1
|
Grove DJ, Russell PJ, Kearse MG. To initiate or not to initiate: A critical assessment of eIF2A, eIF2D, and MCT-1·DENR to deliver initiator tRNA to ribosomes. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1833. [PMID: 38433101 PMCID: PMC11260288 DOI: 10.1002/wrna.1833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 03/05/2024]
Abstract
Selection of the correct start codon is critical for high-fidelity protein synthesis. In eukaryotes, this is typically governed by a multitude of initiation factors (eIFs), including eIF2·GTP that directly delivers the initiator tRNA (Met-tRNAi Met ) to the P site of the ribosome. However, numerous reports, some dating back to the early 1970s, have described other initiation factors having high affinity for the initiator tRNA and the ability of delivering it to the ribosome, which has provided a foundation for further work demonstrating non-canonical initiation mechanisms using alternative initiation factors. Here we provide a critical analysis of current understanding of eIF2A, eIF2D, and the MCT-1·DENR dimer, the evidence surrounding their ability to initiate translation, their implications in human disease, and lay out important key questions for the field. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Translation > Mechanisms Translation > Regulation.
Collapse
Affiliation(s)
- Daisy J. Grove
- The Ohio State Biochemistry Program, Department of Biological Chemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Paul J. Russell
- The Ohio State Biochemistry Program, Department of Biological Chemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
- The Cellular, Molecular, Biochemical Sciences Program, Department of Biological Chemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Michael G. Kearse
- The Ohio State Biochemistry Program, Department of Biological Chemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
- The Cellular, Molecular, Biochemical Sciences Program, Department of Biological Chemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
2
|
Grove DJ, Levine DJ, Kearse MG. Increased levels of eIF2A inhibit translation by sequestering 40S ribosomal subunits. Nucleic Acids Res 2023; 51:9983-10000. [PMID: 37602404 PMCID: PMC10570035 DOI: 10.1093/nar/gkad683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/22/2023] Open
Abstract
eIF2A was the first eukaryotic initiator tRNA carrier discovered but its exact function has remained enigmatic. Uncharacteristic of translation initiation factors, eIF2A is reported to be non-cytosolic in multiple human cancer cell lines. Attempts to study eIF2A mechanistically have been limited by the inability to achieve high yield of soluble recombinant protein. Here, we developed a purification paradigm that yields ∼360-fold and ∼6000-fold more recombinant human eIF2A from Escherichia coli and insect cells, respectively, than previous reports. Using a mammalian in vitro translation system, we found that increased levels of recombinant human eIF2A inhibit translation of multiple reporter mRNAs, including those that are translated by cognate and near-cognate start codons, and does so prior to start codon recognition. eIF2A also inhibited translation directed by all four types of cap-independent viral IRESs, including the CrPV IGR IRES that does not require initiation factors or initiator tRNA, suggesting excess eIF2A sequesters 40S subunits. Supplementation with additional 40S subunits prevented eIF2A-mediated inhibition and pull-down assays demonstrated direct binding between recombinant eIF2A and purified 40S subunits. These data support a model that eIF2A must be kept away from the translation machinery to avoid sequestering 40S ribosomal subunits.
Collapse
Affiliation(s)
- Daisy J Grove
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel J Levine
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Michael G Kearse
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
3
|
Islam N, Krishnan HB, Natarajan S. Proteomic Profiling of Fast Neutron-Induced Soybean Mutant Unveiled Pathways Associated with Increased Seed Protein Content. J Proteome Res 2020; 19:3936-3944. [PMID: 32819100 DOI: 10.1021/acs.jproteome.0c00160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mutagenesis through fast neutron (FN) radiation of soybean resulted in a mutant with a 15% increase in seed protein content. A comparative genomic hybridization analysis confirmed that the mutant is lacking 24 genes located at chromosomes 5 and 10. A tandem mass tag-based proteomic profiling of the wild type and the FN mutant revealed 3,502 proteins, of which 206 proteins exhibited increased abundance and 214 proteins showed decreased abundance. Among the abundant proteins, basic 7S globulin increased fourfold, followed by vacuolar-sorting receptor and protein transporters. The differentially expressed proteins were mapped on the global metabolic pathways. It was observed that there was an enrichment of 29 ribosomal proteins, 16 endoplasmic reticular proteins, and several proteins in export metabolic pathways. The deletion of the sequence-specific DNA binding transcription factor along with 23 other genes may have altered the negative regulation of protein syntheses processes, resulting in an increase in the overall protein content of the mutant seed. This mutant is a valuable resource for researchers to understand the metabolic pathways that may affect an increase in seed protein content (the mass spectrometry data files were submitted to massive.ucsd.edu # MassIVE MSV000084228).
Collapse
Affiliation(s)
- Nazrul Islam
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, Maryland 20705, United States
| | - Hari B Krishnan
- Plant Genetics Research Unit, USDA-ARS, University of Missouri, Columbia, Missouri 65211, United States
| | - Savithiry Natarajan
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, Maryland 20705, United States
| |
Collapse
|
4
|
Mylemans B, Laier I, Kamata K, Akashi S, Noguchi H, Tame JRH, Voet ARD. Structural plasticity of a designer protein sheds light on β-propeller protein evolution. FEBS J 2020; 288:530-545. [PMID: 32343866 DOI: 10.1111/febs.15347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/07/2020] [Accepted: 04/23/2020] [Indexed: 11/26/2022]
Abstract
β-propeller proteins are common in nature, where they are observed to adopt 4- to 10-fold internal rotational pseudo-symmetry. This size diversity can be explained by the evolutionary process of gene duplication and fusion. In this study, we investigated a distorted β-propeller protein, an apparent intermediate between two symmetries. From this template, we created a perfectly symmetric 9-bladed β-propeller named Cake, using computational design and ancestral sequence reconstruction. The designed repeat sequence was found to be capable of generating both 8-fold and 9-fold propellers which are highly stable. Cake variants with 2-10 identical copies of the repeat sequence were characterised by X-ray crystallography and in solution. They were found to be highly stable, and to self-assemble into 8- or 9-fold symmetrical propellers. These findings show that the β-propeller fold allows sufficient structural plasticity to permit a given blade to assemble different forms, a transition from even to odd changes in blade number, and provide a potential explanation for the wide diversity of repeat numbers observed in natural propeller proteins. DATABASE: Structural data are available in Protein Data Bank database under the accession numbers 6TJB, 6TJC, 6TJD, 6TJE, 6TJF, 6TJG, 6TJH and 6TJI.
