1
|
Yang Y, Guo L, Chen L, Gong B, Jia D, Sun Q. Nuclear transport proteins: structure, function, and disease relevance. Signal Transduct Target Ther 2023; 8:425. [PMID: 37945593 PMCID: PMC10636164 DOI: 10.1038/s41392-023-01649-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 11/12/2023] Open
Abstract
Proper subcellular localization is crucial for the functioning of biomacromolecules, including proteins and RNAs. Nuclear transport is a fundamental cellular process that regulates the localization of many macromolecules within the nuclear or cytoplasmic compartments. In humans, approximately 60 proteins are involved in nuclear transport, including nucleoporins that form membrane-embedded nuclear pore complexes, karyopherins that transport cargoes through these complexes, and Ran system proteins that ensure directed and rapid transport. Many of these nuclear transport proteins play additional and essential roles in mitosis, biomolecular condensation, and gene transcription. Dysregulation of nuclear transport is linked to major human diseases such as cancer, neurodegenerative diseases, and viral infections. Selinexor (KPT-330), an inhibitor targeting the nuclear export factor XPO1 (also known as CRM1), was approved in 2019 to treat two types of blood cancers, and dozens of clinical trials of are ongoing. This review summarizes approximately three decades of research data in this field but focuses on the structure and function of individual nuclear transport proteins from recent studies, providing a cutting-edge and holistic view on the role of nuclear transport proteins in health and disease. In-depth knowledge of this rapidly evolving field has the potential to bring new insights into fundamental biology, pathogenic mechanisms, and therapeutic approaches.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Guo
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Chen
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Gong
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.
| | - Qingxiang Sun
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu, China.
| |
Collapse
|
2
|
Bruley A, Bitard-Feildel T, Callebaut I, Duprat E. A sequence-based foldability score combined with AlphaFold2 predictions to disentangle the protein order/disorder continuum. Proteins 2023; 91:466-484. [PMID: 36306150 DOI: 10.1002/prot.26441] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022]
Abstract
Order and disorder govern protein functions, but there is a great diversity in disorder, from regions that are-and stay-fully disordered to conditional order. This diversity is still difficult to decipher even though it is encoded in the amino acid sequences. Here, we developed an analytic Python package, named pyHCA, to estimate the foldability of a protein segment from the only information of its amino acid sequence and based on a measure of its density in regular secondary structures associated with hydrophobic clusters, as defined by the hydrophobic cluster analysis (HCA) approach. The tool was designed by optimizing the separation between foldable segments from databases of disorder (DisProt) and order (SCOPe [soluble domains] and OPM [transmembrane domains]). It allows to specify the ratio between order, embodied by regular secondary structures (either participating in the hydrophobic core of well-folded 3D structures or conditionally formed in intrinsically disordered regions) and disorder. We illustrated the relevance of pyHCA with several examples and applied it to the sequences of the proteomes of 21 species ranging from prokaryotes and archaea to unicellular and multicellular eukaryotes, for which structure models are provided in the AlphaFold protein structure database. Cases of low-confidence scores related to disorder were distinguished from those of sequences that we identified as foldable but are still excluded from accurate modeling by AlphaFold2 due to a lack of sequence homologs or to compositional biases. Overall, our approach is complementary to AlphaFold2, providing guides to map structural innovations through evolutionary processes, at proteome and gene scales.
Collapse
Affiliation(s)
- Apolline Bruley
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Tristan Bitard-Feildel
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Elodie Duprat
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| |
Collapse
|
3
|
Tai L, Yin G, Sun F, Zhu Y. Cryo-electron microscopy reveals the structure of the nuclear pore complex. J Mol Biol 2023; 435:168051. [PMID: 36933820 DOI: 10.1016/j.jmb.2023.168051] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
The nuclear pore complex (NPC) is a giant protein assembly that penetrates the double layers of the nuclear membrane. The overall structure of the NPC has approximately eightfold symmetry and is formed by approximately 30 nucleoporins. The great size and complexity of the NPC have hindered the study of its structure for many years until recent breakthroughs were achieved by integrating the latest high-resolution cryo-electron microscopy (cryo-EM), the emerging artificial intelligence-based modeling and all other available structural information from crystallography and mass spectrometry. Here, we review our latest knowledge of the NPC architecture and the history of its structural study from in vitro to in situ with progressively improved resolutions by cryo-EM, with a particular focus on the latest subnanometer-resolution structural studies. The future directions for structural studies of NPCs are also discussed.
Collapse
Affiliation(s)
- Linhua Tai
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoliang Yin
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Sun
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong 510005, China.
| | - Yun Zhu
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
4
|
Morgan KJ, Doggett K, Geng F, Mieruszynski S, Whitehead L, Smith KA, Hogan BM, Simons C, Baillie GJ, Molania R, Papenfuss AT, Hall TE, Ober EA, Stainier DYR, Gong Z, Heath JK. ahctf1 and kras mutations combine to amplify oncogenic stress and restrict liver overgrowth in a zebrafish model of hepatocellular carcinoma. eLife 2023; 12:73407. [PMID: 36648336 PMCID: PMC9897728 DOI: 10.7554/elife.73407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/16/2023] [Indexed: 01/18/2023] Open
Abstract
The nucleoporin (NUP) ELYS, encoded by AHCTF1, is a large multifunctional protein with essential roles in nuclear pore assembly and mitosis. Using both larval and adult zebrafish models of hepatocellular carcinoma (HCC), in which the expression of an inducible mutant kras transgene (krasG12V) drives hepatocyte-specific hyperplasia and liver enlargement, we show that reducing ahctf1 gene dosage by 50% markedly decreases liver volume, while non-hyperplastic tissues are unaffected. We demonstrate that in the context of cancer, ahctf1 heterozygosity impairs nuclear pore formation, mitotic spindle assembly, and chromosome segregation, leading to DNA damage and activation of a Tp53-dependent transcriptional programme that induces cell death and cell cycle arrest. Heterozygous expression of both ahctf1 and ranbp2 (encoding a second nucleoporin), or treatment of heterozygous ahctf1 larvae with the nucleocytoplasmic transport inhibitor, Selinexor, completely blocks krasG12V-driven hepatocyte hyperplasia. Gene expression analysis of patient samples in the liver hepatocellular carcinoma (LIHC) dataset in The Cancer Genome Atlas shows that high expression of one or more of the transcripts encoding the 10 components of the NUP107-160 subcomplex, which includes AHCTF1, is positively correlated with worse overall survival. These results provide a strong and feasible rationale for the development of novel cancer therapeutics that target ELYS function and suggest potential avenues for effective combinatorial treatments.
Collapse
Affiliation(s)
- Kimberly J Morgan
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
- Department of Medical Biology, University of MelbourneParkvilleAustralia
| | - Karen Doggett
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
- Department of Medical Biology, University of MelbourneParkvilleAustralia
| | - Fansuo Geng
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
- Department of Medical Biology, University of MelbourneParkvilleAustralia
| | - Stephen Mieruszynski
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
- Department of Medical Biology, University of MelbourneParkvilleAustralia
| | - Lachlan Whitehead
- Department of Medical Biology, University of MelbourneParkvilleAustralia
- Centre for Dynamic Imaging, Advanced Technology and Biology Division, Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
| | - Kelly A Smith
- Department of Physiology, University of MelbourneParkvilleAustralia
- Institute for Molecular Biosciences, University of QueenslandQueenslandAustralia
| | - Benjamin M Hogan
- Institute for Molecular Biosciences, University of QueenslandQueenslandAustralia
- Peter MacCallum Cancer CentreMelbourneAustralia
| | - Cas Simons
- Institute for Molecular Biosciences, University of QueenslandQueenslandAustralia
- Murdoch Children's Research InstituteParkvilleAustralia
| | - Gregory J Baillie
- Institute for Molecular Biosciences, University of QueenslandQueenslandAustralia
| | - Ramyar Molania
- Department of Medical Biology, University of MelbourneParkvilleAustralia
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
| | - Anthony T Papenfuss
- Department of Medical Biology, University of MelbourneParkvilleAustralia
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
| | - Thomas E Hall
- Institute for Molecular Biosciences, University of QueenslandQueenslandAustralia
| | - Elke A Ober
- Danish Stem Cell Center, University of CopenhagenCopenhagenDenmark
| | - Didier YR Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Zhiyuan Gong
- Department of Biological Science, National University of SingaporeSingaporeSingapore
| | - Joan K Heath
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
- Department of Medical Biology, University of MelbourneParkvilleAustralia
| |
Collapse
|
5
|
Petrovic S, Mobbs GW, Bley CJ, Nie S, Patke A, Hoelz A. Structure and Function of the Nuclear Pore Complex. Cold Spring Harb Perspect Biol 2022; 14:a041264. [PMID: 36096637 PMCID: PMC9732903 DOI: 10.1101/cshperspect.a041264] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The nucleus, a genome-containing organelle eponymous of eukaryotes, is enclosed by a double membrane continuous with the endoplasmic reticulum. The nuclear pore complex (NPC) is an ∼110-MDa, ∼1000-protein channel that selectively transports macromolecules across the nuclear envelope and thus plays a central role in the regulated flow of genetic information from transcription to translation. Its size, complexity, and flexibility have hindered determination of atomistic structures of intact NPCs. Recent studies have overcome these hurdles by combining biochemical reconstitution and docking of high-resolution structures of NPC subcomplexes into cryo-electron tomographic reconstructions with biochemical and physiological validation. Here, we provide an overview of the near-atomic composite structure of the human NPC, a milestone toward unlocking a molecular understanding of mRNA export, NPC-associated diseases, and viral host-pathogen interactions, serving as a paradigm for studying similarly large complexes.
