1
|
Wäneskog M, Halvorsen T, Filek K, Xu F, Hammarlöf DL, Hayes CS, Braaten BA, Low DA, Poole SJ, Koskiniemi S. Escherichia coli EC93 deploys two plasmid-encoded class I contact-dependent growth inhibition systems for antagonistic bacterial interactions. Microb Genom 2021; 7:mgen000534. [PMID: 33646095 PMCID: PMC8190604 DOI: 10.1099/mgen.0.000534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/29/2021] [Indexed: 01/27/2023] Open
Abstract
The phenomenon of contact-dependent growth inhibition (CDI) and the genes required for CDI (cdiBAI) were identified and isolated in 2005 from an Escherichia coli isolate (EC93) from rats. Although the cdiBAIEC93 locus has been the focus of extensive research during the past 15 years, little is known about the EC93 isolate from which it originates. Here we sequenced the EC93 genome and find two complete and functional cdiBAI loci (including the previously identified cdi locus), both carried on a large 127 kb plasmid. These cdiBAI systems are differentially expressed in laboratory media, enabling EC93 to outcompete E. coli cells lacking cognate cdiI immunity genes. The two CDI systems deliver distinct effector peptides that each dissipate the membrane potential of target cells, although the two toxins display different toxic potencies. Despite the differential expression and toxic potencies of these CDI systems, both yielded similar competitive advantages against E. coli cells lacking immunity. This can be explained by the fact that the less expressed cdiBAI system (cdiBAIEC93-2) delivers a more potent toxin than the highly expressed cdiBAIEC93-1 system. Moreover, our results indicate that unlike most sequenced CDI+ bacterial isolates, the two cdi loci of E. coli EC93 are located on a plasmid and are expressed in laboratory media.
Collapse
Affiliation(s)
- Marcus Wäneskog
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Tiffany Halvorsen
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, California, USA
| | - Klara Filek
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- Present address: Department of Biology, University of Zagreb, Zagreb, Croatia
| | - Feifei Xu
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Disa L. Hammarlöf
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- Present address: Science for Life Laboratory, KTH, Sweden
| | - Christopher S. Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, California, USA
| | - Bruce A. Braaten
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, California, USA
| | - David A. Low
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, California, USA
| | - Stephen J. Poole
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, California, USA
| | - Sanna Koskiniemi
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|