Collapse
Affiliation(s)
| | - Ina Laier
- Department of Chemistry, KU Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
5
|
Komar AA, Merrick WC. A Retrospective on eIF2A-and Not the Alpha Subunit of eIF2. Int J Mol Sci 2020; 21:E2054. [PMID: 32192132 PMCID: PMC7139343 DOI: 10.3390/ijms21062054] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/29/2020] [Accepted: 03/13/2020] [Indexed: 12/31/2022] Open
Abstract
Initiation of protein synthesis in eukaryotes is a complex process requiring more than 12 different initiation factors, comprising over 30 polypeptide chains. The functions of many of these factors have been established in great detail; however, the precise role of some of them and their mechanism of action is still not well understood. Eukaryotic initiation factor 2A (eIF2A) is a single chain 65 kDa protein that was initially believed to serve as the functional homologue of prokaryotic IF2, since eIF2A and IF2 catalyze biochemically similar reactions, i.e., they stimulate initiator Met-tRNAi binding to the small ribosomal subunit. However, subsequent identification of a heterotrimeric 126 kDa factor, eIF2 (α,β,γ) showed that this factor, and not eIF2A, was primarily responsible for the binding of Met-tRNAi to 40S subunit in eukaryotes. It was found however, that eIF2A can promote recruitment of Met-tRNAi to 40S/mRNA complexes under conditions of inhibition of eIF2 activity (eIF2α-phosphorylation), or its absence. eIF2A does not function in major steps in the initiation process, but is suggested to act at some minor/alternative initiation events such as re-initiation, internal initiation, or non-AUG initiation, important for translational control of specific mRNAs. This review summarizes our current understanding of the eIF2A structure and function.
Collapse
Affiliation(s)
- Anton A. Komar
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - William C. Merrick
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| |
Collapse
|
6
|
Herrmannová A, Prilepskaja T, Wagner S, Šikrová D, Zeman J, Poncová K, Valášek LS. Adapted formaldehyde gradient cross-linking protocol implicates human eIF3d and eIF3c, k and l subunits in the 43S and 48S pre-initiation complex assembly, respectively. Nucleic Acids Res 2020; 48:1969-1984. [PMID: 31863585 PMCID: PMC7039009 DOI: 10.1093/nar/gkz1185] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 12/18/2022] Open
Abstract
One of the key roles of the 12-subunit eukaryotic translation initiation factor 3 (eIF3) is to promote the formation of the 43S and 48S pre-initiation complexes (PICs). However, particular contributions of its individual subunits to these two critical initiation reactions remained obscure. Here, we adapted formaldehyde gradient cross-linking protocol to translation studies and investigated the efficiency of the 43S and 48S PIC assembly in knockdowns of individual subunits of human eIF3 known to produce various partial subcomplexes. We revealed that eIF3d constitutes an important intermolecular bridge between eIF3 and the 40S subunit as its elimination from the eIF3 holocomplex severely compromised the 43S PIC assembly. Similarly, subunits eIF3a, c and e were found to represent an important binding force driving eIF3 binding to the 40S subunit. In addition, we demonstrated that eIF3c, and eIF3k and l subunits alter the efficiency of mRNA recruitment to 43S PICs in an opposite manner. Whereas the eIF3c knockdown reduces it, downregulation of eIF3k or eIF3l increases mRNA recruitment, suggesting that the latter subunits possess a regulatory potential. Altogether this study provides new insights into the role of human eIF3 in the initial assembly steps of the translational machinery.
Collapse
Affiliation(s)
- Anna Herrmannová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Videnska 1083, 142 20, the Czech Republic
| | - Terezie Prilepskaja
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Videnska 1083, 142 20, the Czech Republic
| | - Susan Wagner
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Videnska 1083, 142 20, the Czech Republic
| | - Darina Šikrová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Videnska 1083, 142 20, the Czech Republic
| | - Jakub Zeman
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Videnska 1083, 142 20, the Czech Republic
| | - Kristýna Poncová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Videnska 1083, 142 20, the Czech Republic
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Videnska 1083, 142 20, the Czech Republic
| |
Collapse
|
7
|
Zeman J, Itoh Y, Kukačka Z, Rosůlek M, Kavan D, Kouba T, Jansen ME, Mohammad MP, Novák P, Valášek LS. Binding of eIF3 in complex with eIF5 and eIF1 to the 40S ribosomal subunit is accompanied by dramatic structural changes. Nucleic Acids Res 2019; 47:8282-8300. [PMID: 31291455 PMCID: PMC6735954 DOI: 10.1093/nar/gkz570] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/12/2019] [Accepted: 07/05/2019] [Indexed: 12/31/2022] Open
Abstract
eIF3 is a large multiprotein complex serving as an essential scaffold promoting binding of other eIFs to the 40S subunit, where it coordinates their actions during translation initiation. Perhaps due to a high degree of flexibility of multiple eIF3 subunits, a high-resolution structure of free eIF3 from any organism has never been solved. Employing genetics and biochemistry, we previously built a 2D interaction map of all five yeast eIF3 subunits. Here we further improved the previously reported in vitro reconstitution protocol of yeast eIF3, which we cross-linked and trypsin-digested to determine its overall shape in 3D by advanced mass-spectrometry. The obtained cross-links support our 2D subunit interaction map and reveal that eIF3 is tightly packed with its WD40 and RRM domains exposed. This contrasts with reported cryo-EM structures depicting eIF3 as a molecular embracer of the 40S subunit. Since the binding of eIF1 and eIF5 further fortified the compact architecture of eIF3, we suggest that its initial contact with the 40S solvent-exposed side makes eIF3 to open up and wrap around the 40S head with its extended arms. In addition, we mapped the position of eIF5 to the region below the P- and E-sites of the 40S subunit.
Collapse
Affiliation(s)
- Jakub Zeman
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Videnska 1083, 142 20, The Czech Republic
| | - Yuzuru Itoh
- Institute of Genetics and Molecular and Cellular Biology, CNRS UMR7104, INSERM UMR964, Illkirch, France
| | - Zdeněk Kukačka
- Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology of the Czech Academy of Sciences, Prague, Videnska 1083, 142 20, The Czech Republic
| | - Michal Rosůlek
- Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology of the Czech Academy of Sciences, Prague, Videnska 1083, 142 20, The Czech Republic
| | - Daniel Kavan
- Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology of the Czech Academy of Sciences, Prague, Videnska 1083, 142 20, The Czech Republic
| | - Tomáš Kouba
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Videnska 1083, 142 20, The Czech Republic
| | - Myrte E Jansen
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Videnska 1083, 142 20, The Czech Republic
| | - Mahabub P Mohammad
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Videnska 1083, 142 20, The Czech Republic
| | - Petr Novák
- Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology of the Czech Academy of Sciences, Prague, Videnska 1083, 142 20, The Czech Republic
| | - Leoš S Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Videnska 1083, 142 20, The Czech Republic
| |
Collapse
|
8
|
Raabe K, Honys D, Michailidis C. The role of eukaryotic initiation factor 3 in plant translation regulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 145:75-83. [PMID: 31665669 DOI: 10.1016/j.plaphy.2019.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/07/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Regulation of translation represents a critical step in the regulation of gene expression. In plants, the translation regulation plays an important role at all stages of development and, during stress responses, functions as a fast and flexible tool which not only modulates the global translation rate but also controls the production of specific proteins. Regulation of translation is mostly focused on the initiation phase. There, one of essential initiation factors is the large multisubunit protein complex of eukaryotic translation initiation factor 3 (eIF3). In all eukaryotes, the general eIF3 function is to scaffold the formation of the translation initiation complex and to enhance the accuracy of scanning mechanism for start codon selection. Over the past decades, additional eIF3 functions were described as necessary for development in various eukaryotic organisms, including plants. The importance of the eIF3 complex lies not only at the global level of initiation event, but also in the precise translation regulation of specific transcripts. This review gathers the available information on functions of the plant eIF3 complex.
