1
|
Pan B, Bruno M, Macfarlan TS, Akera T. Meiosis-specific distal cohesion site decoupled from the kinetochore. Nat Commun 2025; 16:2116. [PMID: 40032846 PMCID: PMC11876576 DOI: 10.1038/s41467-025-57438-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 02/21/2025] [Indexed: 03/05/2025] Open
Abstract
Primary constriction of the M-phase chromosome serves as a marker for the kinetochore position. Underlying this observation is the concept that the kinetochore is spatially linked with the pericentromere where sister-chromatids are cohered. Here, we find an unconventional chromatid-cohesion pattern in Peromyscus oocytes, with sister chromatids cohered at a chromosome end, spatially separated from the kinetochore. This distal locus enriches cohesin protectors specifically during meiosis, and chromosomes with this additional cohesion site exhibit enhanced cohesin protection at anaphase I compared to those without it, implying an adaptive evolution to ensure cohesion during meiosis. The distal locus corresponds to an additional centromeric satellite block, located far from the satellite block building the kinetochore. Analyses on three Peromyscus species reveal that the internal satellite consistently assembles the kinetochore in mitosis and meiosis, whereas the distal satellite selectively enriches cohesin protectors in meiosis to promote cohesion. Our study demonstrates that cohesion regulation is flexible, controlling chromosome segregation in a cell-type dependent manner.
Collapse
Affiliation(s)
- Bo Pan
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Melania Bruno
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Takashi Akera
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Sun M, Yang B, Xin G, Wang Y, Luo J, Jiang Q, Zhang C. TIP60 acetylation of Bub1 regulates centromeric H2AT120 phosphorylation for faithful chromosome segregation. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1957-1969. [PMID: 38763998 DOI: 10.1007/s11427-023-2604-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024]
Abstract
Proper function of the centromeres ensures correct attachment of kinetochores to spindle microtubules and faithful chromosome segregation in mitosis. Defects in the integrity and function of centromeres can result in chromosome missegregation and genomic instability. Bub1 is essential for the mitotic centromere dynamics, yet the underlying molecular mechanisms remain largely unclear. Here, we demonstrate that TIP60 acetylates Bub1 at K424 and K431 on kinetochores in early mitosis. This acetylation increases the kinase activity of Bub1 to phosphorylate centromeric histone H2A at T120 (H2ApT120), which recruits Aurora B and Shugoshin 1 (Sgo1) to regulate centromere integrity, protect centromeric cohesion, and ensure the subsequent faithful chromosome segregation. Expression of the non-acetylated Bub1 mutant reduces its kinase activity, decreases the level of H2ApT120, and disrupts the recruitment of centromere proteins and chromosome congression, leading to genomic instability of daughter cells. When cells exit mitosis, HDAC1-regulated deacetylation of Bub1 decreases H2ApT120 levels and thereby promotes the departure of centromeric CPC and Sgo1, ensuring timely centromeres disassembly. Collectively, our results reveal a molecular mechanism by which the acetylation and deacetylation cycle of Bub1 modulates the phosphorylation of H2A at T120 for recruitment of Aurora B and Sgo1 to the centromeres, ensuring faithful chromosome segregation during mitosis.
Collapse
Affiliation(s)
- Mengjie Sun
- The Academy for Cell and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Biying Yang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Guangwei Xin
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Yao Wang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Jia Luo
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Qing Jiang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Chuanmao Zhang
- The Academy for Cell and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
3
|
Pan B, Bruno M, Macfarlan TS, Akera T. Meiosis-specific decoupling of the pericentromere from the kinetochore. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.21.604490. [PMID: 39091844 PMCID: PMC11291024 DOI: 10.1101/2024.07.21.604490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The primary constriction site of the M-phase chromosome is an established marker for the kinetochore position, often used to determine the karyotype of each species. Underlying this observation is the concept that the kinetochore is spatially linked with the pericentromere where sister-chromatids are most tightly cohered. Here, we found an unconventional pericentromere specification with sister chromatids mainly cohered at a chromosome end, spatially separated from the kinetochore in Peromyscus mouse oocytes. This distal locus enriched cohesin protectors, such as the Chromosomal Passenger Complex (CPC) and PP2A, at a higher level compared to its centromere/kinetochore region, acting as the primary site for sister-chromatid cohesion. Chromosomes with the distal cohesion site exhibited enhanced cohesin protection at anaphase I compared to those without it, implying that these distal cohesion sites may have evolved to ensure sister-chromatid cohesion during meiosis. In contrast, mitotic cells enriched CPC only near the kinetochore and the distal locus was not cohered between sister chromatids, suggesting a meiosis-specific mechanism to protect cohesin at this distal locus. We found that this distal locus corresponds to an additional centromeric satellite block, located far apart from the centromeric satellite block that builds the kinetochore. Several Peromyscus species carry chromosomes with two such centromeric satellite blocks. Analyses on three Peromyscus species revealed that the internal satellite consistently assembles the kinetochore in both mitosis and meiosis, whereas the distal satellite selectively enriches cohesin protectors in meiosis to promote sister-chromatid cohesion at that site. Thus, our study demonstrates that pericentromere specification is remarkably flexible and can control chromosome segregation in a cell-type and context dependent manner.