Collapse
Affiliation(s)
- Stefan Petrovic
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - George W Mobbs
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Christopher J Bley
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Si Nie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Alina Patke
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - André Hoelz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
6
|
Tai L, Zhu Y, Ren H, Huang X, Zhang C, Sun F. 8 Å structure of the outer rings of the Xenopus laevis nuclear pore complex obtained by cryo-EM and AI. Protein Cell 2022; 13:760-777. [PMID: 35015240 PMCID: PMC9233733 DOI: 10.1007/s13238-021-00895-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 11/27/2022] Open
Abstract
The nuclear pore complex (NPC), one of the largest protein complexes in eukaryotes, serves as a physical gate to regulate nucleocytoplasmic transport. Here, we determined the 8 Å resolution cryo-electron microscopic (cryo-EM) structure of the outer rings containing nuclear ring (NR) and cytoplasmic ring (CR) from the Xenopus laevis NPC, with local resolutions reaching 4.9 Å. With the aid of AlphaFold2, we managed to build a pseudoatomic model of the outer rings, including the Y complexes and flanking components. In this most comprehensive and accurate model of outer rings to date, the almost complete Y complex structure exhibits much tighter interaction in the hub region. In addition to two copies of Y complexes, each asymmetric subunit in CR contains five copies of Nup358, two copies of the Nup214 complex, two copies of Nup205 and one copy of newly identified Nup93, while that in NR contains one copy of Nup205, one copy of ELYS and one copy of Nup93. These in-depth structural features represent a great advance in understanding the assembly of NPCs.
Collapse
Affiliation(s)
- Linhua Tai
- National Key Laboratory of Biomacromolecules, Institute of Biophysics, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun Zhu
- National Key Laboratory of Biomacromolecules, Institute of Biophysics, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing, 100101, China
| | - He Ren
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiaojun Huang
- National Key Laboratory of Biomacromolecules, Institute of Biophysics, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing, 100101, China
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chuanmao Zhang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Fei Sun
- National Key Laboratory of Biomacromolecules, Institute of Biophysics, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing, 100101, China.
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
| |
Collapse
|
7
|
Petrovic S, Samanta D, Perriches T, Bley CJ, Thierbach K, Brown B, Nie S, Mobbs GW, Stevens TA, Liu X, Tomaleri GP, Schaus L, Hoelz A. Architecture of the linker-scaffold in the nuclear pore. Science 2022; 376:eabm9798. [PMID: 35679425 PMCID: PMC9867570 DOI: 10.1126/science.abm9798] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION In eukaryotic cells, the selective bidirectional transport of macromolecules between the nucleus and cytoplasm occurs through the nuclear pore complex (NPC). Embedded in nuclear envelope pores, the ~110-MDa human NPC is an ~1200-Å-wide and ~750-Å-tall assembly of ~1000 proteins, collectively termed nucleoporins. Because of the NPC's eightfold rotational symmetry along the nucleocytoplasmic axis, each of the ~34 different nucleoporins occurs in multiples of eight. Architecturally, the NPC's symmetric core is composed of an inner ring encircling the central transport channel and two outer rings anchored on both sides of the nuclear envelope. Because of its central role in the flow of genetic information from DNA to RNA to protein, the NPC is commonly targeted in viral infections and its nucleoporin constituents are associated with a plethora of diseases. RATIONALE Although the arrangement of most scaffold nucleoporins in the NPC's symmetric core was determined by quantitative docking of crystal structures into cryo-electron tomographic (cryo-ET) maps of intact NPCs, the topology and molecular details of their cohesion by multivalent linker nucleoporins have remained elusive. Recently, in situ cryo-ET reconstructions of NPCs from various species have indicated that the NPC's inner ring is capable of reversible constriction and dilation in response to variations in nuclear envelope membrane tension, thereby modulating the diameter of the central transport channel by ~200 Å. We combined biochemical reconstitution, high-resolution crystal and single-particle cryo-electron microscopy (cryo-EM) structure determination, docking into cryo-ET maps, and physiological validation to elucidate the molecular architecture of the linker-scaffold interaction network that not only is essential for the NPC's integrity but also confers the plasticity and robustness necessary to allow and withstand such large-scale conformational changes. RESULTS By biochemically mapping scaffold-binding regions of all fungal and human linker nucleoporins and determining crystal and single-particle cryo-EM structures of linker-scaffold complexes, we completed the characterization of the biochemically tractable linker-scaffold network and established its evolutionary conservation, despite considerable sequence divergence. We determined a series of crystal and single-particle cryo-EM structures of the intact Nup188 and Nup192 scaffold hubs bound to their Nic96, Nup145N, and Nup53 linker nucleoporin binding regions, revealing that both proteins form distinct question mark-shaped keystones of two evolutionarily conserved hetero‑octameric inner ring complexes. Linkers bind to scaffold surface pockets through short defined motifs, with flanking regions commonly forming additional disperse interactions that reinforce the binding. Using a structure‑guided functional analysis in Saccharomyces cerevisiae, we confirmed the robustness of linker‑scaffold interactions and established the physiological relevance of our biochemical and structural findings. The near-atomic composite structures resulting from quantitative docking of experimental structures into human and S. cerevisiae cryo-ET maps of constricted and dilated NPCs structurally disambiguated the positioning of the Nup188 and Nup192 hubs in the intact fungal and human NPC and revealed the topology of the linker-scaffold network. The linker-scaffold gives rise to eight relatively rigid inner ring spokes that are flexibly interconnected to allow for the formation of lateral channels. Unexpectedly, we uncovered that linker‑scaffold interactions play an opposing role in the outer rings by forming tight cross-link staples between the eight nuclear and cytoplasmic outer ring spokes, thereby limiting the dilatory movements to the inner ring. CONCLUSION We have substantially advanced the structural and biochemical characterization of the symmetric core of the S. cerevisiae and human NPCs and determined near-atomic composite structures. The composite structures uncover the molecular mechanism by which the evolutionarily conserved linker‑scaffold establishes the NPC's integrity while simultaneously allowing for the observed plasticity of the central transport channel. The composite structures are roadmaps for the mechanistic dissection of NPC assembly and disassembly, the etiology of NPC‑associated diseases, the role of NPC dilation in nucleocytoplasmic transport of soluble and integral membrane protein cargos, and the anchoring of asymmetric nucleoporins. [Figure: see text].
