1
|
Anton B, Besalú M, Fornes O, Bonet J, Molina A, Molina-Fernandez R, De Las Cuevas G, Fernandez-Fuentes N, Oliva B. On the use of direct-coupling analysis with a reduced alphabet of amino acids combined with super-secondary structure motifs for protein fold prediction. NAR Genom Bioinform 2021; 3:lqab027. [PMID: 33937764 PMCID: PMC8061457 DOI: 10.1093/nargab/lqab027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/27/2021] [Accepted: 03/26/2021] [Indexed: 11/12/2022] Open
Abstract
Direct-coupling analysis (DCA) for studying the coevolution of residues in proteins has been widely used to predict the three-dimensional structure of a protein from its sequence. We present RADI/raDIMod, a variation of the original DCA algorithm that groups chemically equivalent residues combined with super-secondary structure motifs to model protein structures. Interestingly, the simplification produced by grouping amino acids into only two groups (polar and non-polar) is still representative of the physicochemical nature that characterizes the protein structure and it is in line with the role of hydrophobic forces in protein-folding funneling. As a result of a compressed alphabet, the number of sequences required for the multiple sequence alignment is reduced. The number of long-range contacts predicted is limited; therefore, our approach requires the use of neighboring sequence-positions. We use the prediction of secondary structure and motifs of super-secondary structures to predict local contacts. We use RADI and raDIMod, a fragment-based protein structure modelling, achieving near native conformations when the number of super-secondary motifs covers >30-50% of the sequence. Interestingly, although different contacts are predicted with different alphabets, they produce similar structures.
Collapse
Affiliation(s)
- Bernat Anton
- Structural Bioinformatics Lab (GRIB-IMIM), Department of Experimental and Health Science, University Pompeu Fabra, Barcelona 08005, Catalonia, Spain
| | - Mireia Besalú
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona 08028, Catalonia, Spain
| | - Oriol Fornes
- Structural Bioinformatics Lab (GRIB-IMIM), Department of Experimental and Health Science, University Pompeu Fabra, Barcelona 08005, Catalonia, Spain
| | - Jaume Bonet
- Structural Bioinformatics Lab (GRIB-IMIM), Department of Experimental and Health Science, University Pompeu Fabra, Barcelona 08005, Catalonia, Spain
| | - Alexis Molina
- Electronic and Atomic Protein Modeling, Life Sciences, Barcelona Supercomputing Center, Barcelona 08034, Catalonia, Spain
| | - Ruben Molina-Fernandez
- Structural Bioinformatics Lab (GRIB-IMIM), Department of Experimental and Health Science, University Pompeu Fabra, Barcelona 08005, Catalonia, Spain
| | - Gemma De Las Cuevas
- Institut für Theoritische Physik, School of Mathematics, Computer Science and Physics, Universität Innsbruck. A-6020 Innsbruck, Austria
| | - Narcis Fernandez-Fuentes
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, SY233EB Aberystwyth, United Kingdom
| | - Baldo Oliva
- Structural Bioinformatics Lab (GRIB-IMIM), Department of Experimental and Health Science, University Pompeu Fabra, Barcelona 08005, Catalonia, Spain
| |
Collapse
|
2
|
MacCarthy E, Perry D, Kc DB. Advances in Protein Super-Secondary Structure Prediction and Application to Protein Structure Prediction. Methods Mol Biol 2019; 1958:15-45. [PMID: 30945212 DOI: 10.1007/978-1-4939-9161-7_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Due to the advancement in various sequencing technologies, the gap between the number of protein sequences and the number of experimental protein structures is ever increasing. Community-wide initiatives like CASP have resulted in considerable efforts in the development of computational methods to accurately model protein structures from sequences. Sequence-based prediction of super-secondary structure has direct application in protein structure prediction, and there have been significant efforts in the prediction of super-secondary structure in the last decade. In this chapter, we first introduce the protein structure prediction problem and highlight some of the important progress in the field of protein structure prediction. Next, we discuss recent methods for the prediction of super-secondary structures. Finally, we discuss applications of super-secondary structure prediction in structure prediction/analysis of proteins. We also discuss prediction of protein structures that are composed of simple super-secondary structure repeats and protein structures that are composed of complex super-secondary structure repeats. Finally, we also discuss the recent trends in the field.