Collapse
Affiliation(s)
- Bo Pan
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health; Bethesda, Maryland 20894, USA
| | - Melania Bruno
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health; Bethesda, Maryland 20894, USA
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health; Bethesda, Maryland 20894, USA
| | - Takashi Akera
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health; Bethesda, Maryland 20894, USA
| |
Collapse
|
4
|
Ballmer D, Carter W, van Hooff JJE, Tromer EC, Ishii M, Ludzia P, Akiyoshi B. Kinetoplastid kinetochore proteins KKT14-KKT15 are divergent Bub1/BubR1-Bub3 proteins. Open Biol 2024; 14:240025. [PMID: 38862021 PMCID: PMC11286163 DOI: 10.1098/rsob.240025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 06/13/2024] Open
Abstract
Faithful transmission of genetic material is crucial for the survival of all organisms. In many eukaryotes, a feedback control mechanism called the spindle checkpoint ensures chromosome segregation fidelity by delaying cell cycle progression until all chromosomes achieve proper attachment to the mitotic spindle. Kinetochores are the macromolecular complexes that act as the interface between chromosomes and spindle microtubules. While most eukaryotes have canonical kinetochore proteins that are widely conserved, kinetoplastids such as Trypanosoma brucei have a seemingly unique set of kinetochore proteins including KKT1-25. It remains poorly understood how kinetoplastids regulate cell cycle progression or ensure chromosome segregation fidelity. Here, we report a crystal structure of the C-terminal domain of KKT14 from Apiculatamorpha spiralis and uncover that it is a pseudokinase. Its structure is most similar to the kinase domain of a spindle checkpoint protein Bub1. In addition, KKT14 has a putative ABBA motif that is present in Bub1 and its paralogue BubR1. We also find that the N-terminal part of KKT14 interacts with KKT15, whose WD40 repeat beta-propeller is phylogenetically closely related to a direct interactor of Bub1/BubR1 called Bub3. Our findings indicate that KKT14-KKT15 are divergent orthologues of Bub1/BubR1-Bub3, which promote accurate chromosome segregation in trypanosomes.
Collapse
Affiliation(s)
- Daniel Ballmer
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, UK
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, EdinburghEH9 3BF, UK
| | - William Carter
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, UK
| | - Jolien J. E. van Hooff
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, 6708 HB Wageningen, The Netherlands
| | - Eelco C. Tromer
- Cell Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Midori Ishii
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, UK
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, EdinburghEH9 3BF, UK
| | - Patryk Ludzia
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, UK
| | - Bungo Akiyoshi
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, UK
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, EdinburghEH9 3BF, UK
| |
Collapse
|
5
|
Jian Y, Jiang Y, Nie L, Dou Z, Liu X, Fu C. Phosphorylation of Bub1 by Mph1 promotes Bub1 signaling at the kinetochore to ensure accurate chromosome segregation. J Biol Chem 2024; 300:105559. [PMID: 38097187 PMCID: PMC10805674 DOI: 10.1016/j.jbc.2023.105559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 01/02/2024] Open
Abstract
Bub1 is a conserved mitotic kinase involved in signaling of the spindle assembly checkpoint. Multiple phosphorylation sites on Bub1 have been characterized, yet it is challenging to understand the interplay between the multiple phosphorylation sites due to the limited availability of phosphospecific antibodies. In addition, phosphoregulation of Bub1 in Schizosaccharomyces pombe is poorly understood. Here we report the identification of a new Mph1/Mps1-mediated phosphorylation site, i.e., Ser532, of Bub1 in Schizosaccharomyces pombe. A phosphospecific antibody against phosphorylated Bub1-Ser532 was developed. Using the phosphospecific antibody, we demonstrated that phosphorylation of Bub1-Ser352 was mediated specifically by Mph1/Mps1 and took place during early mitosis. Moreover, live-cell microscopy showed that inhibition of the phosphorylation of Bub1 at Ser532 impaired the localization of Bub1, Mad1, and Mad2 to the kinetochore. In addition, inhibition of the phosphorylation of Bub1 at Ser532 caused anaphase B lagging chromosomes. Hence, our study constitutes a model in which Mph1/Mps1-mediated phosphorylation of fission yeast Bub1 promotes proper kinetochore localization of Bub1 and faithful chromosome segregation.