Collapse
Affiliation(s)
- Stefan Petrovic
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Dipanjan Samanta
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Thibaud Perriches
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Christopher J. Bley
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Karsten Thierbach
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Bonnie Brown
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Si Nie
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - George W. Mobbs
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Taylor A. Stevens
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Xiaoyu Liu
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Giovani Pinton Tomaleri
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Lucas Schaus
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - André Hoelz
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
8
|
Bley CJ, Nie S, Mobbs GW, Petrovic S, Gres AT, Liu X, Mukherjee S, Harvey S, Huber FM, Lin DH, Brown B, Tang AW, Rundlet EJ, Correia AR, Chen S, Regmi SG, Stevens TA, Jette CA, Dasso M, Patke A, Palazzo AF, Kossiakoff AA, Hoelz A. Architecture of the cytoplasmic face of the nuclear pore. Science 2022; 376:eabm9129. [PMID: 35679405 DOI: 10.1126/science.abm9129] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The subcellular compartmentalization of eukaryotic cells requires selective transport of folded proteins and protein-nucleic acid complexes. Embedded in nuclear envelope pores, which are generated by the circumscribed fusion of the inner and outer nuclear membranes, nuclear pore complexes (NPCs) are the sole bidirectional gateways for nucleocytoplasmic transport. The ~110-MDa human NPC is an ~1000-protein assembly that comprises multiple copies of ~34 different proteins, collectively termed nucleoporins. The symmetric core of the NPC is composed of an inner ring encircling the central transport channel and outer rings formed by Y‑shaped coat nucleoporin complexes (CNCs) anchored atop both sides of the nuclear envelope. The outer rings are decorated with compartment‑specific asymmetric nuclear basket and cytoplasmic filament nucleoporins, which establish transport directionality and provide docking sites for transport factors and the small guanosine triphosphatase Ran. The cytoplasmic filament nucleoporins also play an essential role in the irreversible remodeling of messenger ribonucleoprotein particles (mRNPs) as they exit the central transport channel. Unsurprisingly, the NPC's cytoplasmic face represents a hotspot for disease‑associated mutations and is commonly targeted by viral virulence factors. RATIONALE Previous studies established a near-atomic composite structure of the human NPC's symmetric core by combining (i) biochemical reconstitution to elucidate the interaction network between symmetric nucleoporins, (ii) crystal and single-particle cryo-electron microscopy structure determination of nucleoporins and nucleoporin complexes to reveal their three-dimensional shape and the molecular details of their interactions, (iii) quantitative docking in cryo-electron tomography (cryo-ET) maps of the intact human NPC to uncover nucleoporin stoichiometry and positioning, and (iv) cell‑based assays to validate the physiological relevance of the biochemical and structural findings. In this work, we extended our approach to the cytoplasmic filament nucleoporins to reveal the near-atomic architecture of the cytoplasmic face of the human NPC. RESULTS Using biochemical reconstitution, we elucidated the protein-protein and protein-RNA interaction networks of the human and Chaetomium thermophilum cytoplasmic filament nucleoporins, establishing an evolutionarily conserved heterohexameric cytoplasmic filament nucleoporin complex (CFNC) held together by a central heterotrimeric coiled‑coil hub that tethers two separate mRNP‑remodeling complexes. Further biochemical analysis and determination of a series of crystal structures revealed that the metazoan‑specific cytoplasmic filament nucleoporin NUP358 is composed of 16 distinct domains, including an N‑terminal S‑shaped α‑helical solenoid followed by a coiled‑coil oligomerization element, numerous Ran‑interacting domains, an E3 ligase domain, and a C‑terminal prolyl‑isomerase domain. Physiologically validated quantitative docking into cryo-ET maps of the intact human NPC revealed that pentameric NUP358 bundles, conjoined by the oligomerization element, are anchored through their N‑terminal domains to the central stalk regions of the CNC, projecting flexibly attached domains as far as ~600 Å into the cytoplasm. Using cell‑based assays, we demonstrated that NUP358 is dispensable for the architectural integrity of the assembled interphase NPC and RNA export but is required for efficient translation. After NUP358 assignment, the remaining 4-shaped cryo‑ET density matched the dimensions of the CFNC coiled‑coil hub, in close proximity to an outer-ring NUP93. Whereas the N-terminal NUP93 assembly sensor motif anchors the properly assembled related coiled‑coil channel nucleoporin heterotrimer to the inner ring, biochemical reconstitution confirmed that the NUP93 assembly sensor is reused in anchoring the CFNC to the cytoplasmic face of the human NPC. By contrast, two C. thermophilum CFNCs are anchored by a divergent mechanism that involves assembly sensors located in unstructured portions of two CNC nucleoporins. Whereas unassigned cryo‑ET density occupies the NUP358 and CFNC binding sites on the nuclear face, docking of the nuclear basket component ELYS established that the equivalent position on the cytoplasmic face is unoccupied, suggesting that mechanisms other than steric competition promote asymmetric distribution of nucleoporins. CONCLUSION We have substantially advanced the biochemical and structural characterization of the asymmetric nucleoporins' architecture and attachment at the cytoplasmic and nuclear faces of the NPC. Our near‑atomic composite structure of the human NPC's cytoplasmic face provides a biochemical and structural framework for elucidating the molecular basis of mRNP remodeling, viral virulence factor interference with NPC function, and the underlying mechanisms of nucleoporin diseases at the cytoplasmic face of the NPC. [Figure: see text].
Collapse
Affiliation(s)
- Christopher J Bley
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Si Nie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - George W Mobbs
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Stefan Petrovic
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Anna T Gres
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Xiaoyu Liu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Somnath Mukherjee
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Sho Harvey
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Ferdinand M Huber
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Daniel H Lin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Bonnie Brown
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Aaron W Tang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Emily J Rundlet
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Ana R Correia
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Shane Chen
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Saroj G Regmi
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Taylor A Stevens
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Claudia A Jette
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Mary Dasso
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alina Patke
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Alexander F Palazzo
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - André Hoelz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
9
|
Hattersley N, Schlientz AJ, Prevo B, Oegema K, Desai A. MEL-28/ELYS and CENP-C coordinately control outer kinetochore assembly and meiotic chromosome-microtubule interactions. Curr Biol 2022; 32:2563-2571.e4. [PMID: 35609608 DOI: 10.1016/j.cub.2022.04.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/23/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
Abstract
During mitosis and meiosis in the majority of eukaryotes, centromeric chromatin comprised of CENP-A nucleosomes and their reader CENP-C recruits components of the outer kinetochore to build an interface with spindle microtubules.1,2 One exception is C. elegans oocyte meiosis, where outer kinetochore proteins form cup-like structures on chromosomes independently of centromeric chromatin.3 Here, we show that the nucleoporin MEL-28 (ortholog of human ELYS) and CENP-CHCP-4 act in parallel to recruit outer kinetochore components to oocyte meiotic chromosomes. Unexpectedly, co-inhibition of MEL-28 and CENP-CHCP-4 resulted in chromosomes being expelled from the meiotic spindle prior to anaphase onset, a more severe phenotype than what was observed following ablation of the outer kinetochore.4,5 This observation suggested that MEL-28 and the outer kinetochore independently link chromosomes to spindle microtubules. Consistent with this, the chromosome expulsion defect was observed following co-inhibition of MEL-28 and the microtubule-coupling KNL-1/MIS-12/NDC-80 (KMN) network of the outer kinetochore. Use of engineered mutants showed that MEL-28 acts in conjunction with the microtubule-binding NDC-80 complex to keep chromosomes within the oocyte meiotic spindle and that this function likely involves the Y-complex of nucleoporins that associate with MEL-28; by contrast, the ability to dock protein phosphatase 1, shared by MEL-28 and KNL-1, is not involved. These results highlight nuclear pore-independent functions for a conserved nucleoporin and explain two unusual features of oocyte meiotic chromosome segregation in C. elegans: centromeric chromatin-independent outer kinetochore assembly, and dispensability of the outer kinetochore for constraining chromosomes in the acentrosomal meiotic spindle.
Collapse
Affiliation(s)
- Neil Hattersley
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093, USA
| | - Aleesa J Schlientz
- Division of Biological Sciences & Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Bram Prevo
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093, USA
| | - Karen Oegema
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093, USA; Division of Biological Sciences & Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Arshad Desai
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093, USA; Division of Biological Sciences & Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
10
|
Huang G, Zhan X, Zeng C, Zhu X, Liang K, Zhao Y, Wang P, Wang Q, Zhou Q, Tao Q, Liu M, Lei J, Yan C, Shi Y. Cryo-EM structure of the nuclear ring from Xenopus laevis nuclear pore complex. Cell Res 2022; 32:349-358. [PMID: 35177819 PMCID: PMC8976044 DOI: 10.1038/s41422-021-00610-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022] Open
Abstract
Nuclear pore complex (NPC) shuttles cargo across the nuclear envelope. Here we present single-particle cryo-EM structure of the nuclear ring (NR) subunit from Xenopus laevis NPC at an average resolution of 5.6 Å. The NR subunit comprises two 10-membered Y complexes, each with the nucleoporin ELYS closely associating with Nup160 and Nup37 of the long arm. Unlike the cytoplasmic ring (CR) or inner ring (IR), the NR subunit contains only one molecule each of Nup205 and Nup93. Nup205 binds both arms of the Y complexes and interacts with the stem of inner Y complex from the neighboring subunit. Nup93 connects the stems of inner and outer Y complexes within the same NR subunit, and places its N-terminal extended helix into the axial groove of Nup205 from the neighboring subunit. Together with other structural information, we have generated a composite atomic model of the central ring scaffold that includes the NR, IR, and CR. The IR is connected to the two outer rings mainly through Nup155. This model facilitates functional understanding of vertebrate NPC.
Collapse
Affiliation(s)
- Gaoxingyu Huang
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, China.
| | - Xiechao Zhan
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, China
| | - Chao Zeng
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, China
| | - Xuechen Zhu
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, China
| | - Ke Liang
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, China
| | - Yanyu Zhao
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, China
| | - Pan Wang
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- Tsinghua University-Peking University Joint Center for Life Sciences; School of Life Sciences, Tsinghua University, Beijing, China
| | - Qifan Wang
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, China
| | - Qiang Zhou
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, China
| | - Qinghua Tao
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Minhao Liu
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Jianlin Lei
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Chuangye Yan
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- Tsinghua University-Peking University Joint Center for Life Sciences; School of Life Sciences, Tsinghua University, Beijing, China
| | - Yigong Shi
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, China.
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.