Collapse
Affiliation(s)
- Elijah MacCarthy
- Department of Computational Science and Engineering, North Carolina A&T State University, Greensboro, NC, USA
| | - Derrick Perry
- Department of Computational Science and Engineering, North Carolina A&T State University, Greensboro, NC, USA
| | - Dukka B Kc
- Department of Computational Science and Engineering, North Carolina A&T State University, Greensboro, NC, USA.
| |
Collapse
|
3
|
Unraveling the meaning of chemical shifts in protein NMR. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1564-1576. [PMID: 28716441 DOI: 10.1016/j.bbapap.2017.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/29/2017] [Accepted: 07/07/2017] [Indexed: 12/14/2022]
Abstract
Chemical shifts are among the most informative parameters in protein NMR. They provide wealth of information about protein secondary and tertiary structure, protein flexibility, and protein-ligand binding. In this report, we review the progress in interpreting and utilizing protein chemical shifts that has occurred over the past 25years, with a particular focus on the large body of work arising from our group and other Canadian NMR laboratories. More specifically, this review focuses on describing, assessing, and providing some historical context for various chemical shift-based methods to: (1) determine protein secondary and super-secondary structure; (2) derive protein torsion angles; (3) assess protein flexibility; (4) predict residue accessible surface area; (5) refine 3D protein structures; (6) determine 3D protein structures and (7) characterize intrinsically disordered proteins. This review also briefly covers some of the methods that we previously developed to predict chemical shifts from 3D protein structures and/or protein sequence data. It is hoped that this review will help to increase awareness of the considerable utility of NMR chemical shifts in structural biology and facilitate more widespread adoption of chemical-shift based methods by the NMR spectroscopists, structural biologists, protein biophysicists, and biochemists worldwide. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.
Collapse
|
4
|
Mackenzie CO, Grigoryan G. Protein structural motifs in prediction and design. Curr Opin Struct Biol 2017; 44:161-167. [PMID: 28460216 PMCID: PMC5513761 DOI: 10.1016/j.sbi.2017.03.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/18/2017] [Accepted: 03/28/2017] [Indexed: 01/11/2023]
Abstract
The Protein Data Bank (PDB) has been an integral resource for shaping our fundamental understanding of protein structure and for the advancement of such applications as protein design and structure prediction. Over the years, information from the PDB has been used to generate models ranging from specific structural mechanisms to general statistical potentials. With accumulating structural data, it has become possible to mine for more complete and complex structural observations, deducing more accurate generalizations. Motif libraries, which capture recurring structural features along with their sequence preferences, have exposed modularity in the structural universe and found successful application in various problems of structural biology. Here we summarize recent achievements in this arena, focusing on subdomain level structural patterns and their applications to protein design and structure prediction, and suggest promising future directions as the structural database continues to grow.
Collapse
Affiliation(s)
- Craig O Mackenzie
- Institute for Quantitative Biomedical Sciences, Dartmouth College, Hanover, NH 03755, United States
| | - Gevorg Grigoryan
- Institute for Quantitative Biomedical Sciences, Dartmouth College, Hanover, NH 03755, United States; Department of Computer Science, Dartmouth College, Hanover, NH 03755, United States.