Collapse
Affiliation(s)
- Yanze Jian
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yueyue Jiang
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Lingyun Nie
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zhen Dou
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Chuanhai Fu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
6
|
Liu G, Zhang S, Lin R, Cao X, Yuan L. Anti-tumor target screening of sea cucumber saponin Frondoside A: a bioinformatics and molecular docking analysis. Front Oncol 2023; 13:1307838. [PMID: 38144520 PMCID: PMC10739435 DOI: 10.3389/fonc.2023.1307838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
Cancer remains the leading cause of death worldwide. In spite of significant advances in targeted and immunotherapeutic approaches, clinical outcomes for cancer remain poor. The aim of the present study was to investigate the potential mechanisms and therapeutic targets of Frondoside A for the treatment of liver, pancreatic, and bladder cancers. The data presented in our study demonstrated that Frondoside A reduced the viability and migration of HepG2, Panc02, and UM-UC-3 cancer cell in vitro. Moreover, we utilized the GEO database to screen and identify for differentially expressed genes (DEGs) in liver, pancreatic, and bladder cancers, which resulted in the identification of 714, 357, and 101 DEGs, respectively. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation were performed using the Metascape database for DEGs that were significantly associated with cancer development. The protein-protein interaction (PPI) networks of the identified DEGs in liver, pancreatic, and bladder cancers were analyzed using Cytoscape 3.9.0 software, and subsequently identified potential key genes that were associated with these networks. Subsequently, their prognostic values were assessed by gene expression level analysis and Kaplan-Meier survival analysis (GEPIA). Furthermore, we utilized TIMER 2.0 to investigate the correlation between the expression of the identified key gene and cancer immune infiltration. Finally, molecular docking simulations were performed to assess the affinity of Frondoside A and key genes. Our results showed a significant correlation between these DEGs and cancer progression. Combined, these analyses revealed that Frondoside A involves in the regulation of multiple pathways, such as drug metabolism, cell cycle in liver cancer by inhibiting the expression of CDK1, TOP2A, CDC20, and KIF20A, and regulates protein digestion and absorption, receptor interaction in pancreatic cancer by down-regulation of ASPM, TOP2A, DLGAP5, TPX2, KIF23, MELK, LAMA3, and ANLN. While in bladder cancer, Frondoside A regulates muscle contraction, complement and coagulation cascade by increase FLNC expression. In conclusion, the present study offers valuable insights into the molecular mechanism underlying the anticancer effects of Frondoside A, and suggests that Frondoside A can be used as a functional food supplement or further developed as a natural anti-cancer drug.
Collapse
Affiliation(s)
- Guangchun Liu
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shenglin Zhang
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ruoyan Lin
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xudong Cao
- Deparment of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Lihong Yuan
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
7
|
Herman JA, Romain RR, Hoellerbauer P, Shirnekhi HK, King DC, DeLuca KF, Osborne Nishimura E, Paddison PJ, DeLuca JG. Hyper-active RAS/MAPK introduces cancer-specific mitotic vulnerabilities. Proc Natl Acad Sci U S A 2022; 119:e2208255119. [PMID: 36191188 PMCID: PMC9565228 DOI: 10.1073/pnas.2208255119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/26/2022] [Indexed: 01/04/2023] Open
Abstract
Aneuploidy, the incorrect number of whole chromosomes, is a common feature of tumors that contributes to their initiation and evolution. Preventing aneuploidy requires properly functioning kinetochores, which are large protein complexes assembled on centromeric DNA that link mitotic chromosomes to dynamic spindle microtubules and facilitate chromosome segregation. The kinetochore leverages at least two mechanisms to prevent aneuploidy: error correction and the spindle assembly checkpoint (SAC). BubR1, a factor involved in both processes, was identified as a cancer dependency and therapeutic target in multiple tumor types; however, it remains unclear what specific oncogenic pressures drive this enhanced dependency on BubR1 and whether it arises from BubR1's regulation of the SAC or error-correction pathways. Here, we use a genetically controlled transformation model and glioblastoma tumor isolates to show that constitutive signaling by RAS or MAPK is necessary for cancer-specific BubR1 vulnerability. The MAPK pathway enzymatically hyperstimulates a network of kinetochore kinases that compromises chromosome segregation, rendering cells more dependent on two BubR1 activities: counteracting excessive kinetochore-microtubule turnover for error correction and maintaining the SAC. This work expands our understanding of how chromosome segregation adapts to different cellular states and reveals an oncogenic trigger of a cancer-specific defect.