- Tsinghua University-Peking University Joint Center for Life Sciences; School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
11
|
Shevelyov YY. The Role of Nucleoporin Elys in Nuclear Pore Complex Assembly and Regulation of Genome Architecture. Int J Mol Sci 2020; 21:ijms21249475. [PMID: 33322130 PMCID: PMC7764596 DOI: 10.3390/ijms21249475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/25/2022] Open
Abstract
For a long time, the nuclear lamina was thought to be the sole scaffold for the attachment of chromosomes to the nuclear envelope (NE) in metazoans. However, accumulating evidence indicates that nuclear pore complexes (NPCs) comprised of nucleoporins (Nups) participate in this process as well. One of the Nups, Elys, initiates NPC reassembly at the end of mitosis. Elys directly binds the decondensing chromatin and interacts with the Nup107–160 subcomplex of NPCs, thus serving as a seeding point for the subsequent recruitment of other NPC subcomplexes and connecting chromatin with the re-forming NE. Recent studies also uncovered the important functions of Elys during interphase where it interacts with chromatin and affects its compactness. Therefore, Elys seems to be one of the key Nups regulating chromatin organization. This review summarizes the current state of our knowledge about the participation of Elys in the post-mitotic NPC reassembly as well as the role that Elys and other Nups play in the maintenance of genome architecture.
Collapse
Affiliation(s)
- Yuri Y Shevelyov
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", 123182 Moscow, Russia
| |
Collapse
|
12
|
Skrajna A, Goldfarb D, Kedziora KM, Cousins E, Grant GD, Spangler CJ, Barbour EH, Yan X, Hathaway NA, Brown NG, Cook JG, Major MB, McGinty RK. Comprehensive nucleosome interactome screen establishes fundamental principles of nucleosome binding. Nucleic Acids Res 2020; 48:9415-9432. [PMID: 32658293 PMCID: PMC7515726 DOI: 10.1093/nar/gkaa544] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/03/2020] [Accepted: 06/17/2020] [Indexed: 02/03/2023] Open
Abstract
Nuclear proteins bind chromatin to execute and regulate genome-templated processes. While studies of individual nucleosome interactions have suggested that an acidic patch on the nucleosome disk may be a common site for recruitment to chromatin, the pervasiveness of acidic patch binding and whether other nucleosome binding hot-spots exist remain unclear. Here, we use nucleosome affinity proteomics with a library of nucleosomes that disrupts all exposed histone surfaces to comprehensively assess how proteins recognize nucleosomes. We find that the acidic patch and two adjacent surfaces are the primary hot-spots for nucleosome disk interactions, whereas nearly half of the nucleosome disk participates only minimally in protein binding. Our screen defines nucleosome surface requirements of nearly 300 nucleosome interacting proteins implicated in diverse nuclear processes including transcription, DNA damage repair, cell cycle regulation and nuclear architecture. Building from our screen, we demonstrate that the Anaphase-Promoting Complex/Cyclosome directly engages the acidic patch, and we elucidate a redundant mechanism of acidic patch binding by nuclear pore protein ELYS. Overall, our interactome screen illuminates a highly competitive nucleosome binding hub and establishes universal principles of nucleosome recognition.
Collapse
Affiliation(s)
- Aleksandra Skrajna
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Dennis Goldfarb
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Katarzyna M Kedziora
- Computational Medicine Program, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Emily M Cousins
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Gavin D Grant
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Cathy J Spangler
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Emily H Barbour
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Xiaokang Yan
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Nathaniel A Hathaway
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Nicholas G Brown
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Jeanette G Cook
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Michael B Major
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Robert K McGinty
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
13
|
Cheng Z, Zhang X, Huang P, Huang G, Zhu J, Chen F, Miao Y, Liu L, Fu YF, Wang X. Nup96 and HOS1 Are Mutually Stabilized and Gate CONSTANS Protein Level, Conferring Long-Day Photoperiodic Flowering Regulation in Arabidopsis. THE PLANT CELL 2020; 32:374-391. [PMID: 31826964 PMCID: PMC7008479 DOI: 10.1105/tpc.19.00661] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/17/2019] [Accepted: 12/10/2019] [Indexed: 05/20/2023]
Abstract
The nuclear pore complex profoundly affects the timing of flowering; however, the underlying mechanisms are poorly understood. Here, we report that Nucleoporin96 (Nup96) acts as a negative regulator of long-day photoperiodic flowering in Arabidopsis (Arabidopsis thaliana). Through multiple approaches, we identified the E3 ubiquitin ligase HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1 (HOS1) and demonstrated its interaction in vivo with Nup96. Nup96 and HOS1 mainly localize and interact on the nuclear membrane. Loss of function of Nup96 leads to destruction of HOS1 proteins without a change in their mRNA abundance, which results in overaccumulation of the key activator of long-day photoperiodic flowering, CONSTANS (CO) proteins, as previously reported in hos1 mutants. Unexpectedly, mutation of HOS1 strikingly diminishes Nup96 protein level, suggesting that Nup96 and HOS1 are mutually stabilized and thus form a novel repressive module that regulates CO protein turnover. Therefore, the nup96 and hos1 single and nup96 hos1 double mutants have highly similar early-flowering phenotypes and overlapping transcriptome changes. Together, this study reveals a repression mechanism in which the Nup96-HOS1 repressive module gates the level of CO proteins and thereby prevents precocious flowering in long-day conditions.
Collapse
Affiliation(s)
- Zhiyuan Cheng
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaomei Zhang
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Penghui Huang
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guowen Huang
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Department of Chemical Sciences and Biological Engineering, Hunan University of Science and Technology, Yongzhou 425100, Hunan, China
| | - Jinglong Zhu
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fulu Chen
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuchen Miao
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Liangyu Liu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yong-Fu Fu
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xu Wang
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
14
|
Mehta SJK, Kumar V, Mishra RK. Drosophila ELYS regulates Dorsal dynamics during development. J Biol Chem 2020; 295:2421-2437. [PMID: 31941789 DOI: 10.1074/jbc.ra119.009451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 01/13/2020] [Indexed: 11/06/2022] Open
Abstract
Embryonic large molecule derived from yolk sac (ELYS) is a constituent protein of nuclear pores. It initiates assembly of nuclear pore complexes into functional nuclear pores toward the end of mitosis. Using cellular, molecular, and genetic tools, including fluorescence and Electron microscopy, quantitative PCR, and RNAi-mediated depletion, we report here that the ELYS ortholog (dElys) plays critical roles during Drosophila development. dElys localized to the nuclear rim in interphase cells, but during mitosis it was absent from kinetochores and enveloped chromatin. We observed that RNAi-mediated dElys depletion leads to aberrant development and, at the cellular level, to defects in the nuclear pore and nuclear lamina assembly. Further genetic analyses indicated that dElys depletion re-activates the Dorsal (NF-κB) pathway during late larval stages. Re-activated Dorsal caused untimely expression of the Dorsal target genes in the post-embryonic stages. We also demonstrate that activated Dorsal triggers apoptosis during later developmental stages by up-regulating the pro-apoptotic genes reaper and hid The apoptosis induced by Reaper and Hid was probably the underlying cause for developmental abnormalities observed upon dElys depletion. Moreover, we noted that dElys has conserved structural features, but contains a noncanonical AT-hook-like motif through which it strongly binds to DNA. Together, our results uncover a novel epistatic interaction that regulates Dorsal dynamics by dElys during development.
Collapse
Affiliation(s)
- Saurabh Jayesh Kumar Mehta
- Nups and SUMO Biology Group, Department of Biological Sciences, Academic Building 3, Indian Institute of Science Education and Research-Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh-462066, India
| | - Vimlesh Kumar
- Laboratory of Neurogenetics, Department of Biological Sciences, Academic Building 3, Indian Institute of Science Education and Research-Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh-462066, India
| | - Ram Kumar Mishra
- Nups and SUMO Biology Group, Department of Biological Sciences, Academic Building 3, Indian Institute of Science Education and Research-Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh-462066, India.
| |
Collapse
|
15
|
Jevtić P, Schibler AC, Wesley CC, Pegoraro G, Misteli T, Levy DL. The nucleoporin ELYS regulates nuclear size by controlling NPC number and nuclear import capacity. EMBO Rep 2019; 20:embr.201847283. [PMID: 31085625 DOI: 10.15252/embr.201847283] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/13/2022] Open
Abstract
How intracellular organelles acquire their characteristic sizes is a fundamental question in cell biology. Given stereotypical changes in nuclear size in cancer, it is important to understand the mechanisms that control nuclear size in human cells. Using a high-throughput imaging RNAi screen, we identify and mechanistically characterize ELYS, a nucleoporin required for post-mitotic nuclear pore complex (NPC) assembly, as a determinant of nuclear size in mammalian cells. ELYS knockdown results in small nuclei, reduced nuclear lamin B2 localization, lower NPC density, and decreased nuclear import. Increasing nuclear import by importin α overexpression rescues nuclear size and lamin B2 import, while inhibiting importin α/β-mediated nuclear import decreases nuclear size. Conversely, ELYS overexpression increases nuclear size, enriches nuclear lamin B2 at the nuclear periphery, and elevates NPC density and nuclear import. Consistent with these observations, knockdown or inhibition of exportin 1 increases nuclear size. Thus, we identify ELYS as a novel positive effector of mammalian nuclear size and propose that nuclear size is sensitive to NPC density and nuclear import capacity.
