1
|
Quartey JNK, Goss DJ. eIF3d and eIF4G2 mediate an alternative mechanism of cap-dependent but eIF4E-independent translation initiation. J Biol Chem 2025; 301:108317. [PMID: 39971159 PMCID: PMC11968281 DOI: 10.1016/j.jbc.2025.108317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/21/2025] Open
Abstract
Initiation of translation for the majority of eukaryotic mRNAs is mediated by a 5' cap structure to which the eukaryotic initiation factor 4E (eIF4E) binds. Inhibition of the activity of eIF4E by 4EBP-1 does not prevent the translation of a number of cellular capped mRNAs, indicative of the existence of previously unexplored mechanisms for the translation of these capped mRNAs without the requirement of eIF4E. eIF4G2, also known as death-associated protein 5 (DAP5), a homolog of eIFGI that lacks the eIF4E binding domain, utilizes eIF3d (a subunit of eIF3) to promote the translation of a subset of these mRNAs. Using fluorescence anisotropy-based equilibrium binding studies, we provide the first quantitative evidence of the recruitment of eIF3d as well as eIF3d and eIFG2 complexes to a subset of human mRNAs. Our quantitative studies demonstrate the critical role a fully methylated 5' mRNA cap structure plays in the recognition and recruitment of eIF3d, as well as the eIF3d and eIFG2 complex. By using luciferase reporter-based in vitro translation assays, we further show that cap-recognition ability correlates with the efficiency of translation of these mRNAs. Essentially, by preferably utilizing eIF3d and eIFG2, specific mRNA subsets are still able to translate in a cap-dependent manner even when eIF4E is sequestered. Our findings offer new insight into the use of eIF3d and eIF4G2 as an alternative for growth and survival under conditions of cellular stress. This novel mechanism of translation may offer new targets for therapeutic regulation of mRNA translation.
Collapse
Affiliation(s)
- Jacob N K Quartey
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York, USA; Department of Chemistry, Hunter College of the City University of New York, New York, New York, USA
| | - Dixie J Goss
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York, USA; Department of Chemistry, Hunter College of the City University of New York, New York, New York, USA; Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York, USA.
| |
Collapse
|
2
|
Shuvalova E, Shuvalov A, Al Sheikh W, Ivanov A, Biziaev N, Egorova T, Dmitriev S, Terenin I, Alkalaeva E. Eukaryotic initiation factors eIF4F and eIF4B promote translation termination upon closed-loop formation. Nucleic Acids Res 2025; 53:gkaf161. [PMID: 40066881 PMCID: PMC11894530 DOI: 10.1093/nar/gkaf161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/11/2025] [Accepted: 02/18/2024] [Indexed: 03/15/2025] Open
Abstract
Eukaryotic translation initiation factor 4F (eIF4F), comprising subunits eIF4G, eIF4E, and eIF4A, plays a pivotal role in the 48S preinitiation complex assembly and ribosomal scanning. Additionally, eIF4B enhances the helicase activity of eIF4A. eIF4F also interacts with poly (A)-binding protein (PABP) bound to the poly (A) tail of messenger RNA (mRNA), thereby forming a closed-loop structure. PABP, in turn, interacts with eukaryotic release factor 3 (eRF3), stimulating translation termination. Here, we employed a reconstituted mammalian system to directly demonstrate that eIF4F potently enhances translation termination. Specifically, eIF4A and eIF4B promote the loading of eRF1 into the A site of the ribosome, while eIF4G1 stimulates the GTPase activity of eRF3 and facilitates the dissociation of release factors following peptide release. We also identified MIF4G as the minimal domain required for this activity and showed that eIF4G2/DAP5 can also promote termination. Our findings provide compelling evidence that the closed-loop mRNA structure facilitates translation termination, with PABP and eIF4F directly involved in this process.
Collapse
Affiliation(s)
- Ekaterina Shuvalova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey Shuvalov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Walaa Al Sheikh
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander V Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Nikita Biziaev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Tatiana V Egorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Elena Alkalaeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
3
|
Whittaker A, Goss DJ. Modeling the structure and DAP5-binding site of the FGF-9 5'-UTR RNA utilized in cap-independent translation. RNA (NEW YORK, N.Y.) 2024; 30:1184-1198. [PMID: 38866431 PMCID: PMC11331406 DOI: 10.1261/rna.080013.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
Cap-independent or eukaryotic initiation factor (eIF) 4E-independent, translation initiation in eukaryotes requires scaffolding protein eIF4G or its homolog, death-associated protein 5 (DAP5). eIF4G associates with the 40S ribosomal subunit, recruiting the ribosome to the RNA transcript. A subset of RNA transcripts, such as fibroblast growth factor 9 (FGF-9), contain 5' untranslated regions (5' UTRs) that directly bind DAP5 or eIF4GI. For viral mRNA, eIF recruitment usually utilizes RNA structure, such as a pseudoknot or stem-loops, and the RNA-helicase eIF4A is required for DAP5- or 4G-mediated translation, suggesting these 5' UTRs are structured. However, for cellular IRES-like translation, no consensus RNA structures or sequences have yet been identified for eIF binding. However, the DAP5-binding site within the FGF-9 5' UTR is unknown. Moreover, DAP5 binds to other, dissimilar 5' UTRs, some of which require an unpaired, accessible 5' end to stimulate cap-independent translation. Using SHAPE-seq, we modeled the 186 nt FGF-9 5'-UTR RNA's complex secondary structure in vitro. Further, DAP5 footprinting, toeprinting, and UV cross-linking experiments identify DAP5-RNA interactions. Modeling of FGF-9 5'-UTR tertiary structure aligns DAP5-interacting nucleotides on one face of the predicted structure. We propose that RNA structure involving tertiary folding, rather than a conserved sequence or secondary structure, acts as a DAP5-binding site. DAP5 appears to contact nucleotides near the start codon. Our findings offer a new perspective in the hunt for cap-independent translational enhancers. Structural, rather than sequence-specific, eIF-binding sites may act as attractive chemotherapeutic targets or as dosage tools for mRNA-based therapies.