Collapse
Affiliation(s)
- Jacob A. Herman
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Romario R. Romain
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Pia Hoellerbauer
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | - Hazheen K. Shirnekhi
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - David C. King
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Keith F. DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Erin Osborne Nishimura
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | | | - Jennifer G. DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
8
|
He Y, Fu W, Du L, Yao H, Hua Z, Li J, Lin Z. Discovery of a novel Aurora B inhibitor GSK650394 with potent anticancer and anti- aspergillus fumigatus dual efficacies in vitro. J Enzyme Inhib Med Chem 2021; 37:109-117. [PMID: 34894976 PMCID: PMC8667888 DOI: 10.1080/14756366.2021.1975693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Invasive fungal infections including Candidiasis and Aspergillosis are associated with considerable morbidity and mortality in immunocompromised individuals, such as cancer patients. Aurora B is a key mitotic kinase required for the cell division of eukaryotes from fungus to man. Here, we identified a novel Aurora B inhibitor GSK650394 that can inhibit the recombinant Aurora B from human and Aspergillus fumigatus, with IC50 values of 5.68 and 1.29 µM, respectively. In HeLa and HepG2 cells, GSK650394 diminishes the endogenous Aurora B activity and causes cell cycle arrest in G2/M phase. Further cell-based assays demonstrate that GSK650394 efficiently suppresses the proliferation of both cancer cells and Aspergillus fumigatus. Finally, the molecular docking calculation and site-directed mutagenesis analyses reveal the molecular mechanism of Aurora B inhibition by GSK650394. Our work is expected to provide new insight into the combinational therapy of cancer and Aspergillus fumigatus infection.
Collapse
Affiliation(s)
- Yuhua He
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Wei Fu
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Liyang Du
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Huiqiao Yao
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Zhengkang Hua
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Jinyu Li
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Zhonghui Lin
- College of Chemistry, Fuzhou University, Fuzhou, China
| |
Collapse
|
9
|
Jiang N, Liao Y, Wang M, Wang Y, Wang K, Guo J, Wu P, Zhong B, Guo T, Wu C. BUB1 drives the occurrence and development of bladder cancer by mediating the STAT3 signaling pathway. J Exp Clin Cancer Res 2021; 40:378. [PMID: 34852826 PMCID: PMC8638147 DOI: 10.1186/s13046-021-02179-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The incidence of bladder urothelial carcinoma (UC), a common malignancy of the urinary tract, is approximately three times higher in men than in women. High expression of the mitotic kinase BUB1 is associated with the occurrence and development of several cancers, although the relationship between BUB1 and bladder tumorigenesis remains unclear. METHODS Using a microarray approach, we found increased BUB1 expression in human BCa. The association between BUB1 and STAT3 phosphorylation was determined through molecular and cell biological methods. We evaluated the impact of pharmacologic inhibition of BUB1 kinase activity on proliferation and BCa progression in vitro and in vivo. RESULTS In this study, we found that BUB1 expression was increased in human bladder cancer (BCa). We further identified through a series of molecular and cell biological approaches that BUB1 interacted directly with STAT3 and mediated the phosphorylation of STAT3 at Ser727. In addition, the findings that pharmacologic inhibition of BUB1 kinase activity significantly suppressed BCa cell proliferation and the progression of bladder cancer in vitro and in vivo were further verified. Finally, we found that the BUB1/STAT3 complex promoted the transcription of STAT3 target genes and that depletion of BUB1 and mutation of the BUB1 kinase domain abrogated this transcriptional activity, further highlighting the critical role of kinase activity in the activation of STAT3 target genes. A pharmacological inhibitor of BUB1 (2OH-BNPP1) was able to significantly inhibit the growth of BCa cell xenografts. CONCLUSION This study showed that the BUB1 kinase drives the progression and proliferation of BCa by regulating the transcriptional activation of STAT3 signaling and may be an attractive candidate for therapeutic targeting in BCa.
Collapse
Affiliation(s)
- Ning Jiang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| | - Yihao Liao
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Miaomiao Wang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Youzhi Wang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Keke Wang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Jianing Guo
- Department of Pathology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Peikang Wu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Boqiang Zhong
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Tao Guo
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Changli Wu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
- Sino-Singapore Eco-City Hospital of Tianjin Medical University, Tianjin, 300450, China
| |
Collapse
|
10
|
Amalina I, Bennett A, Whalley H, Perera D, McGrail JC, Tighe A, Procter DJ, Taylor SS. Inhibitors of the Bub1 spindle assembly checkpoint kinase: synthesis of BAY-320 and comparison with 2OH-BNPP1. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210854. [PMID: 34925867 PMCID: PMC8672067 DOI: 10.1098/rsos.210854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
Bub1 is a serine/threonine kinase proposed to function centrally in mitotic chromosome alignment and the spindle assembly checkpoint (SAC); however, its role remains controversial. Although it is well documented that Bub1 phosphorylation of Histone 2A at T120 (H2ApT120) recruits Sgo1/2 to kinetochores, the requirement of its kinase activity for chromosome alignment and the SAC is debated. As small-molecule inhibitors are invaluable tools for investigating kinase function, we evaluated two potential Bub1 inhibitors: 2OH-BNPPI and BAY-320. After confirming that both inhibit Bub1 in vitro, we developed a cell-based assay for Bub1 inhibition. We overexpressed a fusion of Histone 2B and Bub1 kinase region, tethering it in proximity to H2A to generate a strong ectopic H2ApT120 signal along chromosome arms. Ectopic signal was effectively inhibited by BAY-320, but not 2OH-BNPP1 at concentrations tested. In addition, only BAY-320 was able to inhibit endogenous Bub1-mediated Sgo1 localization. Preliminary experiments using BAY-320 suggest a minor role for Bub1 kinase activity in chromosome alignment and the SAC; however, BAY-320 may exhibit off-target effects at the concentration required. Thus, 2OH-BNPP1 may not be an effective Bub1 inhibitor in cellulo, and while BAY-320 can inhibit Bub1 in cells, off-target effects highlight the need for improved Bub1 inhibitors.