Collapse
Affiliation(s)
- Predrag Jevtić
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | | | - Chase C Wesley
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - Gianluca Pegoraro
- High Throughput Imaging Facility (HiTIF), National Cancer Institute, NIH, Bethesda, MD, USA
| | - Tom Misteli
- National Cancer Institute, NIH, Bethesda, MD, USA
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
16
|
Kobayashi W, Takizawa Y, Aihara M, Negishi L, Ishii H, Kurumizaka H. Structural and biochemical analyses of the nuclear pore complex component ELYS identify residues responsible for nucleosome binding. Commun Biol 2019; 2:163. [PMID: 31069272 PMCID: PMC6499780 DOI: 10.1038/s42003-019-0385-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/08/2019] [Indexed: 12/20/2022] Open
Abstract
The nuclear pore complex embedded within the nuclear envelope is the essential architecture for trafficking macromolecules, such as proteins and RNAs, between the cytoplasm and nucleus. The nuclear pore complex assembly occurs on chromatin in the post-mitotic phase of the cell cycle. ELYS (MEL-28/AHCTF1) binds to the nucleosome, which is the basic chromatin unit, and promotes assembly of the complex around the chromosomes in cells. Here we show that the Arg-Arg-Lys (RRK) stretch of the C-terminal ELYS region plays an essential role in the nucleosome binding. The cryo-EM structure and the crosslinking mass spectrometry reveal that the ELYS C-terminal region directly binds to the acidic patch of the nucleosome. These results provide mechanistic insight into the ELYS-nucleosome interaction, which promotes the post-mitotic nuclear pore complex formation around chromosomes in cells.
Collapse
Affiliation(s)
- Wataru Kobayashi
- 1Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032 Japan
- 2Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480 Japan
| | - Yoshimasa Takizawa
- 1Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032 Japan
| | - Maya Aihara
- 2Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480 Japan
| | - Lumi Negishi
- 1Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032 Japan
| | - Hajime Ishii
- 2Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480 Japan
| | - Hitoshi Kurumizaka
- 1Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032 Japan
- 2Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480 Japan
| |
Collapse
|
17
|
Abstract
The nuclear pore complex (NPC) serves as the sole bidirectional gateway of macromolecules in and out of the nucleus. Owing to its size and complexity (∼1,000 protein subunits, ∼110 MDa in humans), the NPC has remained one of the foremost challenges for structure determination. Structural studies have now provided atomic-resolution crystal structures of most nucleoporins. The acquisition of these structures, combined with biochemical reconstitution experiments, cross-linking mass spectrometry, and cryo-electron tomography, has facilitated the determination of the near-atomic overall architecture of the symmetric core of the human, fungal, and algal NPCs. Here, we discuss the insights gained from these new advances and outstanding issues regarding NPC structure and function. The powerful combination of bottom-up and top-down approaches toward determining the structure of the NPC offers a paradigm for uncovering the architectures of other complex biological machines to near-atomic resolution.
Collapse
Affiliation(s)
- Daniel H Lin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| | - André Hoelz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| |
Collapse
|
18
|
Chopra K, Bawaria S, Chauhan R. Evolutionary divergence of the nuclear pore complex from fungi to metazoans. Protein Sci 2018; 28:571-586. [PMID: 30488506 PMCID: PMC6371224 DOI: 10.1002/pro.3558] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 12/19/2022]
Abstract
Nuclear pore complex (NPC) is the largest multimeric protein assembly of the eukaryotic cell, which mediates the nucleocytoplasmic transport. The constituent proteins of this assembly (nucleoporins) are present in varying copy numbers to give a size from ~ 60 MDa (yeast) to 112 MDa (human) and share common ancestry with other membrane‐associated complexes such as COPI/COPII and thus share the same structural folds. However, the nucleoporins across species exhibit very low percentage sequence similarity and this reflects in their distinct secondary structure and domain organization. We employed thorough sequence and phylogenetic analysis guided from structure‐based alignments of all the nucleoporins from fungi to metazoans to understand the evolution of NPC. Through evolutionary pressure analysis on various nucleoporins, we deduced that these proteins are under differential selection pressure and hence the homologous interacting partners do not complement each other in the in vitro pull‐down assay. The super tree analysis of all nucleoporins taken together illustrates divergent evolution of nucleoporins and notably, the degree of divergence is more apparent in higher order organisms as compared to lower species. Overall, our results support the hypothesis that the protein–protein interactions in such large multimeric assemblies are species specific in nature and hence their structure and function should also be studied in an organism‐specific manner.
Collapse
Affiliation(s)
- Kriti Chopra
- National Center for Cell Science, S.P. Pune University, Pune, 411007, Maharashtra, India
| | - Shrankhla Bawaria
- National Center for Cell Science, S.P. Pune University, Pune, 411007, Maharashtra, India
| | - Radha Chauhan
- National Center for Cell Science, S.P. Pune University, Pune, 411007, Maharashtra, India
| |
Collapse
|
19
|
Genetic Analyses of Elys Mutations in Drosophila Show Maternal-Effect Lethality and Interactions with Nucleoporin Genes. G3-GENES GENOMES GENETICS 2018; 8:2421-2431. [PMID: 29773558 PMCID: PMC6027884 DOI: 10.1534/g3.118.200361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
ELYS determines the subcellular localizations of Nucleoporins (Nups) during interphase and mitosis. We made loss-of-function mutations of Elys in Drosophila melanogaster and found that ELYS is dispensable for zygotic viability and male fertility but the maternal supply is necessary for embryonic development. Subsequent to fertilization, mitotic progression of the embryos produced by the mutant females is severely disrupted at the first cleavage division, accompanied by irregular behavior of mitotic centrosomes. The Nup160 introgression from D. simulans shows close resemblance to that of the Elys mutations, suggesting a common role for those proteins in the first cleavage division. Our genetic experiments indicated critical interactions between ELYS and three Nup107-160 subcomplex components; hemizygotes of either Nup37, Nup96 or Nup160 were lethal in the genetic background of the Elys mutation. Not only Nup96 and Nup160 but also Nup37 of D. simulans behave as recessive hybrid incompatibility genes with D. melanogaster An evolutionary analysis indicated positive natural selection in the ELYS-like domain of ELYS. Here we propose that genetic incompatibility between Elys and Nups may lead to reproductive isolation between D. melanogaster and D. simulans, although direct evidence is necessary.
Collapse
|
20
|
Berto A, Yu J, Morchoisne-Bolhy S, Bertipaglia C, Vallee R, Dumont J, Ochsenbein F, Guerois R, Doye V. Disentangling the molecular determinants for Cenp-F localization to nuclear pores and kinetochores. EMBO Rep 2018; 19:embr.201744742. [PMID: 29632243 DOI: 10.15252/embr.201744742] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 03/02/2018] [Accepted: 03/08/2018] [Indexed: 11/09/2022] Open
Abstract
Cenp-F is a multifaceted protein implicated in cancer and developmental pathologies. The Cenp-F C-terminal region contains overlapping binding sites for numerous proteins that contribute to its functions throughout the cell cycle. Here, we focus on the nuclear pore protein Nup133 that interacts with Cenp-F both at nuclear pores in prophase and at kinetochores in mitosis, and on the kinase Bub1, known to contribute to Cenp-F targeting to kinetochores. By combining in silico structural modeling and yeast two-hybrid assays, we generate an interaction model between a conserved helix within the Nup133 β-propeller and a short leucine zipper-containing dimeric segment of Cenp-F. We thereby create mutants affecting the Nup133/Cenp-F interface and show that they prevent Cenp-F localization to the nuclear envelope, but not to kinetochores. Conversely, a point mutation within an adjacent leucine zipper affecting the kinetochore targeting of Cenp-F KT-core domain impairs its interaction with Bub1, but not with Nup133, identifying Bub1 as the direct KT-core binding partner of Cenp-F. Finally, we show that Cenp-E redundantly contributes together with Bub1 to the recruitment of Cenp-F to kinetochores.