Collapse
Affiliation(s)
- Amanda Whittaker
- PhD Program in Biochemistry, The Graduate Center, CUNY, New York, New York 10016, USA
- Department of Chemistry, Hunter College, CUNY, New York, New York 10065, USA
| | - Dixie J Goss
- PhD Program in Biochemistry, The Graduate Center, CUNY, New York, New York 10016, USA
- Department of Chemistry, Hunter College, CUNY, New York, New York 10065, USA
| |
Collapse
|
4
|
Mahé M, Rios-Fuller T, Katsara O, Schneider RJ. Non-canonical mRNA translation initiation in cell stress and cancer. NAR Cancer 2024; 6:zcae026. [PMID: 38828390 PMCID: PMC11140632 DOI: 10.1093/narcan/zcae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/08/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024] Open
Abstract
The now well described canonical mRNA translation initiation mechanism of m7G 'cap' recognition by cap-binding protein eIF4E and assembly of the canonical pre-initiation complex consisting of scaffolding protein eIF4G and RNA helicase eIF4A has historically been thought to describe all cellular mRNA translation. However, the past decade has seen the discovery of alternative mechanisms to canonical eIF4E mediated mRNA translation initiation. Studies have shown that non-canonical alternate mechanisms of cellular mRNA translation initiation, whether cap-dependent or independent, serve to provide selective translation of mRNAs under cell physiological and pathological stress conditions. These conditions typically involve the global downregulation of canonical eIF4E1/cap-mediated mRNA translation, and selective translational reprogramming of the cell proteome, as occurs in tumor development and malignant progression. Cancer cells must be able to maintain physiological plasticity to acquire a migratory phenotype, invade tissues, metastasize, survive and adapt to severe microenvironmental stress conditions that involve inhibition of canonical mRNA translation initiation. In this review we describe the emerging, important role of non-canonical, alternate mechanisms of mRNA translation initiation in cancer, particularly in adaptation to stresses and the phenotypic cell fate changes involved in malignant progression and metastasis. These alternate translation initiation mechanisms provide new targets for oncology therapeutics development.
Collapse
Affiliation(s)
- Mélanie Mahé
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Tiffany Rios-Fuller
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Olga Katsara
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Robert J Schneider
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
5
|
Meril S, Bahlsen M, Eisenstein M, Savidor A, Levin Y, Bialik S, Pietrokovski S, Kimchi A. Loss-of-function cancer-linked mutations in the EIF4G2 non-canonical translation initiation factor. Life Sci Alliance 2024; 7:e202302338. [PMID: 38129098 PMCID: PMC10746786 DOI: 10.26508/lsa.202302338] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Tumor cells often exploit the protein translation machinery, resulting in enhanced protein expression essential for tumor growth. Since canonical translation initiation is often suppressed because of cell stress in the tumor microenvironment, non-canonical translation initiation mechanisms become particularly important for shaping the tumor proteome. EIF4G2 is a non-canonical translation initiation factor that mediates internal ribosome entry site (IRES)- and uORF-dependent initiation mechanisms, which can be used to modulate protein expression in cancer. Here, we explored the contribution of EIF4G2 to cancer by screening the COSMIC database for EIF4G2 somatic mutations in cancer patients. Functional examination of missense mutations revealed deleterious effects on EIF4G2 protein-protein interactions and, importantly, on its ability to mediate non-canonical translation initiation. Specifically, one mutation, R178Q, led to reductions in protein expression and near-complete loss of function. Two other mutations within the MIF4G domain specifically affected EIF4G2's ability to mediate IRES-dependent translation initiation but not that of target mRNAs with uORFs. These results shed light on both the structure-function of EIF4G2 and its potential tumor suppressor effects.
Collapse
Affiliation(s)
- Sara Meril
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Marcela Bahlsen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Miriam Eisenstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Savidor
- The de Botton Institute for Protein Profiling of the Nancy and Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), Weizmann Institute of Science, Rehovot, Israel
| | - Yishai Levin
- The de Botton Institute for Protein Profiling of the Nancy and Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), Weizmann Institute of Science, Rehovot, Israel
| | - Shani Bialik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Shmuel Pietrokovski
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Kimchi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
6
|
Lang N, Jagtap PKA, Hennig J. Regulation and mechanisms of action of RNA helicases. RNA Biol 2024; 21:24-38. [PMID: 39435974 PMCID: PMC11498004 DOI: 10.1080/15476286.2024.2415801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
RNA helicases are an evolutionary conserved class of nucleoside triphosphate dependent enzymes found in all kingdoms of life. Their cellular functions range from transcription regulation up to maintaining genomic stability and viral defence. As dysregulation of RNA helicases has been shown to be involved in several cancers and various diseases, RNA helicases are potential therapeutic targets. However, for selective targeting of a specific RNA helicase, it is crucial to develop a detailed understanding about its dynamics and regulation on a molecular and structural level. Deciphering unique features of specific RNA helicases is of fundamental importance not only for future drug development but also to deepen our understanding of RNA helicase regulation and function in cellular processes. In this review, we discuss recent insights into regulation mechanisms of RNA helicases and highlight models which demonstrate the interplay between helicase structure and their functions.
Collapse
Affiliation(s)
- Nina Lang
- Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany
- Molecular Systems Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| | - Pravin Kumar Ankush Jagtap
- Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany
- Molecular Systems Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| | - Janosch Hennig
- Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany
- Molecular Systems Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| |
Collapse
|
7
|
Whittaker A, Goss DJ. Modeling the Structure and DAP5 Binding Site of a Cap-Independent Translational Enhancer mRNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.542187. [PMID: 37333283 PMCID: PMC10274784 DOI: 10.1101/2023.06.07.542187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Cap-independent translation initiation in eukaryotes involves initiation factor (eIF) binding to a transcript's 5' untranslated region (UTR). Internal-ribosome-entry-site (IRES)-like cap-independent translation initiation does not require a free 5' end for eIF binding, as eIFs recruit the ribosome to or near the start codon. For viral mRNA, recruitment usually utilizes RNA structure, such as a pseudoknot. However, for cellular mRNA cap-independent translation, no consensus RNA structures or sequences have yet been identified for eIF binding. Fibroblast-growth factor 9 (FGF-9) is a member of a subset of mRNA that are cap-independently upregulated in breast and colorectal cancer cells using this IRES-like method. Death-associated factor 5 (DAP5), an eIF4GI homolog, binds directly to the FGF-9 5' UTR to initiate translation. However, the DAP5 binding site within the FGF-9 5' UTR is unknown. Moreover, DAP5 binds to other, dissimilar 5' UTRs, some of which need a free 5' end to stimulate cap-independent translation. We propose that a particular RNA structure involving tertiary folding, rather than a conserved sequence or secondary structure, acts as a DAP5 binding site. Using SHAPE-seq, we modeled the FGF-9 5' UTR RNA's complex secondary and tertiary structure in vitro. Further, DAP5 footprinting and toeprinting experiments show DAP5's preference for one face of this structure. DAP5 binding appears to stabilize a higher-energy RNA fold that frees the 5' end to solvent and brings the start codon close to the recruited ribosome. Our findings offer a fresh perspective in the hunt for cap-independent translational enhancers. Structural, rather than sequence-specific, eIF binding sites may act as attractive chemotherapeutic targets or as dosage tools for mRNA-based therapies.
