1
|
Bandaru M, Sultana OF, Islam MA, Rainier A, Reddy PH. Rlip76 in ageing and Alzheimer's disease: Focus on oxidative stress and mitochondrial mechanisms. Ageing Res Rev 2025; 103:102600. [PMID: 39617058 DOI: 10.1016/j.arr.2024.102600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/12/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
RLIP76 (Rlip), a stress-responsive protein, plays a multifaceted role in cellular function. This protein acts primarily as a glutathione-electrophile conjugate (GS-E) transporter, crucial for detoxifying hazardous compounds and converting them into mercapturic acids. RLIP76 also modulates cytoskeletal motility and membrane plasticity through its role in the Ral-signaling pathway, interacting with RalA and RalB, key small GTPases involved in growth and metastasis. Beyond its ATP-dependent transport functions in various tissues, RLIP76 also demonstrates GTPase Activating Protein (GAP) activity towards Rac1 and Cdc42, with a preference for Ral-GTP over Ral-GDP. Its functions span critical physiological processes including membrane dynamics, oxidative stress response, and mitochondrial dynamics. The protein's widespread expression and evolutionary conservation underscore its significance. Our lab discovered that Rlip interacts with Alzheimer's disease (AD) proteins, amyloid beta and phosphorylated and induce oxidative stress, mitochondrial dysfnction and synaptic damage in AD. Our in vitro studies revealed that overexpression of Rlip reduces mitochondrial abnormalities. Further, our in vivo studies (Rlip+/- mice) revealed that a partial reduction of Rlip in mice (Rlip+/-), leads to mitochondrial abnormalities, elevated oxidative stress, and cognitive deficits resembling late-onset AD, emphasizing the protein's crucial role in neuronal health and disease. Finally, we discuss the experimental cross-breedings of overexpression of mice Rlip TG/TG or Rlip + /- mice with Alzheimer's disease models - earlyonset 5XFAD, late-onset APPKI and Tau transgenic mice, providing new insights into RLIP76's role in AD progression and development. This review summarizes RLIP76's structure, function, and cellular pathways, highlighting its implications in AD and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Madhuri Bandaru
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Omme Fatema Sultana
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Alvir Rainier
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, United States; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA 5. Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
2
|
Wang S, Chen X, Crisman L, Dou X, Winborn CS, Wan C, Puscher H, Yin Q, Kennedy MJ, Shen J. Regulation of cargo exocytosis by a Reps1-Ralbp1-RalA module. SCIENCE ADVANCES 2023; 9:eade2540. [PMID: 36812304 PMCID: PMC9946360 DOI: 10.1126/sciadv.ade2540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Surface levels of membrane proteins are determined by a dynamic balance between exocytosis-mediated surface delivery and endocytosis-dependent retrieval from the cell surface. Imbalances in surface protein levels perturb surface protein homeostasis and cause major forms of human disease such as type 2 diabetes and neurological disorders. Here, we found a Reps1-Ralbp1-RalA module in the exocytic pathway broadly regulating surface protein levels. Reps1 and Ralbp1 form a binary complex that recognizes RalA, a vesicle-bound small guanosine triphosphatases (GTPase) promoting exocytosis through interacting with the exocyst complex. RalA binding results in Reps1 release and formation of a Ralbp1-RalA binary complex. Ralbp1 selectively recognizes GTP-bound RalA but is not a RalA effector. Instead, Ralbp1 binding maintains RalA in an active GTP-bound state. These studies uncovered a segment in the exocytic pathway and, more broadly, revealed a previously unrecognized regulatory mechanism for small GTPases, GTP state stabilization.