Collapse
Affiliation(s)
- Alessandro Berto
- Institut Jacques Monod, UMR7592, CNRS, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Ecole Doctorale Structure et Dynamique des Systèmes Vivants (#577), Univ Paris Sud, Université Paris-Saclay, Orsay, France
| | - Jinchao Yu
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris Sud, Université Paris-Saclay, Gif sur Yvette, France
| | | | - Chiara Bertipaglia
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Richard Vallee
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Julien Dumont
- Institut Jacques Monod, UMR7592, CNRS, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Francoise Ochsenbein
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris Sud, Université Paris-Saclay, Gif sur Yvette, France
| | - Raphael Guerois
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris Sud, Université Paris-Saclay, Gif sur Yvette, France
| | - Valérie Doye
- Institut Jacques Monod, UMR7592, CNRS, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
21
|
Hattersley N, Cheerambathur D, Moyle M, Stefanutti M, Richardson A, Lee KY, Dumont J, Oegema K, Desai A. A Nucleoporin Docks Protein Phosphatase 1 to Direct Meiotic Chromosome Segregation and Nuclear Assembly. Dev Cell 2017; 38:463-77. [PMID: 27623381 DOI: 10.1016/j.devcel.2016.08.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/10/2016] [Accepted: 08/13/2016] [Indexed: 12/31/2022]
Abstract
During M-phase entry in metazoans with open mitosis, the concerted action of mitotic kinases disassembles nuclei and promotes assembly of kinetochores-the primary microtubule attachment sites on chromosomes. At M-phase exit, these major changes in cellular architecture must be reversed. Here, we show that the conserved kinetochore-localized nucleoporin MEL-28/ELYS docks the catalytic subunit of protein phosphatase 1 (PP1c) to direct kinetochore disassembly-dependent chromosome segregation during oocyte meiosis I and nuclear assembly during the transition from M phase to interphase. During oocyte meiosis I, MEL-28-PP1c disassembles kinetochores in a timely manner to promote elongation of the acentrosomal spindles that segregate homologous chromosomes. During nuclear assembly, MEL-28 recruits PP1c to the periphery of decondensed chromatin, where it directs formation of a functional nuclear compartment. Thus, a pool of phosphatase activity associated with a kinetochore-localized nucleoporin contributes to two key events that occur during M-phase exit in metazoans: kinetochore disassembly and nuclear reassembly.
Collapse
Affiliation(s)
- Neil Hattersley
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0653, USA
| | - Dhanya Cheerambathur
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0653, USA
| | - Mark Moyle
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0653, USA
| | - Marine Stefanutti
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Amelia Richardson
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0653, USA
| | - Kian-Yong Lee
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0653, USA
| | - Julien Dumont
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Karen Oegema
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0653, USA
| | - Arshad Desai
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0653, USA.
| |
Collapse
|
22
|
Hattersley N, Desai A. The nucleoporin MEL-28/ELYS: A PP1 scaffold during M-phase exit. Cell Cycle 2017; 16:489-490. [PMID: 28102742 DOI: 10.1080/15384101.2017.1278929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Neil Hattersley
- a Ludwig Cancer Research , University of California , San Diego , CA
| | - Arshad Desai
- a Ludwig Cancer Research , University of California , San Diego , CA
| |
Collapse
|
23
|
Gómez-Saldivar G, Fernandez A, Hirano Y, Mauro M, Lai A, Ayuso C, Haraguchi T, Hiraoka Y, Piano F, Askjaer P. Identification of Conserved MEL-28/ELYS Domains with Essential Roles in Nuclear Assembly and Chromosome Segregation. PLoS Genet 2016; 12:e1006131. [PMID: 27341616 PMCID: PMC4920428 DOI: 10.1371/journal.pgen.1006131] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 05/26/2016] [Indexed: 11/19/2022] Open
Abstract
Nucleoporins are the constituents of nuclear pore complexes (NPCs) and are essential regulators of nucleocytoplasmic transport, gene expression and genome stability. The nucleoporin MEL-28/ELYS plays a critical role in post-mitotic NPC reassembly through recruitment of the NUP107-160 subcomplex, and is required for correct segregation of mitotic chromosomes. Here we present a systematic functional and structural analysis of MEL-28 in C. elegans early development and human ELYS in cultured cells. We have identified functional domains responsible for nuclear envelope and kinetochore localization, chromatin binding, mitotic spindle matrix association and chromosome segregation. Surprisingly, we found that perturbations to MEL-28’s conserved AT-hook domain do not affect MEL-28 localization although they disrupt MEL-28 function and delay cell cycle progression in a DNA damage checkpoint-dependent manner. Our analyses also uncover a novel meiotic role of MEL-28. Together, these results show that MEL-28 has conserved structural domains that are essential for its fundamental roles in NPC assembly and chromosome segregation. Most animal cells have a nucleus that contains the genetic material: the chromosomes. The nucleus is enclosed by the nuclear envelope, which provides a physical barrier between the chromosomes and the surrounding cytoplasm, and enables precisely controlled transport of proteins into and out of the nucleus. Transport occurs through nuclear pore complexes, which consist of multiple copies of ~30 different proteins called nucleoporins. Although the composition of nuclear pore complexes is known, the mechanisms of their assembly and function are still unclear. We have analyzed the nucleoporin MEL-28/ELYS through a systematic dissection of functional domains both in the nematode Caenorhabditis elegans and in human cells. Interestingly, MEL-28/ELYS localizes not only to nuclear pore complexes, but is also associated with chromosomal structures known as kinetochores during cell division. Our studies have revealed that even small perturbations in MEL-28/ELYS can have dramatic consequences on nuclear pore complex assembly as well as on separation of chromosomes during cell division. Surprisingly, inhibition of MEL-28/ELYS causes cell-cycle delay, suggesting activation of a cellular surveillance system for chromosomal damages. Finally, we conclude that the structural domains of MEL-28/ELYS are conserved from nematodes to humans.
Collapse
Affiliation(s)
- Georgina Gómez-Saldivar
- Andalusian Center for Developmental Biology (CABD), CSIC/Junta de Andalucia/Universidad Pablo de Olavide, Seville, Spain
| | - Anita Fernandez
- Biology Department, Fairfield University, Fairfield, Connecticut, United States of America
- * E-mail: (AF); (PA)
| | - Yasuhiro Hirano
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Michael Mauro
- Biology Department, Fairfield University, Fairfield, Connecticut, United States of America
| | - Allison Lai
- Biology Department, Fairfield University, Fairfield, Connecticut, United States of America
| | - Cristina Ayuso
- Andalusian Center for Developmental Biology (CABD), CSIC/Junta de Andalucia/Universidad Pablo de Olavide, Seville, Spain
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Fabio Piano
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
- New York University, Abu Dhabi, United Arab Emirates
| | - Peter Askjaer
- Andalusian Center for Developmental Biology (CABD), CSIC/Junta de Andalucia/Universidad Pablo de Olavide, Seville, Spain
- * E-mail: (AF); (PA)
| |
Collapse
|
24
|
Schwartz M, Travesa A, Martell SW, Forbes DJ. Analysis of the initiation of nuclear pore assembly by ectopically targeting nucleoporins to chromatin. Nucleus 2015; 6:40-54. [PMID: 25602437 PMCID: PMC4615246 DOI: 10.1080/19491034.2015.1004260] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Nuclear pore complexes (NPCs) form the gateway to the nucleus, mediating virtually all nucleocytoplasmic trafficking. Assembly of a nuclear pore complex requires the organization of many soluble sub-complexes into a final massive structure embedded in the nuclear envelope. By use of a LacI/LacO reporter system, we were able to assess nucleoporin (Nup) interactions, show that they occur with a high level of specificity, and identify nucleoporins sufficient for initiation of the complex process of NPC assembly in vivo. Eleven nucleoporins from different sub-complexes were fused to LacI-CFP and transfected separately into a human cell line containing a stably integrated LacO DNA array. The LacI-Nup fusion proteins, which bound to the array, were examined for their ability to recruit endogenous nucleoporins to the intranuclear LacO site. Many could recruit nucleoporins of the same sub-complex and a number could also recruit other sub-complexes. Strikingly, Nup133 and Nup107 of the Nup107/160 subcomplex and Nup153 and Nup50 of the nuclear pore basket recruited a near full complement of nucleoporins to the LacO array. Furthermore, Nup133 and Nup153 efficiently targeted the LacO array to the nuclear periphery. Our data support a hierarchical, seeded assembly pathway and identify Nup133 and Nup153 as effective “seeds” for NPC assembly. In addition, we show that this system can be applied to functional studies of individual nucleoporin domains as well as to specific nucleoporin disease mutations. We find that the R391H cardiac arrhythmia/sudden death mutation of Nup155 prevents both its subcomplex assembly and nuclear rim targeting of the LacO array.