Collapse
|
8
|
Shestakova ED, Smirnova VV, Shatsky IN, Terenin IM. Specific mechanisms of translation initiation in higher eukaryotes: the eIF4G2 story. RNA (NEW YORK, N.Y.) 2023; 29:282-299. [PMID: 36517212 PMCID: PMC9945437 DOI: 10.1261/rna.079462.122] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The eukaryotic initiation factor 4G2 (eIF4G2, DAP5, Nat1, p97) was discovered in 1997. Over the past two decades, dozens of papers have presented contradictory data on eIF4G2 function. Since its identification, eIF4G2 has been assumed to participate in noncanonical translation initiation mechanisms, but recent results indicate that it can be involved in scanning as well. In particular, eIF4G2 provides leaky scanning through some upstream open reading frames (uORFs), which are typical for long 5' UTRs of mRNAs from higher eukaryotes. It is likely the protein can also help the ribosome overcome other impediments during scanning of the 5' UTRs of animal mRNAs. This may explain the need for eIF4G2 in higher eukaryotes, as many mRNAs that encode regulatory proteins have rather long and highly structured 5' UTRs. Additionally, they often bind to various proteins, which also hamper the movement of scanning ribosomes. This review discusses the suggested mechanisms of eIF4G2 action, denotes obscure or inconsistent results, and proposes ways to uncover other fundamental mechanisms in which this important protein factor may be involved in higher eukaryotes.
Collapse
Affiliation(s)
- Ekaterina D Shestakova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Victoria V Smirnova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Sirius University of Science and Technology, Sochi 354349, Russia
| |
Collapse
|
9
|
Liu Y, Cui J, Hoffman AR, Hu JF. Eukaryotic translation initiation factor eIF4G2 opens novel paths for protein synthesis in development, apoptosis and cell differentiation. Cell Prolif 2023; 56:e13367. [PMID: 36547008 PMCID: PMC9977666 DOI: 10.1111/cpr.13367] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 12/24/2022] Open
Abstract
Protein translation is a critical regulatory event involved in nearly all physiological and pathological processes. Eukaryotic translation initiation factors are dedicated to translation initiation, the most highly regulated stage of protein synthesis. Eukaryotic translation initiation factor 4G2 (eIF4G2, also called p97, NAT1 and DAP5), an eIF4G family member that lacks the binding sites for 5' cap binding protein eIF4E, is widely considered to be a key factor for internal ribosome entry sites (IRESs)-mediated cap-independent translation. However, recent findings demonstrate that eIF4G2 also supports many other translation initiation pathways. In this review, we summarize the role of eIF4G2 in a variety of cap-independent and -dependent translation initiation events. Additionally, we also update recent findings regarding the role of eIF4G2 in apoptosis, cell survival, cell differentiation and embryonic development. These studies reveal an emerging new picture of how eIF4G2 utilizes diverse translational mechanisms to regulate gene expression.
Collapse
Affiliation(s)
- Yudi Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital, Jilin University, Changchun, Jilin, P.R. China
| | - Jiuwei Cui
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital, Jilin University, Changchun, Jilin, P.R. China
| | - Andrew R Hoffman
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Ji-Fan Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital, Jilin University, Changchun, Jilin, P.R. China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, California, USA
| |
Collapse
|
10
|
Friedrich D, Marintchev A, Arthanari H. The metaphorical swiss army knife: The multitude and diverse roles of HEAT domains in eukaryotic translation initiation. Nucleic Acids Res 2022; 50:5424-5442. [PMID: 35552740 PMCID: PMC9177959 DOI: 10.1093/nar/gkac342] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022] Open
Abstract
Biomolecular associations forged by specific interaction among structural scaffolds are fundamental to the control and regulation of cell processes. One such structural architecture, characterized by HEAT repeats, is involved in a multitude of cellular processes, including intracellular transport, signaling, and protein synthesis. Here, we review the multitude and versatility of HEAT domains in the regulation of mRNA translation initiation. Structural and cellular biology approaches, as well as several biophysical studies, have revealed that a number of HEAT domain-mediated interactions with a host of protein factors and RNAs coordinate translation initiation. We describe the basic structural architecture of HEAT domains and briefly introduce examples of the cellular processes they dictate, including nuclear transport by importin and RNA degradation. We then focus on proteins in the translation initiation system featuring HEAT domains, specifically the HEAT domains of eIF4G, DAP5, eIF5, and eIF2Bϵ. Comparative analysis of their remarkably versatile interactions, including protein-protein and protein-RNA recognition, reveal the functional importance of flexible regions within these HEAT domains. Here we outline how HEAT domains orchestrate fundamental aspects of translation initiation and highlight open mechanistic questions in the area.
Collapse
Affiliation(s)
- Daniel Friedrich
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Assen Marintchev
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, USA
| | - Haribabu Arthanari
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Phosphorylation of Eukaryotic Initiation Factor 4G1 (eIF4G1) at Ser1147 Is Specific for eIF4G1 Bound to eIF4E in Delayed Neuronal Death after Ischemia. Int J Mol Sci 2022; 23:ijms23031830. [PMID: 35163752 PMCID: PMC8836865 DOI: 10.3390/ijms23031830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/24/2022] [Accepted: 01/30/2022] [Indexed: 11/26/2022] Open
Abstract
Ischemic strokes are caused by a reduction in cerebral blood flow and both the ischemic period and subsequent reperfusion induce brain injury, with different tissue damage depending on the severity of the ischemic insult, its duration, and the particular areas of the brain affected. In those areas vulnerable to cerebral ischemia, the inhibition of protein translation is an essential process of the cellular response leading to delayed neuronal death. In particular, translation initiation is rate-limiting for protein synthesis and the eukaryotic initiation factor (eIF) 4F complex is indispensable for cap-dependent protein translation. In the eIF4F complex, eIF4G is a scaffolding protein that provides docking sites for the assembly of eIF4A and eIF4E, binding to the cap structure of the mRNA and stabilizing all proteins of the complex. The eIF4F complex constituents, eIF4A, eIF4E, and eIF4G, participate in translation regulation by their phosphorylation at specific sites under cellular stress conditions, modulating the activity of the cap-binding complex and protein translation. This work investigates the phosphorylation of eIF4G1 involved in the eIF4E/eIF4G1 association complex, and their regulation in ischemia-reperfusion (IR) as a stress-inducing condition. IR was induced in an animal model of transient cerebral ischemia and the results were studied in the resistant cortical region and in the vulnerable hippocampal CA1 region. The presented data demonstrate the phosphorylation of eIF4G1 at Ser1147, Ser1185, and Ser1231 in both brain regions and in control and ischemic conditions, being the phosphorylation of eIF4G1 at Ser1147 the only one found in the eIF4E/eIF4G association complex from the cap-containing matrix (m7GTP-Sepharose). In addition, our work reveals the specific modulation of the phosphorylation of eIF4G1 at Ser1147 in the vulnerable region, with increased levels and colocalization with eIF4E in response to IR. These findings contribute to elucidate the molecular mechanism of protein translation regulation that underlies in the balance of cell survival/death during pathophysiological stress, such as cerebral ischemia.