Collapse
Affiliation(s)
- Ilma Amalina
- Department of Chemistry, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Ailsa Bennett
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - Helen Whalley
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - David Perera
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - Joanne C. McGrail
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - Anthony Tighe
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - David J. Procter
- Department of Chemistry, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Stephen S. Taylor
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, 555 Wilmslow Road, Manchester M20 4GJ, UK
| |
Collapse
|
11
|
Nyati S, Gregg BS, Xu J, Young G, Kimmel L, Nyati MK, Ray D, Speers C, Rehemtulla A. TGFBR2 mediated phosphorylation of BUB1 at Ser-318 is required for transforming growth factor-β signaling. Neoplasia 2020; 22:163-178. [PMID: 32143140 PMCID: PMC7057164 DOI: 10.1016/j.neo.2020.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/10/2020] [Indexed: 01/17/2023] Open
Abstract
BUB1 (budding uninhibited by benzimidazoles-1) is required for efficient TGF-β signaling, through its role in stabilizing the TGFBR1 and TGFBR2 complex. Here we demonstrate that TGFBR2 phosphorylates BUB1 at Serine-318, which is conserved in primates. S318 phosphorylation abrogates the interaction of BUB1 with TGFBR1 and SMAD2. Using BUB1 truncation domains (1–241, 241–482 and 482–723), we demonstrate that multiple contact points exist between BUB1 and TGF-β signaling components and that these interactions are independent of the BUB1 tetratricopeptide repeat (TPR) domain. Moreover, substitutions in the middle domain (241–482) encompassing S318 reveals that efficient interaction with TGFBR2 occurs only in its dephosphorylated state (241–482 S318A). In contrast, the phospho-mimicking mutant (241–482 S318D) exhibits efficient binding with SMAD2 and its over-expression results in a decrease in TGFBR1-TGFBR2 and TGFBR1-SMAD2 interactions. These findings suggest that TGFBR2 mediated BUB1 phosphorylation at S318 may serve as a switch for the dissociation of the SMAD2-TGFBR complex, and therefore represents a regulatory event for TGF-β signaling. Finally, we provide evidence that the BUB1-TGF-β signaling axis may mediate aggressive phenotypes in a variety of cancers.
Collapse
Affiliation(s)
- Shyam Nyati
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA.
| | - Brandon S Gregg
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Jiaqi Xu
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Grant Young
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Lauren Kimmel
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Mukesh K Nyati
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Dipankar Ray
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Corey Speers
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Alnawaz Rehemtulla
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
12
|
Li F, Kim H, Ji Z, Zhang T, Chen B, Ge Y, Hu Y, Feng X, Han X, Xu H, Zhang Y, Yu H, Liu D, Ma W, Songyang Z. The BUB3-BUB1 Complex Promotes Telomere DNA Replication. Mol Cell 2019; 70:395-407.e4. [PMID: 29727616 DOI: 10.1016/j.molcel.2018.03.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 02/09/2018] [Accepted: 03/27/2018] [Indexed: 01/02/2023]
Abstract
Telomeres and telomere-binding proteins form complex secondary nucleoprotein structures that are critical for genome integrity but can present serious challenges during telomere DNA replication. It remains unclear how telomere replication stress is resolved during S phase. Here, we show that the BUB3-BUB1 complex, a component in spindle assembly checkpoint, binds to telomeres during S phase and promotes telomere DNA replication. Loss of the BUB3-BUB1 complex results in telomere replication defects, including fragile and shortened telomeres. We also demonstrate that the telomere-binding ability of BUB3 and kinase activity of BUB1 are indispensable to BUB3-BUB1 function at telomeres. TRF2 targets BUB1-BUB3 to telomeres, and BUB1 can directly phosphorylate TRF1 and promote TRF1 recruitment of BLM helicase to overcome replication stress. Our findings have uncovered previously unknown roles for the BUB3-BUB1 complex in S phase and shed light on how proteins from diverse pathways function coordinately to ensure proper telomere replication and maintenance.