Collapse
Affiliation(s)
- Shifeng Wang
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xu Chen
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Lauren Crisman
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Ximing Dou
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Christina S. Winborn
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Chun Wan
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Harrison Puscher
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Qian Yin
- Department of Biological Sciences and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Matthew J. Kennedy
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jingshi Shen
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
3
|
Wen C, Wang C, Hu C, Qi T, Jing R, Wang Y, Zhang M, Shao Y, Pei C. REPS2 downregulation facilitates FGF-induced adhesion and migration in human lens epithelial cells through FAK/Cdc42 signaling and contributes to posterior capsule opacification. Cell Signal 2022; 97:110378. [PMID: 35690292 DOI: 10.1016/j.cellsig.2022.110378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/28/2022]
Abstract
Posterior capsular opacification (PCO) can cause postoperative visual loss after cataract surgery. Residual human lens epithelial cell (HLEC) proliferation, migration, epithelial-mesenchymal transition (EMT) and synthesis of extracellular matrix (ECM) are the entitative reasons for PCO. Low expression of Ral-binding protein 1-associated Eps domain-containing 2 (REPS2) and high levels of basic fibroblast growth factor (b-FGF) were observed in the lens and postoperative aqueous humor of cataract patients. REPS2 was identified as a negative regulator in growth factor signaling; however, its function in HLECs is unknown. This was first investigated in the present study by evaluating REPS2 expression in anterior lens capsules from cataract patients, a mouse cataract model, and HLE-b3 cells. The biological function of REPS2 in HLE-B3 cells was assessed by REPS2 silencing and Cell Counting Kit 8, wound healing, Transwell migration, F-actin staining, G-protein pulldown and western blot assays. In the present study, REPS2 was significantly downregulated in human and mouse cataract capsules and H2O2-treated HLE-B3 cells. REPS2 knockdown increased fibronectin, type I collagen, and α-smooth muscle actin expression levels and stimulated HLECs proliferation and migration; these effects were enhanced by FGF treatment and accompanied with focal adhesion kinase (FAK) phosphorylation, cell division cycle 42 (Cdc42) activation, focal adhesion protein upregulation, and F-actin cytoskeleton reorganization. However, treatment with the FAK inhibitor PF573228 abolished these effects. Thus, REPS2 downregulation in cataract HLECs induces their proliferation and facilitates FGF-induced ECM synthesis, EMT, cell adhesion and migration by activating FAK/Cdc42 signaling, which may underlie PCO pathogenesis.
Collapse
Affiliation(s)
- Chan Wen
- Department of Ophthalmology, first affiliated hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, PR China
| | - Chen Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Conghui Hu
- Department of Ophthalmology, first affiliated hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, PR China
| | - Tiantian Qi
- Department of Ophthalmology, first affiliated hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, PR China
| | - Ruihua Jing
- Department of Ophthalmology, second affiliated hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, PR China
| | - Yunqing Wang
- Department of Ophthalmology, first affiliated hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, PR China
| | - Ming Zhang
- Department of Ophthalmology, first affiliated hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, PR China
| | - Yongping Shao
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China.
| | - Cheng Pei
- Department of Ophthalmology, first affiliated hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, PR China.
| |
Collapse
|
4
|
Haploinsufficiency Interactions between RALBP1 and p53 in ERBB2 and PyVT Models of Mouse Mammary Carcinogenesis. Cancers (Basel) 2021; 13:cancers13133329. [PMID: 34283045 PMCID: PMC8268413 DOI: 10.3390/cancers13133329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Rlip knockout has been reported to prevent cancer in highly cancer-susceptible mice lacking p53, and Rlip knockdown kills many types of cancer cells. In humans, breast cancer shows diverse characteristics, including HER2-driven subtypes and viral-driven subtypes. HER2 can be targeted; however, escape of the cancer from targeted therapies remains a problem. In this work we evaluated the capacity of Rlip knockout to prevent breast cancer in genetically engineered mouse models of HER2-driven breast cancer (Erbb2 model) and polyomavirus-driven breast cancer (PyVT model). We found that in Erbb2 mice, Rlip knockout significantly delayed oncogenesis and reduced the expression of genes associated with poor prognosis in patients. In PyVT mice, Rlip knockout did not delay oncogenesis or tumor growth, but Rlip knockdown reduced tumor metastasis to the lung. We conclude that Rlip inhibitors may significantly improve survival in HER2-positive patients, but are unlikely to offer benefits to patients with polyomavirus-associated tumors. Abstract We recently reported that loss of one or both alleles of Ralbp1, which encodes the stress-protective protein RLIP76 (Rlip), exerts a strong dominant negative effect on both the inherent cancer susceptibility and the chemically inducible cancer susceptibility of mice lacking one or both alleles of the tumor suppressor p53. In this paper, we examined whether congenital Rlip deficiency could prevent genetically-driven breast cancer in two transgenic mouse models: the MMTV-PyVT model, which expresses the polyomavirus middle T antigen (PyVT) under control of the mouse mammary tumor virus promoter (MMTV) and the MMTV-Erbb2 model which expresses MMTV-driven erythroblastic leukemia viral oncogene homolog 2 (Erbb2, HER2/Neu) and frequently acquires p53 mutations. We found that loss of either one or two Rlip alleles had a suppressive effect on carcinogenesis in Erbb2 over-expressing mice. Interestingly, Rlip deficiency did not affect tumor growth but significantly reduced the lung metastatic burden of breast cancer in the viral PyVT model, which does not depend on either Ras or loss of p53. Furthermore, spontaneous tumors of MMTV-PyVT/Rlip+/+ mice showed no regression following Rlip knockdown. Finally, mice lacking one or both Rlip alleles differentially expressed markers for apoptotic signaling, proliferation, angiogenesis, and cell cycling in PyVT and Erbb2 breast tumors. Our results support the efficacy of Rlip depletion in suppressing p53 inactivated cancers, and our findings may yield novel methods for prevention or treatment of cancer in patients with HER2 mutations or tumor HER2 expression.