Collapse
Affiliation(s)
- Karel Raabe
- Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojová 263, 165 02, Praha 6, Czech Republic
| | - David Honys
- Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojová 263, 165 02, Praha 6, Czech Republic
| | - Christos Michailidis
- Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojová 263, 165 02, Praha 6, Czech Republic.
| |
Collapse
|
9
|
Wang L, Wen X, Luan F, Fu T, Gao C, Du H, Guo T, Han J, Huangfu L, Cheng X, Ji J. EIF3B is associated with poor outcomes in gastric cancer patients and promotes cancer progression via the PI3K/AKT/mTOR signaling pathway. Cancer Manag Res 2019; 11:7877-7891. [PMID: 31686906 PMCID: PMC6708883 DOI: 10.2147/cmar.s207834] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/30/2019] [Indexed: 01/08/2023] Open
Abstract
Purpose Eukaryotic translation initiation factor (EIF) plays a vital role in protein synthesis. EIF3B is a core subunit of the EIF3 family, and is overexpressed in many tumors. EIF3B is associated with an unfavorable prognosis, as well as the genesis and development of tumors. However, the potential role of EIF3B in gastric cancer (GC) remains unknown. In the current study, we explored the clinical significance and the possible mechanism of EIF3B in the progression of GC. Methods EIF3B expression was analyzed in 78 GC tissue samples through quantitative PCR and in 94 GC tissue samples through immunohistochemistry (IHC) staining. The correlation between EIF3B and clinicopathological features was analyzed in GC tissues. The role of EIF3B in GC progression was investigated through in vitro and in vivo assays. Results EIF3B expression was upregulated in GC tissues (73.4%, IHC). High expression of EIF3B was significantly correlated with the depth of tumor invasion, lymph node metastasis and TNM stage (P=0.000, 0.000 and 0.000, respectively). Multivariate analysis indicated that GC patients with high EIF3B expression suffered a poorer 5-year survival. EIF3B promoted GC cell proliferation and was strongly associated with proliferating cell nuclear antigen (PCNA) expression in GC samples (P=0.009). It also enhanced tumor cell migration and invasion, which were affected through epithelial-mesenchymal transition (EMT) and the Stat3 signaling pathway. Knockdown of EIF3B in GC cells suppressed the growth of xenograft tumors and lung metastatic colonization in vivo. Furthermore, gene set enrichment analysis (GSEA) and Western blot results demonstrated that EIF3B activated the PI3K/AKT/mTOR signaling pathway. Conclusion Our results suggest that EIF3B plays an oncogenic role in GC progression and serves as an independent prognostic factor for GC patients.
Collapse
Affiliation(s)
- Lin Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China.,Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Xianzi Wen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Fengming Luan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Tao Fu
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Chao Gao
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Hong Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Ting Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Jing Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Longtao Huangfu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Xiaojing Cheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China.,Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| |
Collapse
|
10
|
Eliseev B, Yeramala L, Leitner A, Karuppasamy M, Raimondeau E, Huard K, Alkalaeva E, Aebersold R, Schaffitzel C. Structure of a human cap-dependent 48S translation pre-initiation complex. Nucleic Acids Res 2019; 46:2678-2689. [PMID: 29401259 PMCID: PMC5861459 DOI: 10.1093/nar/gky054] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 01/21/2018] [Indexed: 01/13/2023] Open
Abstract
Eukaryotic translation initiation is tightly regulated, requiring a set of conserved initiation factors (eIFs). Translation of a capped mRNA depends on the trimeric eIF4F complex and eIF4B to load the mRNA onto the 43S pre-initiation complex comprising 40S and initiation factors 1, 1A, 2, 3 and 5 as well as initiator-tRNA. Binding of the mRNA is followed by mRNA scanning in the 48S pre-initiation complex, until a start codon is recognised. Here, we use a reconstituted system to prepare human 48S complexes assembled on capped mRNA in the presence of eIF4B and eIF4F. The highly purified h-48S complexes are used for cross-linking/mass spectrometry, revealing the protein interaction network in this complex. We report the electron cryo-microscopy structure of the h-48S complex at 6.3 Å resolution. While the majority of eIF4B and eIF4F appear to be flexible with respect to the ribosome, additional density is detected at the entrance of the 40S mRNA channel which we attribute to the RNA-recognition motif of eIF4B. The eight core subunits of eIF3 are bound at the 40S solvent-exposed side, as well as the subunits eIF3d, eIF3b and eIF3i. elF2 and initiator-tRNA bound to the start codon are present at the 40S intersubunit side. This cryo-EM structure represents a molecular snap-shot revealing the h-48S complex following start codon recognition.
Collapse
Affiliation(s)
- Boris Eliseev
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Lahari Yeramala
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Alexander Leitner
- ETH Zürich, Institute of Molecular Systems Biology, Auguste-Piccard-Hof 1, 8093 Zürich, Switzerland
| | - Manikandan Karuppasamy
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Etienne Raimondeau
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Karine Huard
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Elena Alkalaeva
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ruedi Aebersold
- ETH Zürich, Institute of Molecular Systems Biology, Auguste-Piccard-Hof 1, 8093 Zürich, Switzerland.,Faculty of Science, University of Zürich, 8057 Zürich, Switzerland
| | - Christiane Schaffitzel
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France.,School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
11
|
Docquier A, Pavlin L, Raibon A, Bertrand‐Gaday C, Sar C, Leibovitch S, Candau R, Bernardi H. eIF3f depletion impedes mouse embryonic development, reduces adult skeletal muscle mass and amplifies muscle loss during disuse. J Physiol 2019; 597:3107-3131. [DOI: 10.1113/jp277841] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/24/2019] [Indexed: 12/19/2022] Open
Affiliation(s)
- Aurélie Docquier
- INRA, UMR866 Dynamique Musculaire et MétabolismeUniversité de Montpellier Montpellier France
| | - Laura Pavlin
- INRA, UMR866 Dynamique Musculaire et MétabolismeUniversité de Montpellier Montpellier France
| | - Audrey Raibon
- INRA, UMR866 Dynamique Musculaire et MétabolismeUniversité de Montpellier Montpellier France
| | | | - Chamroeun Sar
- Institut National de la Santé et de la Recherche Médicale, U‐583Institut des Neurosciences de MontpellierHôpital Saint Eloi Montpellier France
| | - Serge Leibovitch
- INRA, UMR866 Dynamique Musculaire et MétabolismeUniversité de Montpellier Montpellier France
| | - Robin Candau
- INRA, UMR866 Dynamique Musculaire et MétabolismeUniversité de Montpellier Montpellier France
| | - Henri Bernardi
- INRA, UMR866 Dynamique Musculaire et MétabolismeUniversité de Montpellier Montpellier France
| |
Collapse
|
12
|
Feng X, Li J, Liu P. The Biological Roles of Translation Initiation Factor 3b. Int J Biol Sci 2018; 14:1630-1635. [PMID: 30416377 PMCID: PMC6216031 DOI: 10.7150/ijbs.26932] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/05/2018] [Indexed: 11/12/2022] Open
Abstract
Translation has important roles in almost all physiological and pathological processes, and translation initiation factors are particularly relevant to the translation initiation step, which is the most important step in translation regulation. Translation initiation factor 3b (eIF3b), a key subunit of the largest translation initiation factor 3 (eIF3), is widely considered a scaffold protein that acts to ensure the accuracy of translation initiation. A series of recent finds has revealed that eIF3 is closely related to oncogenesis. However, the concrete mechanism by which eIF3b is involve in carcinogenesis remains elusive. Here, we summarize a series of research findings regarding the relationship between eIF3b, translation and cancer.