| |
Collapse
|
5
|
Pilla KB, Otting G, Huber T. Protein Structure Determination by Assembling Super-Secondary Structure Motifs Using Pseudocontact Shifts. Structure 2017; 25:559-568. [DOI: 10.1016/j.str.2017.01.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/17/2017] [Accepted: 01/29/2017] [Indexed: 11/26/2022]
|
6
|
Dybas JM, Fiser A. Development of a motif-based topology-independent structure comparison method to identify evolutionarily related folds. Proteins 2016; 84:1859-1874. [PMID: 27671894 PMCID: PMC5118133 DOI: 10.1002/prot.25169] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/17/2016] [Accepted: 08/25/2016] [Indexed: 11/09/2022]
Abstract
Structure conservation, functional similarities, and homologous relationships that exist across diverse protein topologies suggest that some regions of the protein fold universe are continuous. However, the current structure classification systems are based on hierarchical organizations, which cannot accommodate structural relationships that span fold definitions. Here, we describe a novel, super-secondary-structure motif-based, topology-independent structure comparison method (SmotifCOMP) that is able to quantitatively identify structural relationships between disparate topologies. The basis of SmotifCOMP is a systematically defined super-secondary-structure motif library whose representative geometries are shown to be saturated in the Protein Data Bank and exhibit a unique distribution within the known folds. SmotifCOMP offers a robust and quantitative technique to compare domains that adopt different topologies since the method does not rely on a global superposition. SmotifCOMP is used to perform an exhaustive comparison of the known folds and the identified relationships are used to produce a nonhierarchical representation of the fold space that reflects the notion of a continuous and connected fold universe. The current work offers insight into previously hypothesized evolutionary relationships between disparate folds and provides a resource for exploring novel ones. Proteins 2016; 84:1859-1874. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joseph M. Dybas
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue Bronx, NY 10461, USA
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue Bronx, NY 10461, USA
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue Bronx, NY 10461, USA
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue Bronx, NY 10461, USA
| |
Collapse
|
7
|
Abstract
Here, we systematically decompose the known protein structural universe into its basic elements, which we dub tertiary structural motifs (TERMs). A TERM is a compact backbone fragment that captures the secondary, tertiary, and quaternary environments around a given residue, comprising one or more disjoint segments (three on average). We seek the set of universal TERMs that capture all structure in the Protein Data Bank (PDB), finding remarkable degeneracy. Only ∼600 TERMs are sufficient to describe 50% of the PDB at sub-Angstrom resolution. However, more rare geometries also exist, and the overall structural coverage grows logarithmically with the number of TERMs. We go on to show that universal TERMs provide an effective mapping between sequence and structure. We demonstrate that TERM-based statistics alone are sufficient to recapitulate close-to-native sequences given either NMR or X-ray backbones. Furthermore, sequence variability predicted from TERM data agrees closely with evolutionary variation. Finally, locations of TERMs in protein chains can be predicted from sequence alone based on sequence signatures emergent from TERM instances in the PDB. For multisegment motifs, this method identifies spatially adjacent fragments that are not contiguous in sequence-a major bottleneck in structure prediction. Although all TERMs recur in diverse proteins, some appear specialized for certain functions, such as interface formation, metal coordination, or even water binding. Structural biology has benefited greatly from previously observed degeneracies in structure. The decomposition of the known structural universe into a finite set of compact TERMs offers exciting opportunities toward better understanding, design, and prediction of protein structure.
Collapse
|
8
|
Abstract
Globular proteins typically fold into tightly packed arrays of regular secondary structures. We developed a model to approximate the compact parallel and antiparallel arrangement of α-helices and β-strands, enumerated all possible topologies formed by up to five secondary structural elements (SSEs), searched for their occurrence in spatial structures of proteins, and documented their frequencies of occurrence in the PDB. The enumeration model grows larger super-secondary structure patterns (SSPs) by combining pairs of smaller patterns, a process that approximates a potential path of protein fold evolution. The most prevalent SSPs are typically present in superfolds such as the Rossmann-like fold, the ferredoxin-like fold, and the Greek key motif, whereas the less frequent SSPs often possess uncommon structure features such as split β-sheets, left-handed connections, and crossing loops. This complete SSP enumeration model, for the first time, allows us to investigate which theoretically possible SSPs are not observed in available protein structures. All SSPs with up to four SSEs occurred in proteins. However, among the SSPs with five SSEs, approximately 20% (218) are absent from existing folds. Of these unobserved SSPs, 80% contain two or more uncommon structure features. To facilitate future efforts in protein structure classification, engineering, and design, we provide the resulting patterns and their frequency of occurrence in proteins at: http://prodata.swmed.edu/ssps/.