Collapse
Affiliation(s)
- Feng Li
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Oncology in South China, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Hyeung Kim
- Verna and Marrs Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Zhejian Ji
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Tianpeng Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Oncology in South China, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Bohong Chen
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Oncology in South China, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuanlong Ge
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Oncology in South China, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yang Hu
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Oncology in South China, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xuyang Feng
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Oncology in South China, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Han
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Oncology in South China, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Huimin Xu
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Oncology in South China, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Youwei Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Oncology in South China, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Hongtao Yu
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Dan Liu
- Verna and Marrs Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Wenbin Ma
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Oncology in South China, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Zhou Songyang
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Oncology in South China, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Verna and Marrs Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
13
|
Shugoshin 1 is dislocated by KSHV-encoded LANA inducing aneuploidy. PLoS Pathog 2018; 14:e1007253. [PMID: 30212568 PMCID: PMC6136811 DOI: 10.1371/journal.ppat.1007253] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/31/2018] [Indexed: 11/30/2022] Open
Abstract
Shugoshin-1 (Sgo1) protects the integrity of the centromeres, and H2A phosphorylation is critical for this process. The mitotic checkpoint kinase Bub1, phosphorylates H2A and ensures fidelity of chromosome segregation and chromosome number. Oncogenic KSHV induces genetic alterations through chromosomal instability (CIN), and its essential antigen LANA regulates Bub1. We show that LANA inhibits Bub1 phosphorylation of H2A and Cdc20, important for chromosome segregation and mitotic signaling. Inhibition of H2A phosphorylation at residue T120 by LANA resulted in dislocation of Sgo1, and cohesin from the centromeres. Arrest of Cdc20 phosphorylation also rescued degradation of Securin and Cyclin B1 at mitotic exit, and interaction of H2A, and Cdc20 with Bub1 was inhibited by LANA. The N-terminal nuclear localization sequence domain of LANA was essential for LANA and Bub1 interaction, reversed LANA inhibited phosphorylation of H2A and Cdc20, and attenuated LANA-induced aneuploidy and cell proliferation. This molecular mechanism whereby KSHV-induced CIN, demonstrated that the NNLS of LANA is a promising target for development of anti-viral therapies targeting KSHV associated cancers. KSHV is a known oncogenic herpes virus associated with human malignancies and lymphoproliferative disorders, which includes Kaposi’s sarcoma, Primary effusion lymphoma, and Multicentric Castleman’s disease. KSHV disrupts the G1 and G2/M checkpoints through multiple pathways. Whether KSHV can directly interfere with spindle checkpoints is not known. Impairment of the mitotic checkpoint protein Bub1 leads to CIN and oncogenesis through displacement of Shugoshin-1. KSHV associated diseases have genetic alterations which are driven by chromosomal instability (CIN), as seen in numerous viral-associated cancer cells. Here we examined the molecular mechanism behind KSHV-induced CIN. We showed that the latent antigen LANA, encoded by KSHV, inhibits Bub1 phosphorylation of H2A and Cdc20, and this led to the dislocation of Shugoshin-1. Our studies demonstrated the direct induction of aneuploidy by LANA. The NNLS domain of LANA serves as an anchor for LANA to promote its multiple functions. We also showed that the NNLS polypeptide can antagonize LANA’s inhibition on Bub1 kinase function, and so rescue the aneuploidy induced by LANA. Development of this property of NNLS is potentially useful for targeted elimination of KSHV-associated cancers.
Collapse
|
14
|
Maeda K, Yoneda M, Nakagawa T, Ikeda K, Higashi M, Nakagawa K, Miyakoda M, Yui K, Oda H, Inoue S, Ito T. Defects in centromeric/pericentromeric histone H2A T120 phosphorylation by hBUB1 cause chromosome missegregation producing multinucleated cells. Genes Cells 2018; 23:828-838. [PMID: 30112853 DOI: 10.1111/gtc.12630] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/17/2018] [Accepted: 07/17/2018] [Indexed: 11/26/2022]
Abstract
Histone H2A phosphorylation plays a role both in chromatin condensation during mitosis and in transcriptional activation during the G1/S transition. Bub1 and NHK1/VRK1 have been identified as histone H2A kinases. However, little is known about the importance of histone H2A phosphorylation in chromosome segregation. Here, we expressed recombinant hBUB1 and confirmed that it phosphorylates histone H2A T120 in the in vitro-assembled nucleosome. Knockdown (KD) of BUB1 decreases bulk H2A T120 phosphorylation in HeLa cells, whereas hBUB1 is upregulated during mitosis, which corresponds with H2A T120 phosphorylation. ChIP-qPCR of the DXZ1 centromeric and γ-ALR pericentromeric region showed that BUB1 localizes to this region and increases local H2A T120 phosphorylation during M phase. BUB1 KD did not induce apoptosis but increased the M phase cell population, as detected by flow cytometry. BUB1 KD also caused an abnormal metaphase and telophase, resulting in multinucleated cells and impaired cancer cell growth both in vitro and in vivo. Over-expression of the histone H2A T120D or T120E mutations, which mimic phosphorylated threonine, decreased the number of multinucleated cells caused by BUB1 KD. These results strengthen the apparent importance of BUB1-mediated H2A T120 phosphorylation in normal mitosis.