Collapse
Affiliation(s)
- Xuefei Feng
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University
| | - Juan Li
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University
| | - Peijun Liu
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University
| |
Collapse
|
13
|
Hashem Y, Frank J. The Jigsaw Puzzle of mRNA Translation Initiation in Eukaryotes: A Decade of Structures Unraveling the Mechanics of the Process. Annu Rev Biophys 2018; 47:125-151. [PMID: 29494255 DOI: 10.1146/annurev-biophys-070816-034034] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Translation initiation in eukaryotes is a highly regulated and rate-limiting process. It results in the assembly and disassembly of numerous transient and intermediate complexes involving over a dozen eukaryotic initiation factors (eIFs). This process culminates in the accommodation of a start codon marking the beginning of an open reading frame at the appropriate ribosomal site. Although this process has been extensively studied by hundreds of groups for nearly half a century, it has been only recently, especially during the last decade, that we have gained deeper insight into the mechanics of the eukaryotic translation initiation process. This advance in knowledge is due in part to the contributions of structural biology, which have shed light on the molecular mechanics underlying the different functions of various eukaryotic initiation factors. In this review, we focus exclusively on the contribution of structural biology to the understanding of the eukaryotic initiation process, a long-standing jigsaw puzzle that is just starting to yield the bigger picture.
Collapse
Affiliation(s)
- Yaser Hashem
- INSERM U1212, Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac 33607, France;
| | - Joachim Frank
- Department of Biological Sciences, Columbia University, New York, NY 10032, USA;
| |
Collapse
|
14
|
Valášek LS, Zeman J, Wagner S, Beznosková P, Pavlíková Z, Mohammad MP, Hronová V, Herrmannová A, Hashem Y, Gunišová S. Embraced by eIF3: structural and functional insights into the roles of eIF3 across the translation cycle. Nucleic Acids Res 2017; 45:10948-10968. [PMID: 28981723 PMCID: PMC5737393 DOI: 10.1093/nar/gkx805] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/31/2017] [Indexed: 12/31/2022] Open
Abstract
Protein synthesis is mediated via numerous molecules including the ribosome, mRNA, tRNAs, as well as translation initiation, elongation and release factors. Some of these factors play several roles throughout the entire process to ensure proper assembly of the preinitiation complex on the right mRNA, accurate selection of the initiation codon, errorless production of the encoded polypeptide and its proper termination. Perhaps, the most intriguing of these multitasking factors is the eukaryotic initiation factor eIF3. Recent evidence strongly suggests that this factor, which coordinates the progress of most of the initiation steps, does not come off the initiation complex upon subunit joining, but instead it remains bound to 80S ribosomes and gradually falls off during the first few elongation cycles to: (1) promote resumption of scanning on the same mRNA molecule for reinitiation downstream—in case of translation of upstream ORFs short enough to preserve eIF3 bound; or (2) come back during termination on long ORFs to fine tune its fidelity or, if signaled, promote programmed stop codon readthrough. Here, we unite recent structural views of the eIF3–40S complex and discus all known eIF3 roles to provide a broad picture of the eIF3’s impact on translational control in eukaryotic cells.
Collapse
Affiliation(s)
- Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague 142 20, the Czech Republic
| | - Jakub Zeman
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague 142 20, the Czech Republic
| | - Susan Wagner
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague 142 20, the Czech Republic
| | - Petra Beznosková
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague 142 20, the Czech Republic
| | - Zuzana Pavlíková
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague 142 20, the Czech Republic
| | - Mahabub Pasha Mohammad
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague 142 20, the Czech Republic
| | - Vladislava Hronová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague 142 20, the Czech Republic
| | - Anna Herrmannová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague 142 20, the Czech Republic
| | - Yaser Hashem
- CNRS, Architecture et Réactivité de l'ARN UPR9002, Université de Strasbourg, 67084 Strasbourg, France
| | - Stanislava Gunišová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague 142 20, the Czech Republic
| |
Collapse
|
15
|
Abstract
The eukaryotic initiation factor 3 (eIF3) is one of the most complex translation initiation factors in mammalian cells, consisting of several subunits (eIF3a to eIF3m). It is crucial in translation initiation and termination, and in ribosomal recycling. Accordingly, deregulated eIF3 expression is associated with different pathological conditions, including cancer. In this manuscript, we discuss the interactome and function of each subunit of the human eIF3 complex. Furthermore, we review how altered levels of eIF3 subunits correlate with neurodegenerative disorders and cancer onset and development; in addition, we evaluate how such misregulation may also trigger infection cascades. A deep understanding of the molecular mechanisms underlying eIF3 role in human disease is essential to develop new eIF3-targeted therapeutic approaches and thus, overcome such conditions.