Collapse
|
5
|
Cornish J, Owen D, Mott HR. RLIP76: A Structural and Functional Triumvirate. Cancers (Basel) 2021; 13:cancers13092206. [PMID: 34064388 PMCID: PMC8124665 DOI: 10.3390/cancers13092206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/12/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
RLIP76/RalBP1 is an ATP-dependent transporter of glutathione conjugates, which is overexpressed in various human cancers, but its diverse functions in normal cells, which include endocytosis, stress response and mitochondrial dynamics, are still not fully understood. The protein can be divided into three distinct regions, each with its own structural properties. At the centre of the protein are two well-defined domains, a GTPase activating protein domain targeting Rho family small G proteins and a small coiled-coil that binds to the Ras family small GTPases RalA and RalB. In engaging with Rho and Ral proteins, RLIP76 bridges these two distinct G protein families. The N-terminal region is predicted to be disordered and is rich in basic amino acids, which may mediate membrane association, consistent with its role in transport. RLIP76 is an ATP-dependent transporter with ATP-binding sites within the N-terminus and the Ral binding domain. Furthermore, RLIP76 is subject to extensive phosphorylation, particularly in the N-terminal region. In contrast, the C-terminal region is thought to form an extensive coiled-coil that could mediate dimerization. Here, we review the structural features of RLIP76, including experimental data and computational predictions, and discuss the implications of its various post-translational modifications.
Collapse
|
6
|
Awasthi S, Singhal SS, Singhal J, Nagaprashantha L, Li H, Yuan YC, Liu Z, Berz D, Igid H, Green WC, Tijani L, Tonk V, Rajan A, Awasthi Y, Singh SP. Anticancer activity of 2'-hydroxyflavanone towards lung cancer. Oncotarget 2018; 9:36202-36219. [PMID: 30546837 PMCID: PMC6281421 DOI: 10.18632/oncotarget.26329] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/21/2018] [Indexed: 12/12/2022] Open
Abstract
In previous studies, we found that 2'-hydroxyflavonone (2HF), a citrus flavonoid, inhibits the growth of renal cell carcinoma in a VHL-dependent manner. This was associated with the inhibition of glutathione S-transferases (GSTs), the first step enzyme of the mercapturic acid pathway that catalyzes formation of glutathione-electrophile conjugates (GS-E). We studied 2HF in small cell (SCLC) and non-small cell (NSCLC) lung cancer cell lines for sensitivity to 2HF antineoplastic activity and to determine the role of the GS-E transporter Rlip (Ral-interacting protein; RLIP76; RALBP1) in the mechanism of action of 2HF. Our results show that 2HF induced apoptosis in both histological types of lung cancer and inhibited proliferation and growth through suppression of CDK4, CCNB1, PIK3CA, AKT and RPS6KB1 (P70S6K) signaling. Increased E-cadherin and reduced fibronectin and vimentin indicated inhibition of epithelial-mesenchymal transition. Additionally, 2HF inhibited efflux of doxorubicin and increased its accumulation in the cells, but did not add to the transport inhibitory effect of anti-Rlip antibodies alone. Binding of Rlip to 2HF was evident from successful purification of Rlip by 2HF affinity chromatography. Consistent with increased drug accumulation, combined treatment with 1-chloro-2, 4-dinitrobenzene, reduced the GI50 of 2HF by an order of magnitude. Results of in-vivo nude mouse xenograft studies of SCLC and NSCLC, which showed that orally administered 2HF inhibited growth of both histological types of lung cancer, confirmed in-vitro study results. Our result suggest that Rlip inhibition is likely a mechanism of action. Our findings are basis of proposing 2HF as therapeutic or preventative drug for lung cancer.
