y, Eichman BF. The DNA glycosylase AlkD uses a non-base-flipping mechanism to excise bulky lesions. Nature 2015; 527:254-8. [PMID: 26524531 DOI: 10.1038/nature15728] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/18/2015] [Indexed: 01/10/2023]
Abstract
Threats to genomic integrity arising from DNA damage are mitigated by DNA glycosylases, which initiate the base excision repair pathway by locating and excising aberrant nucleobases. How these enzymes find small modifications within the genome is a current area of intensive research. A hallmark of these and other DNA repair enzymes is their use of base flipping to sequester modified nucleotides from the DNA helix and into an active site pocket. Consequently, base flipping is generally regarded as an essential aspect of lesion recognition and a necessary precursor to base excision. Here we present the first, to our knowledge, DNA glycosylase mechanism that does not require base flipping for either binding or catalysis. Using the DNA glycosylase AlkD from Bacillus cereus, we crystallographically monitored excision of an alkylpurine substrate as a function of time, and reconstructed the steps along the reaction coordinate through structures representing substrate, intermediate and product complexes. Instead of directly interacting with the damaged nucleobase, AlkD recognizes aberrant base pairs through interactions with the phosphoribose backbone, while the lesion remains stacked in the DNA duplex. Quantum mechanical calculations revealed that these contacts include catalytic charge-dipole and CH-π interactions that preferentially stabilize the transition state. We show in vitro and in vivo how this unique means of recognition and catalysis enables AlkD to repair large adducts formed by yatakemycin, a member of the duocarmycin family of antimicrobial natural products exploited in bacterial warfare and chemotherapeutic trials. Bulky adducts of this or any type are not excised by DNA glycosylases that use a traditional base-flipping mechanism. Hence, these findings represent a new model for DNA repair and provide insights into catalysis of base excision.
Collapse
Affiliation(s)
- Elwood A Mullins
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Rongxin Shi
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Zachary D Parsons
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Philip K Yuen
- Department of Chemistry, University of California, Davis, California 95616, USA
| | - Sheila S David
- Department of Chemistry, University of California, Davis, California 95616, USA
| | - Yasuhiro Igarashi
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Brandt F Eichman
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, USA
| |
Collapse
|
6
|
Yurenko YP, Novotný J, Sklenář V, Marek R. Substituting CF2 for O4' in Components of Nucleic Acids: Towards Systems with Reduced Propensity to Form Abasic Lesions. Chemistry 2015; 21:17933-43. [PMID: 26493955 DOI: 10.1002/chem.201502977] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Indexed: 01/22/2023]
Abstract
Intrinsic structural features and energetics of nucleotides containing variously fluorinated sugars as potential building blocks of DNA duplexes and quadruplexes are explored systematically using the modern methods of density functional theory (DFT) and quantum chemical topology (QCT). Our results suggest that fluorination at the 2'-β or 2'-α,β positions somewhat stabilizes in vacuo the AI relative to the BI conformations. In contrast, substitution of the CF2 group for the O4' atom (O4'-CF2 modification) leads to a preference of the BI relative to AI DNA-like conformers. All the studied modifications result in a noticeable increase in the stability of the glycosidic bond [estimated by the relaxed force constants (RFC) approach], with particularly encouraging results for the O4'-CF2 derivative. Consequently, the O4'-CF2 modified systems are suggested and explored as promising scaffolds for the development of duplex and quadruplex structures with reduced propensity to form abasic lesions and to undergo DNA damage.
Collapse
Affiliation(s)
- Yevgen P Yurenko
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno (Czech Republic).
| | - Jan Novotný
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno (Czech Republic)
| | - Vladimir Sklenář
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno (Czech Republic).,National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno (Czech Republic).,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno (Czech Republic)
| | - Radek Marek
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno (Czech Republic). .,National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno (Czech Republic). .,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno (Czech Republic).