Collapse
Affiliation(s)
- Andreia Gomes-Duarte
- a Department of Human Genetics , Instituto Nacional de Saúde Doutor Ricardo Jorge , Lisbon , Portugal.,b Gene Expression and Regulation Group, Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências , Universidade de Lisboa , Lisbon , Portugal
| | - Rafaela Lacerda
- a Department of Human Genetics , Instituto Nacional de Saúde Doutor Ricardo Jorge , Lisbon , Portugal.,b Gene Expression and Regulation Group, Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências , Universidade de Lisboa , Lisbon , Portugal
| | - Juliane Menezes
- a Department of Human Genetics , Instituto Nacional de Saúde Doutor Ricardo Jorge , Lisbon , Portugal.,b Gene Expression and Regulation Group, Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências , Universidade de Lisboa , Lisbon , Portugal
| | - Luísa Romão
- a Department of Human Genetics , Instituto Nacional de Saúde Doutor Ricardo Jorge , Lisbon , Portugal.,b Gene Expression and Regulation Group, Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências , Universidade de Lisboa , Lisbon , Portugal
| |
Collapse
|
16
|
Zang Y, Zhang X, Yan L, Gu G, Li D, Zhang Y, Fang L, Fu S, Ren J, Xu Z. Eukaryotic Translation Initiation Factor 3b is both a Promising Prognostic Biomarker and a Potential Therapeutic Target for Patients with Clear Cell Renal Cell Carcinoma. J Cancer 2017; 8:3049-3061. [PMID: 28928896 PMCID: PMC5604456 DOI: 10.7150/jca.19594] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 08/06/2017] [Indexed: 12/24/2022] Open
Abstract
Eukaryotic translation initiation factors (eIFs) constitute a new class of therapeutic cancer targets. EIF3b is the major scaffold protein of eIF3 (the largest core of eIFs). We sought to define the role played by and the mechanism of action of eIF3b in patients with clear cell renal cell carcinoma (ccRCC). We found that high-level eIF3b expression in tumors was not only associated with an aggressive tumor phenotype, but was also independently prognostic for patients with ccRCC. Knockdown of eIF3b impaired the action of the Akt pathway, thus inhibiting cell proliferation by disrupting the cell cycle and triggering apoptosis. Furthermore, the epithelial-to-mesenchymal transition was impaired after eIF3b depletion, via suppression of cell migration and invasion. Additionally, eIF3b knockdown significantly inhibited the growth of subcutaneous xenografts in mice. Together, these data show that eIF3b is both a promising prognostic biomarker and a potential therapeutic target for patients with ccRCC.
Collapse
Affiliation(s)
- Yuanwei Zang
- Department of Urology, Qilu Hospital, Shandong University, 107 Wenhua West Road, Jinan 250012, China
| | - Xiang Zhang
- Department of Urology, Qilu Hospital, Shandong University, 107 Wenhua West Road, Jinan 250012, China
| | - Lei Yan
- Department of Urology, Qilu Hospital, Shandong University, 107 Wenhua West Road, Jinan 250012, China
| | - Gangli Gu
- Department of Urology, Qilu Hospital, Shandong University, 107 Wenhua West Road, Jinan 250012, China
| | - Dawei Li
- Department of Urology, Qilu Hospital, Shandong University, 107 Wenhua West Road, Jinan 250012, China
| | - Yongzhen Zhang
- Department of Urology, Qilu Hospital, Shandong University, 107 Wenhua West Road, Jinan 250012, China
| | - Liang Fang
- Department of Urology, Qilu Hospital, Shandong University, 107 Wenhua West Road, Jinan 250012, China
| | - Shanshan Fu
- Department of Gastroenterology, Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan 250014, China
| | - Juchao Ren
- Department of Urology, Qilu Hospital, Shandong University, 107 Wenhua West Road, Jinan 250012, China
| | - Zhonghua Xu
- Department of Urology, Qilu Hospital, Shandong University, 107 Wenhua West Road, Jinan 250012, China
| |
Collapse
|
17
|
Hinnebusch AG. Structural Insights into the Mechanism of Scanning and Start Codon Recognition in Eukaryotic Translation Initiation. Trends Biochem Sci 2017; 42:589-611. [PMID: 28442192 DOI: 10.1016/j.tibs.2017.03.004] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/12/2017] [Accepted: 03/20/2017] [Indexed: 12/21/2022]
Abstract
Initiation of translation on eukaryotic mRNAs generally follows the scanning mechanism, wherein a preinitiation complex (PIC) assembled on the small (40S) ribosomal subunit and containing initiator methionyl tRNAi (Met-tRNAi) scans the mRNA leader for an AUG codon. In a current model, the scanning PIC adopts an open conformation and rearranges to a closed state, with fully accommodated Met-tRNAi, upon AUG recognition. Evidence from recent high-resolution structures of PICs assembled with different ligands supports this model and illuminates the molecular functions of eukaryotic initiation factors eIF1, eIF1A, and eIF2 in restricting to AUG codons the transition to the closed conformation. They also reveal that the eIF3 complex interacts with multiple functional sites in the PIC, rationalizing its participation in numerous steps of initiation.
Collapse
Affiliation(s)
- Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
Lo YH, Romes EM, Pillon MC, Sobhany M, Stanley RE. Structural Analysis Reveals Features of Ribosome Assembly Factor Nsa1/WDR74 Important for Localization and Interaction with Rix7/NVL2. Structure 2017; 25:762-772.e4. [PMID: 28416111 DOI: 10.1016/j.str.2017.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/15/2017] [Accepted: 03/13/2017] [Indexed: 01/06/2023]
Abstract
Ribosome assembly is a complex process that requires hundreds of essential assembly factors, including Rix7 (NVL2 in mammals) and Nsa1 (WDR74 in mammals). Rix7 is a type II double ring, AAA-ATPase, which is closely related to the well-known Cdc48/p97. Previous studies in Saccharomyces cerevisiae suggest that Rix7 mediates the release of Nsa1 from nucleolar pre-60S particles; however, the underlying mechanisms of this release are unknown. Through multiple structural analyses we show that S. cerevisiae Nsa1 is composed of an N-terminal seven-bladed WD40 domain followed by a lysine-rich C terminus that extends away from the WD40 domain and is required for nucleolar localization. Co-immunoprecipitation assays with the mammalian homologs identified a well-conserved interface within WDR74 that is important for its association with NVL2. We further show that WDR74 associates with the D1 AAA domain of NVL2, which represents a novel mode of binding of a substrate with a type II AAA-ATPase.