Collapse
Affiliation(s)
- Sanjay Awasthi
- Division of Hematology and Oncology, Department of Internal Medicine, Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| | - Sharad S. Singhal
- Department of Medical Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jyotsana Singhal
- Department of Medical Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Lokesh Nagaprashantha
- Department of Medical Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Hongzhi Li
- Bioinformatics Core Facility, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yate-Ching Yuan
- Bioinformatics Core Facility, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Zheng Liu
- Bioinformatics Core Facility, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - David Berz
- Beverly Hills Cancer Center, Los Angeles, CA 90211, USA
| | - Henry Igid
- Division of Hematology and Oncology, Department of Internal Medicine, Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| | - William C. Green
- Division of Hematology and Oncology, Department of Internal Medicine, Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| | - Lukman Tijani
- Division of Hematology and Oncology, Department of Internal Medicine, Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| | - Vijay Tonk
- Department of Pediatrics, Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| | - Aditya Rajan
- Division of Hematology and Oncology, Department of Internal Medicine, Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| | - Yogesh Awasthi
- Department of Biochemistry and Molecular Biology, the University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sharda P. Singh
- Division of Hematology and Oncology, Department of Internal Medicine, Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
7
|
miR-675-5p enhances tumorigenesis and metastasis of esophageal squamous cell carcinoma by targeting REPS2. Oncotarget 2017; 7:30730-47. [PMID: 27120794 PMCID: PMC5058713 DOI: 10.18632/oncotarget.8950] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 04/08/2016] [Indexed: 12/12/2022] Open
Abstract
Recently H19 has been demonstrated to be up-regulated in esophageal squamous cell carcinoma (ESCC) and shown to be the precursor of miR-675 that encodes miR-675-5p conservatively. miR-675 is overexpressed in many human cancers; however, the function of miR-675-5p is largely unknown in ESCC. In this study, we found that miR-675-5p expression was significantly increased in ESCC tissues and cell lines and related with ESCC progression and poor prognosis. We also showed here that down-regulation of miR-675-5p in ESCC cells dramatically induced cell G1 arrest and reduced cell proliferation, colony formation, migration and invasion in vitro as well as tumorigenesis and tumor metastasis in vivo. We subsequently identified that REPS2 was a target gene of miR-675-5p. We found that inhibition of miR-675-5p up-regulated the expression of REPS2, inhibited RalBP1/RAC1/CDC42 signaling pathway. Inversely, interference of REPS2 abrogated the effect induced by miR-675-5p inhibition, which resembled the function of miR-675-5p up-regulation. Taken together, our findings suggested that miR-675-5p might play an oncogenic role in ESCC through RalBP1/RAC1/CDC42 signaling pathway by inhibiting REPS2 and might serve as a valuable prognostic biomarker and therapeutic target for ESCC patients.
Collapse
|
8
|
Singhal SS, Nagaprashantha L, Singhal P, Singhal S, Singhal J, Awasthi S, Horne D. RLIP76 Inhibition: A Promising Developmental Therapy for Neuroblastoma. Pharm Res 2017; 34:1673-1682. [PMID: 28386633 DOI: 10.1007/s11095-017-2154-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 03/29/2017] [Indexed: 12/13/2022]
Abstract
Refractory and relapsed neuroblastoma (NB) present with significant challenges in clinical management. Though primary NBs largely with wild-type p53 respond well to interventions, dysfunctional signaling in the p53 pathways in a MYCN oncogene driven background is found in a number of children with NB. The p53-mutant NB is largely unresponsive to available therapies and p53-independent targeted therapeutics represents a vital need in pediatric oncology. We analyzed the findings on mercapturic acid pathway (MAP) transporter RLIP76, which has broad and critical effects on multiple pathways as essential for carcinogenesis, oxidative stress and drug-resistance, is over-expressed in NB. RLIP76 inhibition by antibodies or depletion by antisense causes apoptosis and sensitization to chemo-radiotherapy in many cancers. In addition, recent studies indicate that the interactions between p53, MYCN, and WNT regulate apoptosis resistance and protein ubiquitination. RLIP76 and p53 interact with each other and colocalize in NB cells. Targeted depletion/inhibition of RLIP76 causes apoptosis and tumor regression in NB irrespective of p53 status. In the present review, we discuss the mechanisms and the role of RLIP76 in oxidative stress, drug-resistance and clathrin-dependent endocytosis (CDE), and analyze the molecular basis for the role of RLIP76 targeted approaches in the context principal drivers of NB pathogenesis, progression and drug-resistance. The evidence from RLIP76 studies in other cancers, when taken in the context of our recent RLIP76 focused mechanistic studies in NB, provides strong basis for further characterization and development of RLIP76 targeted therapies for NB.