Collapse
Affiliation(s)
- Katsutoshi Maeda
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan.,Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Oda Clinic, Hiroshima, Japan
| | - Mitsuhiro Yoneda
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Takeya Nakagawa
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Kazuhiro Ikeda
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Miki Higashi
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Kaori Nakagawa
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Mana Miyakoda
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Katsuyuki Yui
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | | | - Satoshi Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan.,Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Takashi Ito
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan.,Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
15
|
Williams RM, Franke B, Wilkinson M, Fleming JR, Rigden DJ, Benian GM, Eyers PA, Mayans O. Autophosphorylation Is a Mechanism of Inhibition in Twitchin Kinase. J Mol Biol 2018; 430:793-805. [PMID: 29408381 DOI: 10.1016/j.jmb.2018.01.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/25/2018] [Accepted: 01/30/2018] [Indexed: 11/17/2022]
Abstract
Titin-like kinases are muscle-specific kinases that regulate mechanical sensing in the sarcomere. Twitchin kinase (TwcK) is the best-characterized member of this family, both structurally and enzymatically. TwcK activity is auto-inhibited by a dual intrasteric mechanism, in which N- and C-terminal tail extensions wrap around the kinase domain, blocking the hinge region, the ATP binding pocket and the peptide substrate binding groove. Physiologically, kinase activation is thought to occur by a stretch-induced displacement of the inhibitory tails from the kinase domain. Here, we now show that TwcK inhibits its catalysis even in the absence of regulatory tails, by undergoing auto-phosphorylation at mechanistically important elements of the kinase fold. Using mass spectrometry, site-directed mutagenesis and catalytic assays on recombinant samples, we identify residues T212, T301, T316 and T401 as primary auto-phosphorylation sites in TwcK in vitro. Taken together, our results suggest that residue T316, located in the peptide substrate binding P+1 loop, is the dominantly regulatory site in TwcK. Based on these findings, we conclude that TwcK is regulated through a triple-inhibitory mechanism consisting of phosphorylation and intrasteric blockage, which is responsive not only to mechanical cues but also to biochemical modulation. This implies that mechanically stretched conformations of TwcK do not necessarily correspond to catalytically active states, as previously postulated. This further suggests a phosphorylation-dependent desensitization of the TwcK-mediated mechanoresponse of the sarcomere in vivo.
Collapse
Affiliation(s)
- Rhys M Williams
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany; Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Barbara Franke
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany; Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Mark Wilkinson
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | | | - Daniel J Rigden
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Guy M Benian
- Department of Pathology, Emory University, Atlanta, GA 30322, USA
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Olga Mayans
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany; Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK.
| |
Collapse
|
16
|
Welburn JPI, Jeyaprakash AA. Mechanisms of Mitotic Kinase Regulation: A Structural Perspective. Front Cell Dev Biol 2018; 6:6. [PMID: 29459892 PMCID: PMC5807344 DOI: 10.3389/fcell.2018.00006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/19/2018] [Indexed: 12/18/2022] Open
Abstract
Protein kinases are major regulators of mitosis, with over 30% of the mitotic proteome phosphorylated on serines, threonines and tyrosines. The human genome encodes for 518 kinases that have a structurally conserved catalytic domain and includes about a dozen of cell division specific ones. Yet each kinase has unique structural features that allow their distinct substrate recognition and modes of regulation. These unique regulatory features determine their accurate spatio-temporal activation critical for correct progression through mitosis and are exploited for therapeutic purposes. In this review, we will discuss the principles of mitotic kinase activation and the structural determinants that underlie functional specificity.