Collapse
Affiliation(s)
- Yu-Hua Lo
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Erin M Romes
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Monica C Pillon
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Mack Sobhany
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Robin E Stanley
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
19
|
Aitken CE, Beznosková P, Vlčkova V, Chiu WL, Zhou F, Valášek LS, Hinnebusch AG, Lorsch JR. Eukaryotic translation initiation factor 3 plays distinct roles at the mRNA entry and exit channels of the ribosomal preinitiation complex. eLife 2016; 5. [PMID: 27782884 PMCID: PMC5153249 DOI: 10.7554/elife.20934] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/25/2016] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic translation initiation factor 3 (eIF3) is a central player in recruitment of the pre-initiation complex (PIC) to mRNA. We probed the effects on mRNA recruitment of a library of S. cerevisiae eIF3 functional variants spanning its 5 essential subunits using an in vitro-reconstituted system. Mutations throughout eIF3 disrupt its interaction with the PIC and diminish its ability to accelerate recruitment to a native yeast mRNA. Alterations to the eIF3a CTD and eIF3b/i/g significantly slow mRNA recruitment, and mutations within eIF3b/i/g destabilize eIF2•GTP•Met-tRNAi binding to the PIC. Using model mRNAs lacking contacts with the 40S entry or exit channels, we uncovered a critical role for eIF3 requiring the eIF3a NTD, in stabilizing mRNA interactions at the exit channel, and an ancillary role at the entry channel requiring residues of the eIF3a CTD. These functions are redundant: defects at each channel can be rescued by filling the other channel with mRNA. DOI:http://dx.doi.org/10.7554/eLife.20934.001 Cells use the genetic information stored within genes to build proteins, which are largely responsible for performing the molecular tasks essential for life. The ribosome is the molecular machine that translates the information within genes to assemble proteins in all cells, from bacteria to humans. To make a protein, the corresponding gene is first copied to make molecules of messenger ribonucleic acid (or mRNA for short). Then the ribosome binds to the mRNA in a process called translation initiation. Cells tightly regulate translation initiation so that they can decide which proteins to make, according to their needs and in response to changes in the environment. In fact, regulation of translation initiation is often disrupted during viral infections, cancer and other human diseases. A set of proteins called translation initiation factors drive translation initiation; the largest and least understood of these is called eIF3. Cells are unable to load the mRNA onto the ribosome without eIF3, which has two “arms” that sit near where the mRNA enters and exits the ribosome. Aitken et al. used mutant forms of eIF3 from genetically modified yeast to investigate how the arms of the protein work, and if they help the ribosome hold onto the mRNA. These experiments show that the two arms of eIF3 have unique roles. One arm sits near where mRNA exits the ribosome and is important for holding onto the mRNA. The other arm – which is near where mRNA enters the ribosome – helps hold the ribosome and other components of the translation machinery together. This arm may also help to open and close the channel through which messenger RNA enters the ribosome. The next challenges are to find out the precise role this arm plays in translation – in particular, how it helps to open and close the channel in the ribosome, and whether this helps the ribosome load the messenger RNA or even move along it. DOI:http://dx.doi.org/10.7554/eLife.20934.002
Collapse
Affiliation(s)
- Colin Echeverría Aitken
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Petra Beznosková
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Prague, Czech Republic
| | - Vladislava Vlčkova
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Prague, Czech Republic
| | - Wen-Ling Chiu
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Fujun Zhou
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Prague, Czech Republic
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Jon R Lorsch
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| |
Collapse
|
20
|
Simonetti A, Brito Querido J, Myasnikov AG, Mancera-Martinez E, Renaud A, Kuhn L, Hashem Y. eIF3 Peripheral Subunits Rearrangement after mRNA Binding and Start-Codon Recognition. Mol Cell 2016; 63:206-217. [PMID: 27373335 DOI: 10.1016/j.molcel.2016.05.033] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/07/2016] [Accepted: 05/23/2016] [Indexed: 11/30/2022]
Abstract
mRNA translation initiation in eukaryotes requires the cooperation of a dozen eukaryotic initiation factors (eIFs) forming several complexes, which leads to mRNA attachment to the small ribosomal 40S subunit, mRNA scanning for start codon, and accommodation of initiator tRNA at the 40S P site. eIF3, composed of 13 subunits, 8 core (a, c, e, f, h, l, k, and m) and 5 peripheral (b, d, g, i, and j), plays a central role during this process. Here we report a cryo-electron microscopy structure of a mammalian 48S initiation complex at 5.8 Å resolution. It shows the relocation of subunits eIF3i and eIF3g to the 40S intersubunit face on the GTPase binding site, at a late stage in initiation. On the basis of a previous study, we demonstrate the relocation of eIF3b to the 40S intersubunit face, binding below the eIF2-Met-tRNAi(Met) ternary complex upon mRNA attachment. Our analysis reveals the deep rearrangement of eIF3 and unravels the molecular mechanism underlying eIF3 function in mRNA scanning and timing of ribosomal subunit joining.
Collapse
Affiliation(s)
- Angelita Simonetti
- CNRS, Architecture et Réactivité de l'ARN UPR9002, Université de Strasbourg, 67084 Strasbourg, France.
| | - Jailson Brito Querido
- CNRS, Architecture et Réactivité de l'ARN UPR9002, Université de Strasbourg, 67084 Strasbourg, France
| | | | - Eder Mancera-Martinez
- CNRS, Architecture et Réactivité de l'ARN UPR9002, Université de Strasbourg, 67084 Strasbourg, France
| | - Adeline Renaud
- CNRS, Architecture et Réactivité de l'ARN UPR9002, Université de Strasbourg, 67084 Strasbourg, France
| | - Lauriane Kuhn
- CNRS, Proteomic Platform Strasbourg - Esplanade, 67084 Strasbourg, France
| | - Yaser Hashem
- CNRS, Architecture et Réactivité de l'ARN UPR9002, Université de Strasbourg, 67084 Strasbourg, France.
| |
Collapse
|
21
|
The molecular choreography of protein synthesis: translational control, regulation, and pathways. Q Rev Biophys 2016; 49:e11. [PMID: 27658712 DOI: 10.1017/s0033583516000056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Translation of proteins by the ribosome regulates gene expression, with recent results underscoring the importance of translational control. Misregulation of translation underlies many diseases, including cancer and many genetic diseases. Decades of biochemical and structural studies have delineated many of the mechanistic details in prokaryotic translation, and sketched the outlines of eukaryotic translation. However, translation may not proceed linearly through a single mechanistic pathway, but likely involves multiple pathways and branchpoints. The stochastic nature of biological processes would allow different pathways to occur during translation that are biased by the interaction of the ribosome with other translation factors, with many of the steps kinetically controlled. These multiple pathways and branchpoints are potential regulatory nexus, allowing gene expression to be tuned at the translational level. As research focus shifts toward eukaryotic translation, certain themes will be echoed from studies on prokaryotic translation. This review provides a general overview of the dynamic data related to prokaryotic and eukaryotic translation, in particular recent findings with single-molecule methods, complemented by biochemical, kinetic, and structural findings. We will underscore the importance of viewing the process through the viewpoints of regulation, translational control, and heterogeneous pathways.
Collapse
|
22
|
des Georges A, Dhote V, Kuhn L, Hellen CUT, Pestova TV, Frank J, Hashem Y. Structure of mammalian eIF3 in the context of the 43S preinitiation complex. Nature 2015; 525:491-5. [PMID: 26344199 DOI: 10.1038/nature14891] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 07/06/2015] [Indexed: 12/11/2022]
Abstract
During eukaryotic translation initiation, 43S complexes, comprising a 40S ribosomal subunit, initiator transfer RNA and initiation factors (eIF) 2, 3, 1 and 1A, attach to the 5'-terminal region of messenger RNA and scan along it to the initiation codon. Scanning on structured mRNAs also requires the DExH-box protein DHX29. Mammalian eIF3 contains 13 subunits and participates in nearly all steps of translation initiation. Eight subunits having PCI (proteasome, COP9 signalosome, eIF3) or MPN (Mpr1, Pad1, amino-terminal) domains constitute the structural core of eIF3, to which five peripheral subunits are flexibly linked. Here we present a cryo-electron microscopy structure of eIF3 in the context of the DHX29-bound 43S complex, showing the PCI/MPN core at ∼6 Å resolution. It reveals the organization of the individual subunits and their interactions with components of the 43S complex. We were able to build near-complete polyalanine-level models of the eIF3 PCI/MPN core and of two peripheral subunits. The implications for understanding mRNA ribosomal attachment and scanning are discussed.