Collapse
Affiliation(s)
- Sharad S Singhal
- Department of Molecular Medicine, Comprehensive Cancer Center and National Medical Center, Beckman Research Institute of City of Hope, Duarte, California, 91010, USA.
| | - Lokesh Nagaprashantha
- Department of Molecular Medicine, Comprehensive Cancer Center and National Medical Center, Beckman Research Institute of City of Hope, Duarte, California, 91010, USA
| | - Preeti Singhal
- University of Texas Health, San Antonio, Texas, 78229, USA
| | - Sulabh Singhal
- University of California at San Diego, La Jolla, California, 92092, USA
| | - Jyotsana Singhal
- Department of Molecular Medicine, Comprehensive Cancer Center and National Medical Center, Beckman Research Institute of City of Hope, Duarte, California, 91010, USA
| | - Sanjay Awasthi
- Texas Tech University Health Sciences Center, Lubbock, Texas, 79430, USA
| | - David Horne
- Department of Molecular Medicine, Comprehensive Cancer Center and National Medical Center, Beckman Research Institute of City of Hope, Duarte, California, 91010, USA
| |
Collapse
|
9
|
Singhal SS, Jain D, Singhal P, Awasthi S, Singhal J, Horne D. Targeting the mercapturic acid pathway and vicenin-2 for prevention of prostate cancer. Biochim Biophys Acta Rev Cancer 2017; 1868:167-175. [PMID: 28359741 DOI: 10.1016/j.bbcan.2017.03.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/17/2017] [Accepted: 03/25/2017] [Indexed: 01/27/2023]
Abstract
Prostate cancer (CaP) is often androgen-sensitive malignancy and regresses upon inhibition of androgen signaling. However, CaP, nearly always develops androgen resistance and progresses to aggressive and lethal androgen-independent CaP, which lacks satisfactory therapy. For metastatic CaP, patients are often treated with Taxotere (docetaxel), a cytoskeleton-targeted chemotherapy drug, that provides transient palliative benefit but to which patients rapidly develop drug-resistance. Combination chemotherapy may be used instead, but is more toxic and adds little clinically relevant benefit over docetaxel. Therefore, novel strategies to enhance docetaxel efficacy are needed to effectively treat patients with metastatic CaP. The mercapturic acid pathway, which metabolizes genotoxic and pro-apoptotic toxins, is over-expressed in CaP and plays an important role in carcinogenesis, metastasis and therapy-resistance of CaP. Vicenin-2, a flavonoid derived from Tulsi (holy basil) as an active compound, inhibits the growth of CaP and increases the anti-tumor activity of docetaxel in-vitro and in-vivo. Taken together, the combination of vicenin-2 and docetaxel could be highly effective in the treatment of advanced and metastatic CaP due to their multi-targeting anti-tumor potential.
Collapse
Affiliation(s)
- Sharad S Singhal
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, United States.
| | - Divya Jain
- Department of Ophthalmology, University College of Medical Sciences and Guru Teg Bahadur Hospital, New Delhi 110095, India
| | - Preeti Singhal
- University of Texas Health, San Antonio, TX 78229, United States
| | - Sanjay Awasthi
- Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States
| | - Jyotsana Singhal
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, United States
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, United States
| |
Collapse
|
10
|
Structure and function of RLIP76 (RalBP1): an intersection point between Ras and Rho signalling. Biochem Soc Trans 2014; 42:52-8. [PMID: 24450627 DOI: 10.1042/bst20130231] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
RLIP76 (Ral-interacting protein of 76 kDa) [also known as RalBP1 (Ral-binding protein 1)] is an effector for the Ral family small GTPases. RLIP76 has been implicated in a number of cell processes, including receptor-mediated endocytosis, cell migration, mitochondrial division and metabolite transport. RLIP76 has two recognizable domains in the centre of the protein sequence: a GAP (GTPase-activating protein) domain for the Rho family G-proteins and an RBD (Ral-binding domain). The remainder of RLIP76 has no discernable homology with other proteins. The RBD forms a simple coiled-coil of two α-helices, which interacts with RalB by binding to both of the nucleotide-sensitive 'switch' regions. Both of these RLIP76 helices are involved in the interaction with Ral, but the interhelix loop is left free. This is the location of one of the two ATP-binding sites that have been identified in RLIP76 and suggests that Ral interaction would not prevent ATP binding. The structure of the RhoGAP-RBD dyad shows that the two domains are fixed in their orientation by a relatively rigid linker. This domain arrangement allows the two domains to engage Rho family and Ral small G-proteins simultaneously at the membrane. This suggests that RLIP76 is a node for Rho and Ras family signalling.
Collapse
|