| |
Collapse
|
7
|
Mullins EA, Shi R, Kotsch LA, Eichman BF. A New Family of HEAT-Like Repeat Proteins Lacking a Critical Substrate Recognition Motif Present in Related DNA Glycosylases. PLoS One 2015; 10:e0127733. [PMID: 25978435 PMCID: PMC4433238 DOI: 10.1371/journal.pone.0127733] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/20/2015] [Indexed: 12/21/2022] Open
Abstract
DNA glycosylases are important repair enzymes that eliminate a diverse array of aberrant nucleobases from the genomes of all organisms. Individual bacterial species often contain multiple paralogs of a particular glycosylase, yet the molecular and functional distinctions between these paralogs are not well understood. The recently discovered HEAT-like repeat (HLR) DNA glycosylases are distributed across all domains of life and are distinct in their specificity for cationic alkylpurines and mechanism of damage recognition. Here, we describe a number of phylogenetically diverse bacterial species with two orthologs of the HLR DNA glycosylase AlkD. One ortholog, which we designate AlkD2, is substantially less conserved. The crystal structure of Streptococcus mutans AlkD2 is remarkably similar to AlkD but lacks the only helix present in AlkD that penetrates the DNA minor groove. We show that AlkD2 possesses only weak DNA binding affinity and lacks alkylpurine excision activity. Mutational analysis of residues along this DNA binding helix in AlkD substantially reduced binding affinity for damaged DNA, for the first time revealing the importance of this structural motif for damage recognition by HLR glycosylases.
Collapse
Affiliation(s)
- Elwood A. Mullins
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Rongxin Shi
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Lyle A. Kotsch
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Brandt F. Eichman
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
8
|
Lafrance-Vanasse J, Williams GJ, Tainer JA. Envisioning the dynamics and flexibility of Mre11-Rad50-Nbs1 complex to decipher its roles in DNA replication and repair. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 117:182-193. [PMID: 25576492 PMCID: PMC4417436 DOI: 10.1016/j.pbiomolbio.2014.12.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 12/20/2014] [Accepted: 12/28/2014] [Indexed: 12/23/2022]
Abstract
The Mre11-Rad50-Nbs1 (MRN) complex is a dynamic macromolecular machine that acts in the first steps of DNA double strand break repair, and each of its components has intrinsic dynamics and flexibility properties that are directly linked with their functions. As a result, deciphering the functional structural biology of the MRN complex is driving novel and integrated technologies to define the dynamic structural biology of protein machinery interacting with DNA. Rad50 promotes dramatic long-range allostery through its coiled-coil and zinc-hook domains. Its ATPase activity drives dynamic transitions between monomeric and dimeric forms that can be modulated with mutants modifying the ATPase rate to control end joining versus resection activities. The biological functions of Mre11's dual endo- and exonuclease activities in repair pathway choice were enigmatic until recently, when they were unveiled by the development of specific nuclease inhibitors. Mre11 dimer flexibility, which may be regulated in cells to control MRN function, suggests new inhibitor design strategies for cancer intervention. Nbs1 has FHA and BRCT domains to bind multiple interaction partners that further regulate MRN. One of them, CtIP, modulates the Mre11 excision activity for homologous recombination repair. Overall, these combined properties suggest novel therapeutic strategies. Furthermore, they collectively help to explain how MRN regulates DNA repair pathway choice with implications for improving the design and analysis of cancer clinical trials that employ DNA damaging agents or target the DNA damage response.
Collapse
Affiliation(s)
| | | | - John A Tainer
- Life Science Division, 1 Cyclotron Road, Berkeley, CA 94720, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
9
|
Archaeal genome guardians give insights into eukaryotic DNA replication and damage response proteins. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2014; 2014:206735. [PMID: 24701133 PMCID: PMC3950489 DOI: 10.1155/2014/206735] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/27/2013] [Accepted: 11/29/2013] [Indexed: 12/28/2022]
Abstract
As the third domain of life, archaea, like the eukarya and bacteria, must have robust DNA replication and repair complexes to ensure genome fidelity. Archaea moreover display a breadth of unique habitats and characteristics, and structural biologists increasingly appreciate these features. As archaea include extremophiles that can withstand diverse environmental stresses, they provide fundamental systems for understanding enzymes and pathways critical to genome integrity and stress responses. Such archaeal extremophiles provide critical data on the periodic table for life as well as on the biochemical, geochemical, and physical limitations to adaptive strategies allowing organisms to thrive under environmental stress relevant to determining the boundaries for life as we know it. Specifically, archaeal enzyme structures have informed the architecture and mechanisms of key DNA repair proteins and complexes. With added abilities to temperature-trap flexible complexes and reveal core domains of transient and dynamic complexes, these structures provide insights into mechanisms of maintaining genome integrity despite extreme environmental stress. The DNA damage response protein structures noted in this review therefore inform the basis for genome integrity in the face of environmental stress, with implications for all domains of life as well as for biomanufacturing, astrobiology, and medicine.
Collapse
|