Collapse
Affiliation(s)
- Amedee des Georges
- HHMI, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | - Vidya Dhote
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York 11203, USA
| | - Lauriane Kuhn
- CNRS, Proteomic Platform Strasbourg - Esplanade, Strasbourg 67084, France
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York 11203, USA
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York 11203, USA
| | - Joachim Frank
- HHMI, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA.,Department of Biological Sciences, Columbia University, New York, New York 10032, USA
| | - Yaser Hashem
- CNRS, Architecture et Réactivité de l'ARN, Université de Strasbourg, Strasbourg 67084, France
| |
Collapse
|
23
|
Dickmanns A, Kehlenbach RH, Fahrenkrog B. Nuclear Pore Complexes and Nucleocytoplasmic Transport: From Structure to Function to Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 320:171-233. [PMID: 26614874 DOI: 10.1016/bs.ircmb.2015.07.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nucleocytoplasmic transport is an essential cellular activity and occurs via nuclear pore complexes (NPCs) that reside in the double membrane of the nuclear envelope. Significant progress has been made during the past few years in unravelling the ultrastructural organization of NPCs and their constituents, the nucleoporins, by cryo-electron tomography and X-ray crystallography. Mass spectrometry and genomic approaches have provided deeper insight into the specific regulation and fine tuning of individual nuclear transport pathways. Recent research has also focused on the roles nucleoporins play in health and disease, some of which go beyond nucleocytoplasmic transport. Here we review emerging results aimed at understanding NPC architecture and nucleocytoplasmic transport at the atomic level, elucidating the specific function individual nucleoporins play in nuclear trafficking, and finally lighting up the contribution of nucleoporins and nuclear transport receptors in human diseases, such as cancer and certain genetic disorders.
Collapse
Affiliation(s)
- Achim Dickmanns
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Ralph H Kehlenbach
- Department of Molecular Biology, Faculty of Medicine, Georg-August-University of Göttingen, Göttingen, Germany
| | - Birthe Fahrenkrog
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi, Belgium
| |
Collapse
|
24
|
Balaji S. Internal symmetry in protein structures: prevalence, functional relevance and evolution. Curr Opin Struct Biol 2015; 32:156-66. [PMID: 26093245 DOI: 10.1016/j.sbi.2015.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 10/23/2022]
Abstract
Symmetry has been found at various levels of biological organization in the protein structural universe. Numerous evolutionary studies have proposed connections between internal symmetry within protein tertiary structures, quaternary associations and protein functions. Recent computational methods, such as SymD and CE-Symm, facilitate a large-scale detection of internal symmetry in protein structures. Based on the results from these methods, about 20% of SCOP folds, superfamilies and families are estimated to have structures with internal symmetry (Figure 1d). All-β and membrane proteins fold classes contain a relatively high number of unique instances of internal symmetry. In addition to the axis of symmetry, anecdotal evidence suggests that, the region of connection or contact between symmetric units could coincide with functionally relevant sites within a fold. General principles that underlie protein internal symmetry and their connections to protein structural integrity and functions remain to be elucidated.
Collapse
Affiliation(s)
- Santhanam Balaji
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| |
Collapse
|
25
|
Browning KS, Bailey-Serres J. Mechanism of cytoplasmic mRNA translation. THE ARABIDOPSIS BOOK 2015; 13:e0176. [PMID: 26019692 PMCID: PMC4441251 DOI: 10.1199/tab.0176] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Protein synthesis is a fundamental process in gene expression that depends upon the abundance and accessibility of the mRNA transcript as well as the activity of many protein and RNA-protein complexes. Here we focus on the intricate mechanics of mRNA translation in the cytoplasm of higher plants. This chapter includes an inventory of the plant translational apparatus and a detailed review of the translational processes of initiation, elongation, and termination. The majority of mechanistic studies of cytoplasmic translation have been carried out in yeast and mammalian systems. The factors and mechanisms of translation are for the most part conserved across eukaryotes; however, some distinctions are known to exist in plants. A comprehensive understanding of the complex translational apparatus and its regulation in plants is warranted, as the modulation of protein production is critical to development, environmental plasticity and biomass yield in diverse ecosystems and agricultural settings.
Collapse
Affiliation(s)
- Karen S. Browning
- Department of Molecular Biosciences and Institute for Cell and Molecular Biology, University of Texas at Austin, Austin TX 78712-0165
- Both authors contributed equally to this work
| | - Julia Bailey-Serres
- Department of Botany and Plant Sciences and Center for Plant Cell Biology, University of California, Riverside, CA, 92521 USA
- Both authors contributed equally to this work
| |
Collapse
|
26
|
Yan X, Xie J, Li J, Shuanghu C, Wu Z, Jian J. Screening and analysis on the protein interaction of the protein VP7 in grass carp reovirus. Virus Genes 2015; 50:425-33. [PMID: 25860999 DOI: 10.1007/s11262-015-1193-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 11/06/2014] [Indexed: 12/26/2022]
Abstract
Grass carp reovirus (GCRV) has caused serious economic losses for several decades in China. The protein VP7 is one of the important structural proteins in GCRV. Recent studies indicated that the protein VP7 had the commendable antigenicity and immunogenicity. The protein VP7 cooperated with VP5 could change the conformation of the cell membrane and facilitate entry of GCRV into host cells. We speculated that the protein VP7 should play an important role in the pathogenesis of GCRV. In order to explore the function of the protein VP7, the bait protein expression plasmid pGBKT7-vp7 and the cDNA library of CIK cells were constructed. By yeast two-hybrid system, after multiple screening with the high screening rate medium, rotary verification, sequencing and bioinformatics analysis, the interactions of the protein VP7 with ribosomal protein S20 (RPS20) and eukaryotic translation initiation factor 3 subunit b (eIF3b) in CIK cells were identified. RPS20 played the important roles in the generation of influenza B virus and a variety of diseases. eIF3b was relative to the infection of some viruses. This study suggested that the protein VP7 played the role in viral replication and most likely interacted with host proteins by RPS20 and eIF3b. The interaction mechanisms of the protein VP7 with RPS20 and eIF3b, and the subsequent effector mechanisms needed to be further studied. The corresponding protein interaction of the protein VP7 was not acquired in bioinformatics. The protein VP7 and its untranslated region may have the unknown special function. This study laid the foundation for deeply exploring the function of the protein VP7 in GCRV and had the important scientific significance for exploring the pathogenic mechanism of GCRV.