Collapse
|
12
|
Donsbach P, Klostermeier D. Regulation of RNA helicase activity: principles and examples. Biol Chem 2021; 402:529-559. [PMID: 33583161 DOI: 10.1515/hsz-2020-0362] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/29/2021] [Indexed: 12/16/2022]
Abstract
RNA helicases are a ubiquitous class of enzymes involved in virtually all processes of RNA metabolism, from transcription, mRNA splicing and export, mRNA translation and RNA transport to RNA degradation. Although ATP-dependent unwinding of RNA duplexes is their hallmark reaction, not all helicases catalyze unwinding in vitro, and some in vivo functions do not depend on duplex unwinding. RNA helicases are divided into different families that share a common helicase core with a set of helicase signature motives. The core provides the active site for ATP hydrolysis, a binding site for non-sequence-specific interaction with RNA, and in many cases a basal unwinding activity. Its activity is often regulated by flanking domains, by interaction partners, or by self-association. In this review, we summarize the regulatory mechanisms that modulate the activities of the helicase core. Case studies on selected helicases with functions in translation, splicing, and RNA sensing illustrate the various modes and layers of regulation in time and space that harness the helicase core for a wide spectrum of cellular tasks.
Collapse
Affiliation(s)
- Pascal Donsbach
- Institute for Physical Chemistry, University of Münster, Corrensstrasse 30, D-48149Münster, Germany
| | - Dagmar Klostermeier
- Institute for Physical Chemistry, University of Münster, Corrensstrasse 30, D-48149Münster, Germany
| |
Collapse
|
13
|
Translation Regulation by eIF2α Phosphorylation and mTORC1 Signaling Pathways in Non-Communicable Diseases (NCDs). Int J Mol Sci 2020; 21:ijms21155301. [PMID: 32722591 PMCID: PMC7432514 DOI: 10.3390/ijms21155301] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
Non-communicable diseases (NCDs) are medical conditions that, by definition, are non-infectious and non-transmissible among people. Much of current NCDs are generally due to genetic, behavioral, and metabolic risk factors that often include excessive alcohol consumption, smoking, obesity, and untreated elevated blood pressure, and share many common signal transduction pathways. Alterations in cell and physiological signaling and transcriptional control pathways have been well studied in several human NCDs, but these same pathways also regulate expression and function of the protein synthetic machinery and mRNA translation which have been less well investigated. Alterations in expression of specific translation factors, and disruption of canonical mRNA translational regulation, both contribute to the pathology of many NCDs. The two most common pathological alterations that contribute to NCDs discussed in this review will be the regulation of eukaryotic initiation factor 2 (eIF2) by the integrated stress response (ISR) and the mammalian target of rapamycin complex 1 (mTORC1) pathways. Both pathways integrally connect mRNA translation activity to external and internal physiological stimuli. Here, we review the role of ISR control of eIF2 activity and mTORC1 control of cap-mediated mRNA translation in some common NCDs, including Alzheimer’s disease, Parkinson’s disease, stroke, diabetes mellitus, liver cirrhosis, chronic obstructive pulmonary disease (COPD), and cardiac diseases. Our goal is to provide insights that further the understanding as to the important role of translational regulation in the pathogenesis of these diseases.
Collapse
|
14
|
Haizel SA, Bhardwaj U, Gonzalez RL, Mitra S, Goss DJ. 5'-UTR recruitment of the translation initiation factor eIF4GI or DAP5 drives cap-independent translation of a subset of human mRNAs. J Biol Chem 2020; 295:11693-11706. [PMID: 32571876 DOI: 10.1074/jbc.ra120.013678] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/16/2020] [Indexed: 01/04/2023] Open
Abstract
During unfavorable conditions (e.g. tumor hypoxia or viral infection), canonical, cap-dependent mRNA translation is suppressed in human cells. Nonetheless, a subset of physiologically important mRNAs (e.g. hypoxia-inducible factor 1α [HIF-1α], fibroblast growth factor 9 [FGF-9], and p53) is still translated by an unknown, cap-independent mechanism. Additionally, expression levels of eukaryotic translation initiation factor 4GI (eIF4GI) and of its homolog, death-associated protein 5 (DAP5), are elevated. By examining the 5' UTRs of HIF-1α, FGF-9, and p53 mRNAs and using fluorescence anisotropy binding studies, luciferase reporter-based in vitro translation assays, and mutational analyses, we demonstrate here that eIF4GI and DAP5 specifically bind to the 5' UTRs of these cap-independently translated mRNAs. Surprisingly, we found that the eIF4E-binding domain of eIF4GI increases not only the binding affinity but also the selectivity among these mRNAs. We further demonstrate that the affinities of eIF4GI and DAP5 binding to these 5' UTRs correlate with the efficiency with which these factors drive cap-independent translation of these mRNAs. Integrating the results of our binding and translation assays, we conclude that eIF4GI or DAP5 is critical for recruitment of a specific subset of mRNAs to the ribosome, providing mechanistic insight into their cap-independent translation.
Collapse
Affiliation(s)
- Solomon A Haizel
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York, USA.,Department of Chemistry, Hunter College, New York, New York, USA
| | - Usha Bhardwaj
- Department of Chemistry, Hunter College, New York, New York, USA
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia University, New York, New York, USA
| | - Somdeb Mitra
- Department of Chemistry, New York University, New York, New York, USA
| | - Dixie J Goss
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York, USA .,Department of Chemistry, Hunter College, New York, New York, USA.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York, USA
| |
Collapse
|
15
|
Camillo dos Santos LP, de Matos BM, de Maman Ribeiro BC, Zanchin NIT, Guimarães BG. Crystal structure of the MIF4G domain of the Trypanosoma cruzi translation initiation factor EIF4G5. Acta Crystallogr F Struct Biol Commun 2019; 75:738-743. [PMID: 31797815 PMCID: PMC6891579 DOI: 10.1107/s2053230x19015061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/07/2019] [Indexed: 11/10/2022] Open
Abstract
Kinetoplastida, a class of early-diverging eukaryotes that includes pathogenic Trypanosoma and Leishmania species, display key differences in their translation machinery compared with multicellular eukaryotes. One of these differences involves a larger number of genes encoding eIF4E and eIF4G homologs and the interaction pattern between the translation initiation factors. eIF4G is a scaffold protein which interacts with the mRNA cap-binding factor eIF4E, the poly(A)-binding protein, the RNA helicase eIF4A and the eIF3 complex. It contains the so-called middle domain of eIF4G (MIF4G), a multipurpose adaptor involved in different protein-protein and protein-RNA complexes. Here, the crystal structure of the MIF4G domain of T. cruzi EIF4G5 is described at 2.4 Å resolution, which is the first three-dimensional structure of a trypanosomatid MIF4G domain to be reported. Structural comparison with IF4G homologs from other eukaryotes and other MIF4G-containing proteins reveals differences that may account for the specific interaction mechanisms of MIF4G despite its highly conserved overall fold.