Collapse
Affiliation(s)
- Michal Schwartz
- a Section of Cell and Developmental Biology; Division of Biological Sciences 0347; University of California-San Diego ; La Jolla , CA USA
| | | | | | | |
Collapse
|
25
|
Dickmanns A, Kehlenbach RH, Fahrenkrog B. Nuclear Pore Complexes and Nucleocytoplasmic Transport: From Structure to Function to Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 320:171-233. [PMID: 26614874 DOI: 10.1016/bs.ircmb.2015.07.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nucleocytoplasmic transport is an essential cellular activity and occurs via nuclear pore complexes (NPCs) that reside in the double membrane of the nuclear envelope. Significant progress has been made during the past few years in unravelling the ultrastructural organization of NPCs and their constituents, the nucleoporins, by cryo-electron tomography and X-ray crystallography. Mass spectrometry and genomic approaches have provided deeper insight into the specific regulation and fine tuning of individual nuclear transport pathways. Recent research has also focused on the roles nucleoporins play in health and disease, some of which go beyond nucleocytoplasmic transport. Here we review emerging results aimed at understanding NPC architecture and nucleocytoplasmic transport at the atomic level, elucidating the specific function individual nucleoporins play in nuclear trafficking, and finally lighting up the contribution of nucleoporins and nuclear transport receptors in human diseases, such as cancer and certain genetic disorders.
Collapse
Affiliation(s)
- Achim Dickmanns
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Ralph H Kehlenbach
- Department of Molecular Biology, Faculty of Medicine, Georg-August-University of Göttingen, Göttingen, Germany
| | - Birthe Fahrenkrog
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi, Belgium
| |
Collapse
|
26
|
Hurt E, Beck M. Towards understanding nuclear pore complex architecture and dynamics in the age of integrative structural analysis. Curr Opin Cell Biol 2015; 34:31-8. [PMID: 25938906 DOI: 10.1016/j.ceb.2015.04.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/26/2015] [Accepted: 04/16/2015] [Indexed: 11/29/2022]
Abstract
Determining the functional architecture of the nuclear pore complex, that remains only partially understood, requires bridging across different length scales. Recent technological advances in quantitative and cross-linking mass spectrometry, super-resolution fluorescence microscopy and electron microscopy have enormously accelerated the integration of different types of data into coherent structural models. Moreover, high-resolution structural analysis of nucleoporins and their in vitro reconstitution into complexes is now facilitated by the use of thermostable orthologs. In this review we highlight how the application of such technologies has led to novel insights into nuclear pore architecture and to a paradigm shift. Today nuclear pores are not anymore seen as static facilitators of nucleocytoplasmic transport but ensembles of multiple overlaying functional states that are involved in various cellular processes.
Collapse
Affiliation(s)
- Ed Hurt
- Biochemistry Center of Heidelberg University, INF328, D-69120 Heidelberg, Germany.
| | - Martin Beck
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, D-69117 Heidelberg, Germany.
| |
Collapse
|
27
|
Morchoisne-Bolhy S, Geoffroy MC, Bouhlel IB, Alves A, Audugé N, Baudin X, Van Bortle K, Powers MA, Doye V. Intranuclear dynamics of the Nup107-160 complex. Mol Biol Cell 2015; 26:2343-56. [PMID: 25904327 PMCID: PMC4462950 DOI: 10.1091/mbc.e15-02-0060] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/14/2015] [Indexed: 12/11/2022] Open
Abstract
The Nup107-160 nuclear pore subcomplex (Y-complex) and the chromatin-binding nucleoporin Elys dynamically colocalize with Nup98 and the export factor CRM1 in nuclear GLFG bodies present in HeLa sublines. Thus, in addition to its structural role at the NPC and its mitotic functions, the Y-complex may also act inside the nucleus during interphase. Nup98 is a glycine-leucine-phenylalanine-glycine (GLFG) repeat–containing nucleoporin that, in addition to nuclear transport, contributes to multiple aspects of gene regulation. Previous studies revealed its dynamic localization within intranuclear structures known as GLFG bodies. Here we show that the mammalian Nup107-160 complex (Y-complex), a major scaffold module of the nuclear pore, together with its partner Elys, colocalizes with Nup98 in GLFG bodies. The frequency and size of GLFG bodies vary among HeLa sublines, and we find that an increased level of Nup98 is associated with the presence of bodies. Recruitment of the Y-complex and Elys into GLFG bodies requires the C-terminal domain of Nup98. During cell division, Y-Nup–containing GLFG bodies are disassembled in mitotic prophase, significantly ahead of nuclear pore disassembly. FRAP studies revealed that, unlike at nuclear pores, the Y-complex shuttles into and out of GLFG bodies. Finally, we show that within the nucleoplasm, a fraction of Nup107, a key component of the Y-complex, displays reduced mobility, suggesting interaction with other nuclear components. Together our data uncover a previously neglected intranuclear pool of the Y-complex that may underscore a yet-uncharacterized function of these nucleoporins inside the nucleus, even in cells that contain no detectable GLFG bodies.
Collapse
Affiliation(s)
| | - Marie-Claude Geoffroy
- Institut Jacques Monod, CNRS UMR7592-Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Imène B Bouhlel
- Institut Jacques Monod, CNRS UMR7592-Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Annabelle Alves
- Institut Jacques Monod, CNRS UMR7592-Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France Ecole Doctorale Gènes Génomes Cellules, Université Paris Sud, 91405 Orsay, France
| | - Nicolas Audugé
- Institut Jacques Monod, CNRS UMR7592-Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Xavier Baudin
- ImagoSeine Imaging Facility, Institut Jacques Monod, 75205 Paris, France
| | - Kevin Van Bortle
- Department of Cell Biology and Biochemistry, Cell and Developmental Biology Graduate Program, Emory University School of Medicine, Atlanta, GA 30322
| | - Maureen A Powers
- Department of Cell Biology and Biochemistry, Cell and Developmental Biology Graduate Program, Emory University School of Medicine, Atlanta, GA 30322
| | - Valérie Doye
- Institut Jacques Monod, CNRS UMR7592-Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| |
Collapse
|
28
|
Mojica SA, Hovis KM, Frieman MB, Tran B, Hsia RC, Ravel J, Jenkins-Houk C, Wilson KL, Bavoil PM. SINC, a type III secreted protein of Chlamydia psittaci, targets the inner nuclear membrane of infected cells and uninfected neighbors. Mol Biol Cell 2015; 26:1918-34. [PMID: 25788290 PMCID: PMC4436835 DOI: 10.1091/mbc.e14-11-1530] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/06/2015] [Indexed: 12/31/2022] Open
Abstract
SINC, a new type III secreted protein of the avian and human pathogen Chlamydia psittaci, uniquely targets the nuclear envelope of C. psittaci-infected cells and uninfected neighboring cells. Digitonin-permeabilization studies of SINC-GFP-transfected HeLa cells indicate that SINC targets the inner nuclear membrane. SINC localization at the nuclear envelope was blocked by importazole, confirming SINC import into the nucleus. Candidate partners were identified by proximity to biotin ligase-fused SINC in HEK293 cells and mass spectrometry (BioID). This strategy identified 22 candidates with high confidence, including the nucleoporin ELYS, lamin B1, and four proteins (emerin, MAN1, LAP1, and LBR) of the inner nuclear membrane, suggesting that SINC interacts with host proteins that control nuclear structure, signaling, chromatin organization, and gene silencing. GFP-SINC association with the native LEM-domain protein emerin, a conserved component of nuclear "lamina" structure, or with a complex containing emerin was confirmed by GFP pull down. Our findings identify SINC as a novel bacterial protein that targets the nuclear envelope with the capability of globally altering nuclear envelope functions in the infected host cell and neighboring uninfected cells. These properties may contribute to the aggressive virulence of C. psittaci.
Collapse
Affiliation(s)
- Sergio A Mojica
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201
| | - Kelley M Hovis
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201
| | - Matthew B Frieman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 20201
| | - Bao Tran
- Mass Spectrometry Center, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Ru-ching Hsia
- Core Imaging Facility and Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201
| | - Jacques Ravel
- Institute for Genome Science, University of Maryland School of Medicine, Baltimore, MD 20201
| | - Clifton Jenkins-Houk
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Katherine L Wilson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Patrik M Bavoil
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201
| |
Collapse
|
29
|
Abstract
Understanding of the roles that HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 1 (HOS1) plays in the plant's ability to sense and respond to environmental signals has grown dramatically. Mechanisms through which HOS1 affects plant development have been uncovered, and the broader consequences of hos1 on the plant's ability to perceive and respond to its environment have been investigated. As such, it has been possible to place HOS1 as a key integrator of temperature information in response to both acute signals and cues that indicate time of year into developmental processes that are essential for plant survival. This review summarizes knowledge of HOS1's form and function, and contextualizes this information so that it is relevant for better understanding the processes of cold signalling, flowering time, and nuclear pore complex function more broadly.