Collapse
|
9
|
Vallat B, Madrid-Aliste C, Fiser A. Modularity of Protein Folds as a Tool for Template-Free Modeling of Structures. PLoS Comput Biol 2015; 11:e1004419. [PMID: 26252221 PMCID: PMC4529212 DOI: 10.1371/journal.pcbi.1004419] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/30/2015] [Indexed: 12/25/2022] Open
Abstract
Predicting the three-dimensional structure of proteins from their amino acid sequences remains a challenging problem in molecular biology. While the current structural coverage of proteins is almost exclusively provided by template-based techniques, the modeling of the rest of the protein sequences increasingly require template-free methods. However, template-free modeling methods are much less reliable and are usually applicable for smaller proteins, leaving much space for improvement. We present here a novel computational method that uses a library of supersecondary structure fragments, known as Smotifs, to model protein structures. The library of Smotifs has saturated over time, providing a theoretical foundation for efficient modeling. The method relies on weak sequence signals from remotely related protein structures to create a library of Smotif fragments specific to the target protein sequence. This Smotif library is exploited in a fragment assembly protocol to sample decoys, which are assessed by a composite scoring function. Since the Smotif fragments are larger in size compared to the ones used in other fragment-based methods, the proposed modeling algorithm, SmotifTF, can employ an exhaustive sampling during decoy assembly. SmotifTF successfully predicts the overall fold of the target proteins in about 50% of the test cases and performs competitively when compared to other state of the art prediction methods, especially when sequence signal to remote homologs is diminishing. Smotif-based modeling is complementary to current prediction methods and provides a promising direction in addressing the structure prediction problem, especially when targeting larger proteins for modeling. Each protein folds into a unique three-dimensional structure that enables it to carry out its biological function. Knowledge of the atomic details of protein structures is therefore a key to understanding their function. Advances in high throughput experimental technologies have lead to an exponential increase in the availability of known protein sequences. Although strong progress has been made in experimental protein structure determination, it remains a fact that more than 99% of structural information is provided by computational modeling methods. We describe here a novel structure prediction method, SmotifTF, which uses a unique library of known protein fragments to assemble the three-dimensional structure of a sequence. The fragment library has saturated over time and therefore provides a complete set of building blocks required for model building. The method performs competitively compared to existing methods of structure prediction.
Collapse
Affiliation(s)
- Brinda Vallat
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Carlos Madrid-Aliste
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| |
Collapse
|
10
|
Karp JM, Erylimaz E, Cowburn D. Correlation of chemical shifts predicted by molecular dynamics simulations for partially disordered proteins. JOURNAL OF BIOMOLECULAR NMR 2015; 61:35-45. [PMID: 25416617 PMCID: PMC4715900 DOI: 10.1007/s10858-014-9879-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 11/17/2014] [Indexed: 06/04/2023]
Abstract
There has been a longstanding interest in being able to accurately predict NMR chemical shifts from structural data. Recent studies have focused on using molecular dynamics (MD) simulation data as input for improved prediction. Here we examine the accuracy of chemical shift prediction for intein systems, which have regions of intrinsic disorder. We find that using MD simulation data as input for chemical shift prediction does not consistently improve prediction accuracy over use of a static X-ray crystal structure. This appears to result from the complex conformational ensemble of the disordered protein segments. We show that using accelerated molecular dynamics (aMD) simulations improves chemical shift prediction, suggesting that methods which better sample the conformational ensemble like aMD are more appropriate tools for use in chemical shift prediction for proteins with disordered regions. Moreover, our study suggests that data accurately reflecting protein dynamics must be used as input for chemical shift prediction in order to correctly predict chemical shifts in systems with disorder.
Collapse
Affiliation(s)
- Jerome M. Karp
- Department of Biochemistry, Albert Einstein College of, Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Ertan Erylimaz
- Department of Biochemistry, Albert Einstein College of, Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - David Cowburn
- Department of Biochemistry, Albert Einstein College of, Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|