Collapse
Affiliation(s)
- Lucca Pietro Camillo dos Santos
- Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Paraná, Brazil
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute, Curitiba, Paraná, Brazil
| | - Bruno Moisés de Matos
- Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Paraná, Brazil
- Biochemistry Postgraduate Program, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | | | - Beatriz Gomes Guimarães
- Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Paraná, Brazil
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute, Curitiba, Paraná, Brazil
- Biochemistry Postgraduate Program, Federal University of Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
16
|
Mishra RK, Datey A, Hussain T. mRNA Recruiting eIF4 Factors Involved in Protein Synthesis and Its Regulation. Biochemistry 2019; 59:34-46. [DOI: 10.1021/acs.biochem.9b00788] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Rishi Kumar Mishra
- Department of Molecular Reproduction, Development and Genetics, Division of Biological Sciences, Indian Institute of Science, Bangalore 560012, India
| | - Ayushi Datey
- Department of Molecular Reproduction, Development and Genetics, Division of Biological Sciences, Indian Institute of Science, Bangalore 560012, India
| | - Tanweer Hussain
- Department of Molecular Reproduction, Development and Genetics, Division of Biological Sciences, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
17
|
Dave P, George B, Raheja H, Rani P, Behera P, Das S. The mammalian host protein DAP5 facilitates the initial round of translation of Coxsackievirus B3 RNA. J Biol Chem 2019; 294:15386-15394. [PMID: 31455634 DOI: 10.1074/jbc.ra119.009000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 08/18/2019] [Indexed: 11/06/2022] Open
Abstract
During enteroviral infections, the canonical translation factor eukaryotic translation initiation factor 4 γ I (eIF4GI) is cleaved by viral protease 2A. The resulting C-terminal fragment is recruited by the viral internal ribosome entry site (IRES) for efficient translation of the viral RNA. However, the 2A protease is not present in the viral capsid and is synthesized only after the initial round of translation. This presents the conundrum of how the initial round of translation occurs in the absence of the C-terminal eIF4GI fragment. Interestingly, the host protein DAP5 (also known as p97, eIF4GIII, and eIF4G2), an isoform of eIF4GI, closely resembles the eIF4GI C-terminal fragment produced after 2A protease-mediated cleavage. Using the Coxsackievirus B3 (CVB3) IRES as a model system, here we demonstrate that DAP5, but not the full-length eIF4GI, is required for CVB3 IRES activity for translation of input viral RNA. Additionally, we show that DAP5 is specifically required by type I IRES but not by type II or type III IRES, in which cleavage of eIF4GI has not been observed. We observed that both DAP5 and C-terminal eIF4GI interact with CVB3 IRES in the same region, but DAP5 exhibits a lower affinity for CVB3 IRES compared with the C-terminal eIF4GI fragment. It appears that DAP5 is required for the initial round of viral RNA translation by sustaining a basal level of CVB3 IRES activity. This activity leads to expression of 2A protease and consequent robust CVB3 IRES-mediated translation by the C-terminal eIF4GI fragment.
Collapse
Affiliation(s)
- Pratik Dave
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Biju George
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Harsha Raheja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Priya Rani
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Padmanava Behera
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India .,Center for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India.,National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| |
Collapse
|
18
|
Raisch T, Sandmeir F, Weichenrieder O, Valkov E, Izaurralde E. Structural and biochemical analysis of a NOT1 MIF4G-like domain of the CCR4-NOT complex. J Struct Biol 2018; 204:388-395. [PMID: 30367941 DOI: 10.1016/j.jsb.2018.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 11/16/2022]
Abstract
The CCR4-NOT complex plays a central role in the regulation of gene expression and degradation of messenger RNAs. The multisubunit complex assembles on the NOT1 protein, which acts as a 'scaffold' and is highly conserved in eukaryotes. NOT1 consists of a series of helical domains that serve as docking sites for other CCR4-NOT subunits. We describe a crystal structure of a connector domain of NOT1 from the thermophilic fungus Chaetomium thermophilum (Ct). Comparative structural analysis indicates that this domain adopts a MIF4G-like fold and we have termed it the MIF4G-C domain. Solution scattering studies indicate that the human MIF4G-C domain likely adopts a very similar fold to the Ct MIF4G-C. MIF4G domains have been described to mediate interactions with DEAD-box helicases such as DDX6. However, comparison of the interfaces of the MIF4G-C with the MIF4G domain of NOT1 that interacts with DDX6 reveals key structural differences that explain why the MIF4G-C does not bind DDX6. We further show that the human MIF4G-C does not interact stably with other subunits of the CCR4-NOT complex. The structural conservation of the MIF4G-C domain suggests that it may have an important but presently undefined role in the CCR4-NOT complex.
Collapse
Affiliation(s)
- Tobias Raisch
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Felix Sandmeir
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Oliver Weichenrieder
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Eugene Valkov
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany.
| | - Elisa Izaurralde
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| |
Collapse
|
19
|
Ribosomal RACK1:Protein Kinase C βII Phosphorylates Eukaryotic Initiation Factor 4G1 at S1093 To Modulate Cap-Dependent and -Independent Translation Initiation. Mol Cell Biol 2018; 38:MCB.00304-18. [PMID: 30012863 DOI: 10.1128/mcb.00304-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 07/09/2018] [Indexed: 11/20/2022] Open
Abstract
Eukaryotic ribosomes contain the high-affinity protein kinase C βII (PKCβII) scaffold, receptor for activated C kinase (RACK1), but its role in protein synthesis control remains unclear. We found that RACK1:PKCβII phosphorylates eukaryotic initiation factor 4G1 (eIF4G1) at S1093 and eIF3a at S1364. We showed that reversible eIF4G(S1093) phosphorylation is involved in a global protein synthesis surge upon PKC-Raf-extracellular signal-regulated kinase 1/2 (ERK1/2) activation and in induction of phorbol ester-responsive transcripts, such as cyclooxygenase 2 (Cox-2) and cyclin-dependent kinase inhibitor (p21Cip1), or in 5' 7-methylguanosine (m7G) cap-independent enterovirus translation. Comparison of mRNA and protein levels revealed that eIF4G1 or RACK1 depletion blocked phorbol ester-induced Cox-2 or p21Cip1 expression mostly at the translational level, whereas PKCβ inhibition reduced them both at the translational and transcript levels. Our findings reveal a physiological role for ribosomal RACK1 in providing the molecular scaffold for PKCβII and its role in coordinating the translational response to PKC-Raf-ERK1/2 activation.