Collapse
Affiliation(s)
- Dana R MacGregor
- John Innes Centre, Department of Crop Genetics, Norwich Research Park, Colney Lane, Norwich, Norfolk NR4 7UH, UK
| | - Steven Penfield
- John Innes Centre, Department of Crop Genetics, Norwich Research Park, Colney Lane, Norwich, Norfolk NR4 7UH, UK
| |
Collapse
|
30
|
Zierhut C, Jenness C, Kimura H, Funabiki H. Nucleosomal regulation of chromatin composition and nuclear assembly revealed by histone depletion. Nat Struct Mol Biol 2014; 21:617-25. [PMID: 24952593 PMCID: PMC4082469 DOI: 10.1038/nsmb.2845] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/23/2014] [Indexed: 12/13/2022]
Abstract
Nucleosomes are the fundamental unit of chromatin, but analysis of transcription-independent nucleosome functions has been complicated by the gene-expression changes resulting from histone manipulation. Here we solve this dilemma by developing Xenopus laevis egg extracts deficient for nucleosome formation and by analyzing the proteomic landscape and behavior of nucleosomal chromatin and nucleosome-free DNA. We show that although nucleosome-free DNA can recruit nuclear-envelope membranes, nucleosomes are required for spindle assembly and for formation of the lamina and of nuclear pore complexes (NPCs). We show that, in addition to the Ran G-nucleotide exchange factor RCC1, ELYS, the initiator of NPC formation, fails to associate with naked DNA but directly binds histone H2A-H2B dimers and nucleosomes. Tethering ELYS and RCC1 to DNA bypasses the requirement for nucleosomes in NPC formation in a synergistic manner. Thus, the minimal essential function of nucleosomes in NPC formation is to recruit RCC1 and ELYS.
Collapse
Affiliation(s)
- Christian Zierhut
- Laboratory of Chromosome and Cell Biology, Rockefeller University, New York, New York, USA
| | - Christopher Jenness
- Laboratory of Chromosome and Cell Biology, Rockefeller University, New York, New York, USA
| | - Hiroshi Kimura
- 1] Graduate School of Frontier Biosciences, Osaka University, Suita, Japan. [2] Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Suita, Japan
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, Rockefeller University, New York, New York, USA
| |
Collapse
|
31
|
Kim DI, Birendra KC, Zhu W, Motamedchaboki K, Doye V, Roux KJ. Probing nuclear pore complex architecture with proximity-dependent biotinylation. Proc Natl Acad Sci U S A 2014; 111:E2453-61. [PMID: 24927568 PMCID: PMC4066523 DOI: 10.1073/pnas.1406459111] [Citation(s) in RCA: 381] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Proximity-dependent biotin identification (BioID) is a method for identifying protein associations that occur in vivo. By fusing a promiscuous biotin ligase to a protein of interest expressed in living cells, BioID permits the labeling of proximate proteins during a defined labeling period. In this study we used BioID to study the human nuclear pore complex (NPC), one of the largest macromolecular assemblies in eukaryotes. Anchored within the nuclear envelope, NPCs mediate the nucleocytoplasmic trafficking of numerous cellular components. We applied BioID to constituents of the Nup107-160 complex and the Nup93 complex, two conserved NPC subcomplexes. A strikingly different set of NPC constituents was detected depending on the position of these BioID-fusion proteins within the NPC. By applying BioID to several constituents located throughout the extremely stable Nup107-160 subcomplex, we refined our understanding of this highly conserved subcomplex, in part by demonstrating a direct interaction of Nup43 with Nup85. Furthermore, by using the extremely stable Nup107-160 structure as a molecular ruler, we defined the practical labeling radius of BioID. These studies further our understanding of human NPC organization and demonstrate that BioID is a valuable tool for exploring the constituency and organization of large protein assemblies in living cells.
Collapse
Affiliation(s)
- Dae In Kim
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104
| | - K C Birendra
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104
| | - Wenhong Zhu
- Sanford-Burnham Proteomics Facility, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Khatereh Motamedchaboki
- Sanford-Burnham Proteomics Facility, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Valérie Doye
- Institut Jacques Monod, Unité Mixte de Recherche 7592, Centre National de la Recherche Scientifique, Université Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France; and
| | - Kyle J Roux
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104;Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105
| |
Collapse
|
32
|
Inoue A, Zhang Y. Nucleosome assembly is required for nuclear pore complex assembly in mouse zygotes. Nat Struct Mol Biol 2014; 21:609-16. [PMID: 24908396 DOI: 10.1038/nsmb.2839] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/08/2014] [Indexed: 12/15/2022]
Abstract
Packaging of DNA into nucleosomes not only helps to store genetic information but also creates diverse means for regulating DNA-templated processes. Attempts to reveal additional functions of the nucleosome have been unsuccessful, owing to cell lethality caused by nucleosome deletion. Taking advantage of the mammalian fertilization process, in which sperm DNA assembles into nucleosomes de novo, we generated nucleosome-depleted (ND) paternal pronuclei by depleting maternal histone H3.3 or its chaperone HIRA in mouse zygotes. We found that the ND pronucleus forms a nuclear envelope devoid of nuclear pore complexes (NPCs). Loss of NPCs is accompanied by defective localization of ELYS, a nucleoporin essential for NPC assembly, to the nuclear rim. Interestingly, tethering ELYS to the nuclear rim of the ND nucleus rescues NPC assembly. Our study thus demonstrates that nucleosome assembly is a prerequisite for NPC assembly during paternal pronuclear formation.
Collapse
Affiliation(s)
- Azusa Inoue
- 1] Howard Hughes Medical Institute, Boston, Massachusetts, USA. [2] Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA. [3] Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA. [4] Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Yi Zhang
- 1] Howard Hughes Medical Institute, Boston, Massachusetts, USA. [2] Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA. [3] Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA. [4] Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA. [5] Harvard Stem Cell Institute, Boston, Massachusetts, USA
| |
Collapse
|
33
|
Bui KH, von Appen A, DiGuilio AL, Ori A, Sparks L, Mackmull MT, Bock T, Hagen W, Andrés-Pons A, Glavy JS, Beck M. Integrated structural analysis of the human nuclear pore complex scaffold. Cell 2014; 155:1233-43. [PMID: 24315095 DOI: 10.1016/j.cell.2013.10.055] [Citation(s) in RCA: 269] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/22/2013] [Accepted: 10/02/2013] [Indexed: 11/28/2022]
Abstract
The nuclear pore complex (NPC) is a fundamental component of all eukaryotic cells that facilitates nucleocytoplasmic exchange of macromolecules. It is assembled from multiple copies of about 30 nucleoporins. Due to its size and complex composition, determining the structure of the NPC is an enormous challenge, and the overall architecture of the NPC scaffold remains elusive. In this study, we have used an integrated approach based on electron tomography, single-particle electron microscopy, and crosslinking mass spectrometry to determine the structure of a major scaffold motif of the human NPC, the Nup107 subcomplex, in both isolation and integrated into the NPC. We show that 32 copies of the Nup107 subcomplex assemble into two reticulated rings, one each at the cytoplasmic and nuclear face of the NPC. This arrangement may explain how changes of the diameter are realized that would accommodate transport of huge cargoes.
Collapse
Affiliation(s)
- Khanh Huy Bui
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bernis C, Swift-Taylor B, Nord M, Carmona S, Chook YM, Forbes DJ. Transportin acts to regulate mitotic assembly events by target binding rather than Ran sequestration. Mol Biol Cell 2014; 25:992-1009. [PMID: 24478460 PMCID: PMC3967982 DOI: 10.1091/mbc.e13-08-0506] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Transportin-specific molecular tools are used to show that the mitotic cell contains importin β and transportin “global positioning system” pathways that are mechanistically parallel. Transportin works to control where the spindle, nuclear membrane, and nuclear pores are formed by directly affecting assembly factor function. The nuclear import receptors importin β and transportin play a different role in mitosis: both act phenotypically as spatial regulators to ensure that mitotic spindle, nuclear membrane, and nuclear pore assembly occur exclusively around chromatin. Importin β is known to act by repressing assembly factors in regions distant from chromatin, whereas RanGTP produced on chromatin frees factors from importin β for localized assembly. The mechanism of transportin regulation was unknown. Diametrically opposed models for transportin action are as follows: 1) indirect action by RanGTP sequestration, thus down-regulating release of assembly factors from importin β, and 2) direct action by transportin binding and inhibiting assembly factors. Experiments in Xenopus assembly extracts with M9M, a superaffinity nuclear localization sequence that displaces cargoes bound by transportin, or TLB, a mutant transportin that can bind cargo and RanGTP simultaneously, support direct inhibition. Consistently, simple addition of M9M to mitotic cytosol induces microtubule aster assembly. ELYS and the nucleoporin 107–160 complex, components of mitotic kinetochores and nuclear pores, are blocked from binding to kinetochores in vitro by transportin, a block reversible by M9M. In vivo, 30% of M9M-transfected cells have spindle/cytokinesis defects. We conclude that the cell contains importin β and transportin “global positioning system”or “GPS” pathways that are mechanistically parallel.
Collapse
Affiliation(s)
- Cyril Bernis
- Section of Cell and Developmental Biology, Division of Biological Sciences 0347, University of California-San Diego, La Jolla, CA 92093-0347 Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9041
| | | | | | | | | | | |
Collapse
|