Collapse
Affiliation(s)
- Xiuying Yan
- Guangdong Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Ocean University, Huguangyan East, Zhanjiang, 524088, China,
| | | | | | | | | | | |
Collapse
|
27
|
Structure of a yeast 40S-eIF1-eIF1A-eIF3-eIF3j initiation complex. Nat Struct Mol Biol 2015; 22:269-71. [PMID: 25664723 DOI: 10.1038/nsmb.2963] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/24/2014] [Indexed: 11/09/2022]
Abstract
Eukaryotic translation initiation requires cooperative assembly of a large protein complex at the 40S ribosomal subunit. We have resolved a budding yeast initiation complex by cryo-EM, allowing placement of prior structures of eIF1, eIF1A, eIF3a, eIF3b and eIF3c. Our structure highlights differences in initiation-complex binding to the ribosome compared to that of mammalian eIF3, demonstrates a direct contact between eIF3j and eIF1A and reveals the network of interactions between eIF3 subunits.
Collapse
|
28
|
Rezende AM, Assis LA, Nunes EC, da Costa Lima TD, Marchini FK, Freire ER, Reis CRS, de Melo Neto OP. The translation initiation complex eIF3 in trypanosomatids and other pathogenic excavates--identification of conserved and divergent features based on orthologue analysis. BMC Genomics 2014; 15:1175. [PMID: 25539953 PMCID: PMC4320536 DOI: 10.1186/1471-2164-15-1175] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 12/16/2014] [Indexed: 12/24/2022] Open
Abstract
Background The initiation of translation in eukaryotes is supported by the action of several eukaryotic Initiation Factors (eIFs). The largest of these is eIF3, comprising of up to thirteen polypeptides (eIF3a through eIF3m), involved in multiple stages of the initiation process. eIF3 has been better characterized from model organisms, but is poorly known from more diverged groups, including unicellular lineages represented by known human pathogens. These include the trypanosomatids (Trypanosoma and Leishmania) and other protists belonging to the taxonomic supergroup Excavata (Trichomonas and Giardia sp.). Results An in depth bioinformatic search was carried out to recover the full content of eIF3 subunits from the available genomes of L. major, T. brucei, T. vaginalis and G. duodenalis. The protein sequences recovered were then submitted to homology analysis and alignments comparing them with orthologues from representative eukaryotes. Eleven putative eIF3 subunits were found from both trypanosomatids whilst only five and four subunits were identified from T. vaginalis and G. duodenalis, respectively. Only three subunits were found in all eukaryotes investigated, eIF3b, eIF3c and eIF3i. The single subunit found to have a related Archaean homologue was eIF3i, the most conserved of the eIF3 subunits. The sequence alignments revealed several strongly conserved residues/region within various eIF3 subunits of possible functional relevance. Subsequent biochemical characterization of the Leishmania eIF3 complex validated the bioinformatic search and yielded a twelfth eIF3 subunit in trypanosomatids, eIF3f (the single unidentified subunit in trypanosomatids was then eIF3m). The biochemical data indicates a lack of association of the eIF3j subunit to the complex whilst highlighting the strong interaction between eIF3 and eIF1. Conclusions The presence of most eIF3 subunits in trypanosomatids is consistent with an early evolution of a fully functional complex. Simplified versions in other excavates might indicate a primordial complex or secondary loss of selected subunits, as seen for some fungal lineages. The conservation in eIF3i sequence might indicate critical functions within eIF3 which have been overlooked. The identification of eIF3 subunits from distantly related eukaryotes provides then a basis for the study of conserved/divergent aspects of eIF3 function, leading to a better understanding of eukaryotic translation initiation. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1175) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Osvaldo P de Melo Neto
- Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Avenida Professor Moraes Rego s/n, Cidade Universitária, Recife, PE 50670-420, Brazil.
| |
Collapse
|
29
|
Hershey JWB. The role of eIF3 and its individual subunits in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:792-800. [PMID: 25450521 DOI: 10.1016/j.bbagrm.2014.10.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/28/2014] [Accepted: 10/28/2014] [Indexed: 12/15/2022]
Abstract
Specific individual subunits of eIF3 are elevated or reduced in numerous human tumors, and their ectopic overexpression in immortal cells can result in malignant transformation. The structure and assembly of eIF3 and its role in promoting mRNA and methionyl-tRNAi binding to the ribosome during the initiation phase of protein synthesis are described. Methods employed to detect altered levels of eIF3 subunits in cancers are critically evaluated in order to conclude rigorously that such subunits may cause malignant transformation. Strong evidence is presented that the individual overexpression of eIF3 subunits 3a, 3b, 3c, 3h, 3i and 3m may cause malignant transformation, whereas underexpression of subunits 3e and 3f may cause a similar outcome. Possible mechanisms to explain the malignant phenotypes are examined. The involvement of eIF3 in cancer reinforces the view that translational control plays an important role in the regulation of cell proliferation, and provides new targets for the development of therapeutic agents. This article is part of a Special Issue entitled: Translation and Cancer.
Collapse
Affiliation(s)
- John W B Hershey
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, United States.
| |
Collapse
|
30
|
Yue MM, Lv K, Meredith SC, Martindale JL, Gorospe M, Schuger L. Novel RNA-binding protein P311 binds eukaryotic translation initiation factor 3 subunit b (eIF3b) to promote translation of transforming growth factor β1-3 (TGF-β1-3). J Biol Chem 2014; 289:33971-83. [PMID: 25336651 DOI: 10.1074/jbc.m114.609495] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P311, a conserved 8-kDa intracellular protein expressed in brain, smooth muscle, regenerating tissues, and malignant glioblastomas, represents the first documented stimulator of TGF-β1-3 translation in vitro and in vivo. Here we initiated efforts to define the mechanism underlying P311 function. PONDR® (Predictor Of Naturally Disordered Regions) analysis suggested and CD confirmed that P311 is an intrinsically disordered protein, therefore requiring an interacting partner to acquire tertiary structure and function. Immunoprecipitation coupled with mass spectroscopy identified eIF3 subunit b (eIF3b) as a novel P311 binding partner. Immunohistochemical colocalization, GST pulldown, and surface plasmon resonance studies revealed that P311-eIF3b interaction is direct and has a Kd of 1.26 μm. Binding sites were mapped to the non-canonical RNA recognition motif of eIF3b and a central 11-amino acid-long region of P311, here referred to as eIF3b binding motif. Disruption of P311-eIF3b binding inhibited translation of TGF-β1, 2, and 3, as indicated by luciferase reporter assays, polysome fractionation studies, and Western blot analysis. RNA precipitation assays after UV cross-linking and RNA-protein EMSA demonstrated that P311 binds directly to TGF-β 5'UTRs mRNAs through a previously unidentified RNA recognition motif-like motif. Our results demonstrate that P311 is a novel RNA-binding protein that, by interacting with TGF-βs 5'UTRs and eIF3b, stimulates the translation of TGF-β1, 2, and 3.
Collapse
Affiliation(s)
| | | | - Stephen C Meredith
- From the Departments of Pathology and Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637 and
| | - Jennifer L Martindale
- the Laboratory of Genetics, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Myriam Gorospe
- the Laboratory of Genetics, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | | |
Collapse
|