Collapse
|
20
|
Dangwal M, Das S. Identification and Analysis of OVATE Family Members from Genome of the Early Land Plants Provide Insights into Evolutionary History of OFP Family and Function. J Mol Evol 2018; 86:511-530. [PMID: 30206666 DOI: 10.1007/s00239-018-9863-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 09/05/2018] [Indexed: 01/11/2023]
Abstract
Mosses, liverworts, hornworts and lycophytes represent transition stages between the aquatic to terrestrial/land plants. Several morphological and adaptive novelties driven by genomic components including emergence and expansion of new or existing gene families have played a critical role during and after the transition, and contributed towards successful colonization of terrestrial ecosystems. It is crucial to decipher the evolutionary transitions and natural selection on the gene structure and function to understand the emergence of phenotypic and adaptive diversity. Plants at the "transition zone", between aquatic and terrestrial ecosystem, are also the most vulnerable because of climate change and may contain clues for successful mitigation of the challenges of climate change. Identification and comparative analyses of such genetic elements and gene families are few in mosses, liverworts, hornworts and lycophytes. Ovate family proteins (OFPs) are plant-specific transcriptional repressors and are acknowledged for their roles in important growth and developmental processes in land plants, and information about the functional aspects of OFPs in early land plants is fragmentary. As a first step towards addressing this gap, a comprehensive in silico analysis was carried out utilizing publicly available genome sequences of Marchantia polymorpha (Mp), Physcomitrella patens (Pp), Selaginella moellendorffii (Sm) and Sphagnum fallax (Sf). Our analysis led to the identification of 4 MpOFPs, 19 PpOFPs, 6 SmOFPs and 3 SfOFPs. Cross-genera analysis revealed a drastic change in the structure and physiochemical properties in OFPs suggesting functional diversification and genomic plasticity during the evolutionary course. Knowledge gained from this comparative analysis will form the framework towards deciphering and dissection of their developmental and adaptive role/s in early land plants and could provide insights into evolutionary strategies adapted by land plants.
Collapse
Affiliation(s)
| | - Sandip Das
- Department of Botany, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
21
|
de la Parra C, Ernlund A, Alard A, Ruggles K, Ueberheide B, Schneider RJ. A widespread alternate form of cap-dependent mRNA translation initiation. Nat Commun 2018; 9:3068. [PMID: 30076308 PMCID: PMC6076257 DOI: 10.1038/s41467-018-05539-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/06/2018] [Indexed: 11/30/2022] Open
Abstract
Translation initiation of most mammalian mRNAs is mediated by a 5′ cap structure that binds eukaryotic initiation factor 4E (eIF4E). However, inactivation of eIF4E does not impair translation of many capped mRNAs, suggesting an unknown alternate mechanism may exist for cap-dependent but eIF4E-independent translation. We show that DAP5, an eIF4GI homolog that lacks eIF4E binding, utilizes eIF3d to facilitate cap-dependent translation of approximately 20% of mRNAs. Genome-wide transcriptomic and translatomic analyses indicate that DAP5 is required for translation of many transcription factors and receptor capped mRNAs and their mRNA targets involved in cell survival, motility, DNA repair and translation initiation, among other mRNAs. Mass spectrometry and crosslinking studies demonstrate that eIF3d is a direct binding partner of DAP5. In vitro translation and ribosome complex studies demonstrate that DAP5 and eIF3d are both essential for eIF4E-independent capped-mRNA translation. These studies disclose a widespread and previously unknown mechanism for cap-dependent mRNA translation by DAP5-eIF3d complexes. Binding of eIF4E to the 5′ cap of mRNAs is a key early step in canonical translation initiation, but the requirement for eIF4E is not universal. Here the authors show that the eIF4G homolog DAP5 interacts with eIF3 to promote cap-dependent translation of a significant number of mRNA in an eIF4E-independent manner.
Collapse
Affiliation(s)
- Columba de la Parra
- Department of Microbiology, NYU School of Medicine, New York, NY, 10016, USA.,Perlmutter Cancer Center, NYU School of Medicine, New York, NY, 10016, USA
| | - Amanda Ernlund
- Department of Microbiology, NYU School of Medicine, New York, NY, 10016, USA
| | - Amandine Alard
- Department of Microbiology, NYU School of Medicine, New York, NY, 10016, USA
| | - Kelly Ruggles
- Department of Medicine, NYU School of Medicine, New York, NY, 10016, USA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY, 10016, USA
| | - Robert J Schneider
- Department of Microbiology, NYU School of Medicine, New York, NY, 10016, USA. .,Perlmutter Cancer Center, NYU School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
22
|
Hashem Y, Frank J. The Jigsaw Puzzle of mRNA Translation Initiation in Eukaryotes: A Decade of Structures Unraveling the Mechanics of the Process. Annu Rev Biophys 2018; 47:125-151. [PMID: 29494255 DOI: 10.1146/annurev-biophys-070816-034034] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Translation initiation in eukaryotes is a highly regulated and rate-limiting process. It results in the assembly and disassembly of numerous transient and intermediate complexes involving over a dozen eukaryotic initiation factors (eIFs). This process culminates in the accommodation of a start codon marking the beginning of an open reading frame at the appropriate ribosomal site. Although this process has been extensively studied by hundreds of groups for nearly half a century, it has been only recently, especially during the last decade, that we have gained deeper insight into the mechanics of the eukaryotic translation initiation process. This advance in knowledge is due in part to the contributions of structural biology, which have shed light on the molecular mechanics underlying the different functions of various eukaryotic initiation factors. In this review, we focus exclusively on the contribution of structural biology to the understanding of the eukaryotic initiation process, a long-standing jigsaw puzzle that is just starting to yield the bigger picture.
Collapse
Affiliation(s)
- Yaser Hashem
- INSERM U1212, Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac 33607, France;
| | - Joachim Frank
- Department of Biological Sciences, Columbia University, New York, NY 10032, USA;
| |
Collapse
|
23
|
Sloan KE, Bohnsack MT. Unravelling the Mechanisms of RNA Helicase Regulation. Trends Biochem Sci 2018; 43:237-250. [PMID: 29486979 DOI: 10.1016/j.tibs.2018.02.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/28/2018] [Accepted: 02/01/2018] [Indexed: 12/22/2022]
Abstract
RNA helicases are critical regulators at the nexus of multiple pathways of RNA metabolism, and in the complex cellular environment, tight spatial and temporal regulation of their activity is essential. Dedicated protein cofactors play key roles in recruiting helicases to specific substrates and modulating their catalytic activity. Alongside individual RNA helicase cofactors, networks of cofactors containing evolutionarily conserved domains such as the G-patch and MIF4G domains highlight the potential for cross-regulation of different aspects of gene expression. Structural analyses of RNA helicase-cofactor complexes now provide insight into the diverse mechanisms by which cofactors can elicit specific and coordinated regulation of RNA helicase action. Furthermore, post-translational modifications (PTMs) and long non-coding RNA (lncRNA) regulators have recently emerged as novel modes of RNA helicase regulation.
Collapse
Affiliation(s)
- Katherine E Sloan
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073 Göttingen, Germany; Göttingen Center for Molecular Biosciences, University of Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.
| |
Collapse
|
24
|
Leen EN, Sorgeloos F, Correia S, Chaudhry Y, Cannac F, Pastore C, Xu Y, Graham SC, Matthews SJ, Goodfellow IG, Curry S. A Conserved Interaction between a C-Terminal Motif in Norovirus VPg and the HEAT-1 Domain of eIF4G Is Essential for Translation Initiation. PLoS Pathog 2016; 12:e1005379. [PMID: 26734730 PMCID: PMC4703368 DOI: 10.1371/journal.ppat.1005379] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 12/10/2015] [Indexed: 11/28/2022] Open
Abstract
Translation initiation is a critical early step in the replication cycle of the positive-sense, single-stranded RNA genome of noroviruses, a major cause of gastroenteritis in humans. Norovirus RNA, which has neither a 5´ m7G cap nor an internal ribosome entry site (IRES), adopts an unusual mechanism to initiate protein synthesis that relies on interactions between the VPg protein covalently attached to the 5´-end of the viral RNA and eukaryotic initiation factors (eIFs) in the host cell. For murine norovirus (MNV) we previously showed that VPg binds to the middle fragment of eIF4G (4GM; residues 652–1132). Here we have used pull-down assays, fluorescence anisotropy, and isothermal titration calorimetry (ITC) to demonstrate that a stretch of ~20 amino acids at the C terminus of MNV VPg mediates direct and specific binding to the HEAT-1 domain within the 4GM fragment of eIF4G. Our analysis further reveals that the MNV C terminus binds to eIF4G HEAT-1 via a motif that is conserved in all known noroviruses. Fine mutagenic mapping suggests that the MNV VPg C terminus may interact with eIF4G in a helical conformation. NMR spectroscopy was used to define the VPg binding site on eIF4G HEAT-1, which was confirmed by mutagenesis and binding assays. We have found that this site is non-overlapping with the binding site for eIF4A on eIF4G HEAT-1 by demonstrating that norovirus VPg can form ternary VPg-eIF4G-eIF4A complexes. The functional significance of the VPg-eIF4G interaction was shown by the ability of fusion proteins containing the C-terminal peptide of MNV VPg to inhibit in vitro translation of norovirus RNA but not cap- or IRES-dependent translation. These observations define important structural details of a functional interaction between norovirus VPg and eIF4G and reveal a binding interface that might be exploited as a target for antiviral therapy. Norovirus infections cause acute gastroenteritis and are a growing worldwide problem in human health. A critical early step in infection is translation of the viral RNA genome to produce the proteins needed to assemble new virus particles. In mouse noroviruses (MNV), which provide a useful model for studying human noroviruses, the VPg protein attached to the viral RNA is essential for this process because it interacts with a cellular protein, eIF4G, that is normally involved in initiating protein synthesis from the messenger RNA of host genes. We have used a variety of biochemical and biophysical experiments to measure how well MNV VPg binds to eIF4G and to identify the parts of both proteins that are involved in this interaction. We show that a sequence of about 20 amino acids at one end of MNV VPg–the C terminus– allows it to bind to a well-defined domain within eIF4G (called HEAT-1), and that it may adopt a helical structure when doing so. Our data suggest that this interaction is common to all noroviruses, including types that infect humans. We have also shown that the MNV VPg C-terminal peptide can inhibit norovirus protein synthesis, which raises the possibility that the VPg-eIF4G interaction could be targeted in the design of antiviral drugs.
Collapse
Affiliation(s)
- Eoin N Leen
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Frédéric Sorgeloos
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Samantha Correia
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Yasmin Chaudhry
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Fabien Cannac
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Chiara Pastore
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Yingqi Xu
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Stephen C Graham
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Stephen J Matthews
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Ian G Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Stephen Curry
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
25
|
Cleavage of DAP5 by coxsackievirus B3 2A protease facilitates viral replication and enhances apoptosis by altering translation of IRES-containing genes. Cell Death Differ 2015; 23:828-40. [PMID: 26586572 DOI: 10.1038/cdd.2015.145] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 09/17/2015] [Accepted: 09/25/2015] [Indexed: 12/22/2022] Open
Abstract
Cleavage of eukaryotic translation initiation factor 4G (eIF4G) by enterovirus proteases during infection leads to the shutoff of cellular cap-dependent translation, but does not affect the initiation of cap-independent translation of mRNAs containing an internal ribosome entry site (IRES). Death-associated protein 5 (DAP5), a structural homolog of eIF4G, is a translation initiation factor specific for IRES-containing mRNAs. Coxsackievirus B3 (CVB3) is a positive single-stranded RNA virus and a primary causal agent of human myocarditis. Its RNA genome harbors an IRES within the 5'-untranslated region and is translated by a cap-independent, IRES-driven mechanism. Previously, we have shown that DAP5 is cleaved during CVB3 infection. However, the protease responsible for cleavage, cleavage site and effects on the translation of target genes during CVB3 infection have not been investigated. In the present study, we demonstrated that viral protease 2A but not 3C is responsible for DAP5 cleavage, generating 45- and 52-kDa N- (DAP5-N) and C-terminal (DAP5-C) fragments, respectively. By site-directed mutagenesis, we found that DAP5 is cleaved at amino acid G434. Upon cleavage, DAP5-N largely translocated to the nucleus at the later time points of infection, whereas the DAP5-C largely remained in the cytoplasm. Overexpression of these DAP5 truncates demonstrated that DAP5-N retained the capability of initiating IRES-driven translation of apoptosis-associated p53, but not the prosurvival Bcl-2 (B-cell lymphoma 2) when compared with the full-length DAP5. Similarly, DAP5-N expression promoted CVB3 replication and progeny release; on the other hand, DAP5-C exerted a dominant-negative effect on cap-dependent translation. Taken together, viral protease 2A-mediated cleavage of DAP5 results in the production of two truncates that exert differential effects on protein translation of the IRES-containing genes, leading to enhanced host cell death.
Collapse
|
26
|
miR-139-5p controls translation in myeloid leukemia through EIF4G2. Oncogene 2015; 35:1822-31. [PMID: 26165837 DOI: 10.1038/onc.2015.247] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 05/21/2015] [Accepted: 05/22/2015] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are crucial components of homeostatic and developmental gene regulation. In turn, dysregulation of miRNA expression is a common feature of different types of cancer, which can be harnessed therapeutically. Here we identify miR-139-5p suppression across several cytogenetically defined acute myeloid leukemia (AML) subgroups. The promoter of mir-139 was transcriptionally silenced and could be reactivated by histone deacetylase inhibitors in a dose-dependent manner. Restoration of mir-139 expression in cell lines representing the major AML subgroups (t[8;21], inv[16], mixed lineage leukemia-rearranged and complex karyotype AML) caused cell cycle arrest and apoptosis in vitro and in xenograft mouse models in vivo. During normal hematopoiesis, mir-139 is exclusively expressed in terminally differentiated neutrophils and macrophages. Ectopic expression of mir-139 repressed proliferation of normal CD34(+)-hematopoietic stem and progenitor cells and perturbed myelomonocytic in vitro differentiation. Mechanistically, mir-139 exerts its effects by repressing the translation initiation factor EIF4G2, thereby reducing overall protein synthesis while specifically inducing the translation of cell cycle inhibitor p27(Kip1). Knockdown of EIF4G2 recapitulated the effects of mir-139, whereas restoring EIF4G2 expression rescued the mir-139 phenotype. Moreover, elevated miR-139-5p expression is associated with a favorable outcome in a cohort of 165 pediatric patients with AML. Thus, mir-139 acts as a global tumor suppressor-miR in AML by controlling protein translation. As AML cells are dependent on high protein synthesis rates controlling the expression of mir-139 constitutes a novel path for the treatment of AML.
Collapse
|
27
|
Liberman N, Gandin V, Svitkin YV, David M, Virgili G, Jaramillo M, Holcik M, Nagar B, Kimchi A, Sonenberg N. DAP5 associates with eIF2β and eIF4AI to promote Internal Ribosome Entry Site driven translation. Nucleic Acids Res 2015; 43:3764-75. [PMID: 25779044 PMCID: PMC4402527 DOI: 10.1093/nar/gkv205] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 12/14/2022] Open
Abstract
Initiation is a highly regulated rate-limiting step of mRNA translation. During cap-dependent translation, the cap-binding protein eIF4E recruits the mRNA to the ribosome. Specific elements in the 5'UTR of some mRNAs referred to as Internal Ribosome Entry Sites (IRESes) allow direct association of the mRNA with the ribosome without the requirement for eIF4E. Cap-independent initiation permits translation of a subset of cellular and viral mRNAs under conditions wherein cap-dependent translation is inhibited, such as stress, mitosis and viral infection. DAP5 is an eIF4G homolog that has been proposed to regulate both cap-dependent and cap-independent translation. Herein, we demonstrate that DAP5 associates with eIF2β and eIF4AI to stimulate IRES-dependent translation of cellular mRNAs. In contrast, DAP5 is dispensable for cap-dependent translation. These findings provide the first mechanistic insights into the function of DAP5 as a selective regulator of cap-independent translation.
Collapse
Affiliation(s)
- Noa Liberman
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Valentina Gandin
- Department of Biochemistry, McGill University, Montréal, Québec H3A 1A3, Canada Rosalind and Morris Goodman Cancer Centre, Montréal, Québec H3A 1A3, Canada
| | - Yuri V Svitkin
- Department of Biochemistry, McGill University, Montréal, Québec H3A 1A3, Canada Rosalind and Morris Goodman Cancer Centre, Montréal, Québec H3A 1A3, Canada
| | - Maya David
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Geneviève Virgili
- Department of Biochemistry, McGill University, Montréal, Québec H3A 1A3, Canada Groupe de Recherche Axé sur la Structure des Protéines, Montréal, Québec H3A 1A3, Canada
| | - Maritza Jaramillo
- Department of Biochemistry, McGill University, Montréal, Québec H3A 1A3, Canada Rosalind and Morris Goodman Cancer Centre, Montréal, Québec H3A 1A3, Canada
| | - Martin Holcik
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1N 6N5, Canada
| | - Bhushan Nagar
- Department of Biochemistry, McGill University, Montréal, Québec H3A 1A3, Canada Groupe de Recherche Axé sur la Structure des Protéines, Montréal, Québec H3A 1A3, Canada
| | - Adi Kimchi
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montréal, Québec H3A 1A3, Canada Rosalind and Morris Goodman Cancer Centre, Montréal, Québec H3A 1A3, Canada
| |
Collapse
|
28
|
Trypanosoma brucei translation initiation factor homolog EIF4E6 forms a tripartite cytosolic complex with EIF4G5 and a capping enzyme homolog. EUKARYOTIC CELL 2014; 13:896-908. [PMID: 24839125 DOI: 10.1128/ec.00071-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Trypanosomes lack the transcriptional control characteristic of the majority of eukaryotes that is mediated by gene-specific promoters in a one-gene-one-promoter arrangement. Rather, their genomes are transcribed in large polycistrons with no obvious functional linkage. Posttranscriptional regulation of gene expression must thus play a larger role in these organisms. The eIF4E homolog TbEIF4E6 binds mRNA cap analogs in vitro and is part of a complex in vivo that may fulfill such a role. Knockdown of TbEIF4E6 tagged with protein A-tobacco etch virus protease cleavage site-protein C to approximately 15% of the normal expression level resulted in viable cells that displayed a set of phenotypes linked to detachment of the flagellum from the length of the cell body, if not outright flagellum loss. While these cells appeared and behaved as normal under stationary liquid culture conditions, standard centrifugation resulted in a marked increase in flagellar detachment. Furthermore, the ability of TbEIF4E6-depleted cells to engage in social motility was reduced. The TbEIF4E6 protein forms a cytosolic complex containing a triad of proteins, including the eIF4G homolog TbEIF4G5 and a hypothetical protein of 70.3 kDa, referred to as TbG5-IP. The TbG5-IP analysis revealed two domains with predicted secondary structures conserved in mRNA capping enzymes: nucleoside triphosphate hydrolase and guanylyltransferase. These complex members have the potential for RNA interaction, either via the 5' cap structure for TbEIF4E6 and TbG5-IP or through RNA-binding domains in TbEIF4G5. The associated proteins provide a signpost for future studies to determine how this complex affects capped RNA molecules.
Collapse
|
29
|
Shatsky IN, Dmitriev SE, Andreev DE, Terenin IM. Transcriptome-wide studies uncover the diversity of modes of mRNA recruitment to eukaryotic ribosomes. Crit Rev Biochem Mol Biol 2014; 49:164-77. [PMID: 24520918 DOI: 10.3109/10409238.2014.887051] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The conventional paradigm of translation initiation in eukaryotes states that the cap-binding protein complex eIF4F (consisting of eIF4E, eIF4G and eIF4A) plays a central role in the recruitment of capped mRNAs to ribosomes. However, a growing body of evidence indicates that this paradigm should be revised. This review summarizes the data which have been mostly accumulated in a post-genomic era owing to revolutionary techniques of transcriptome-wide analysis. Unexpectedly, these techniques have uncovered remarkable diversity in the recruitment of cellular mRNAs to eukaryotic ribosomes. These data enable a preliminary classification of mRNAs into several groups based on their requirement for particular components of eIF4F. They challenge the widely accepted concept which relates eIF4E-dependence to the extent of secondary structure in the 5' untranslated regions of mRNAs. Moreover, some mRNA species presumably recruit ribosomes to their 5' ends without the involvement of either the 5' m(7)G-cap or eIF4F but instead utilize eIF4G or eIF4G-like auxiliary factors. The long-standing concept of internal ribosome entry site (IRES)-elements in cellular mRNAs is also discussed.
Collapse
Affiliation(s)
- Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University , Moscow , Russia and
| | | | | | | |
Collapse
|
30
|
Izaurralde E. A role for eIF4AII in microRNA-mediated mRNA silencing. Nat Struct Mol Biol 2013; 20:543-5. [PMID: 23649363 DOI: 10.1038/nsmb.2582] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|