Collapse
Affiliation(s)
- Julie P I Welburn
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Scotland, United Kingdom
| | - A Arockia Jeyaprakash
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Scotland, United Kingdom
| |
Collapse
|
17
|
Ji Z, Gao H, Jia L, Li B, Yu H. A sequential multi-target Mps1 phosphorylation cascade promotes spindle checkpoint signaling. eLife 2017; 6. [PMID: 28072388 PMCID: PMC5268738 DOI: 10.7554/elife.22513] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/09/2017] [Indexed: 12/18/2022] Open
Abstract
The master spindle checkpoint kinase Mps1 senses kinetochore-microtubule attachment and promotes checkpoint signaling to ensure accurate chromosome segregation. The kinetochore scaffold Knl1, when phosphorylated by Mps1, recruits checkpoint complexes Bub1–Bub3 and BubR1–Bub3 to unattached kinetochores. Active checkpoint signaling ultimately enhances the assembly of the mitotic checkpoint complex (MCC) consisting of BubR1–Bub3, Mad2, and Cdc20, which inhibits the anaphase-promoting complex or cyclosome bound to Cdc20 (APC/CCdc20) to delay anaphase onset. Using in vitro reconstitution, we show that Mps1 promotes APC/C inhibition by MCC components through phosphorylating Bub1 and Mad1. Phosphorylated Bub1 binds to Mad1–Mad2. Phosphorylated Mad1 directly interacts with Cdc20. Mutations of Mps1 phosphorylation sites in Bub1 or Mad1 abrogate the spindle checkpoint in human cells. Therefore, Mps1 promotes checkpoint activation through sequentially phosphorylating Knl1, Bub1, and Mad1. This sequential multi-target phosphorylation cascade makes the checkpoint highly responsive to Mps1 and to kinetochore-microtubule attachment. DOI:http://dx.doi.org/10.7554/eLife.22513.001
Collapse
Affiliation(s)
- Zhejian Ji
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Haishan Gao
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Luying Jia
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Bing Li
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Hongtao Yu
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
18
|
Caron D, Byrne DP, Thebault P, Soulet D, Landry CR, Eyers PA, Elowe S. Mitotic phosphotyrosine network analysis reveals that tyrosine phosphorylation regulates Polo-like kinase 1 (PLK1). Sci Signal 2016; 9:rs14. [PMID: 27965426 DOI: 10.1126/scisignal.aah3525] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tyrosine phosphorylation is closely associated with cell proliferation. During the cell cycle, serine and threonine phosphorylation plays the leading role, and such phosphorylation events are most dynamic during the mitotic phase of the cell cycle. However, mitotic phosphotyrosine is not well characterized. Although a few functionally-relevant mitotic phosphotyrosine sites have been characterized, evidence suggests that this modification may be more prevalent than previously appreciated. Here, we examined tyrosine phosphorylation in mitotic human cells including those on spindle-associated proteins.? Database mining confirmed ~2000 mitotic phosphotyrosine sites, and network analysis revealed a number of subnetworks that were enriched in tyrosine-phosphorylated proteins, including components of the kinetochore or spindle and SRC family kinases. We identified Polo-like kinase 1 (PLK1), a major signaling hub in the spindle subnetwork, as phosphorylated at the conserved Tyr217 in the kinase domain. Substitution of Tyr217 with a phosphomimetic residue eliminated PLK1 activity in vitro and in cells. Further analysis showed that Tyr217 phosphorylation reduced the phosphorylation of Thr210 in the activation loop, a phosphorylation event necessary for PLK1 activity. Our data indicate that mitotic tyrosine phosphorylation regulated a key serine/threonine kinase hub in mitotic cells and suggested that spatially separating tyrosine phosphorylation events can reveal previously unrecognized regulatory events and complexes associated with specific structures of the cell cycle.
Collapse
Affiliation(s)
- Danielle Caron
- Department of Pediatrics, Faculty of Medicine, Université Laval, Centre Hospitalier Universitaire de Québec Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Dominic P Byrne
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Philippe Thebault
- Department of Pediatrics, Faculty of Medicine, Université Laval, Centre Hospitalier Universitaire de Québec Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Denis Soulet
- Department of Psychiatry et Neurosciences, Faculty of Medicine, Université Laval, Centre Hospitalier Universitaire de Québec Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes, Department of Biology, PROTEO, Université Laval, Pavillon Charles-Eugène-Marchand, 1030 Avenue de la Médecine, Quebec City, Quebec G1V 0A6, Canada
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Sabine Elowe
- Department of Pediatrics, Faculty of Medicine, Université Laval, Centre Hospitalier Universitaire de Québec Research Center, Quebec City, Quebec G1V 4G2, Canada.
| |
Collapse
|
19
|
McSkimming DI, Dastgheib S, Baffi TR, Byrne DP, Ferries S, Scott ST, Newton AC, Eyers CE, Kochut KJ, Eyers PA, Kannan N. KinView: a visual comparative sequence analysis tool for integrated kinome research. MOLECULAR BIOSYSTEMS 2016; 12:3651-3665. [PMID: 27731453 PMCID: PMC5508867 DOI: 10.1039/c6mb00466k] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Multiple sequence alignments (MSAs) are a fundamental analysis tool used throughout biology to investigate relationships between protein sequence, structure, function, evolutionary history, and patterns of disease-associated variants. However, their widespread application in systems biology research is currently hindered by the lack of user-friendly tools to simultaneously visualize, manipulate and query the information conceptualized in large sequence alignments, and the challenges in integrating MSAs with multiple orthogonal data such as cancer variants and post-translational modifications, which are often stored in heterogeneous data sources and formats. Here, we present the Multiple Sequence Alignment Ontology (MSAOnt), which represents a profile or consensus alignment in an ontological format. Subsets of the alignment are easily selected through the SPARQL Protocol and RDF Query Language for downstream statistical analysis or visualization. We have also created the Kinome Viewer (KinView), an interactive integrative visualization that places eukaryotic protein kinase cancer variants in the context of natural sequence variation and experimentally determined post-translational modifications, which play central roles in the regulation of cellular signaling pathways. Using KinView, we identified differential phosphorylation patterns between tyrosine and serine/threonine kinases in the activation segment, a major kinase regulatory region that is often mutated in proliferative diseases. We discuss cancer variants that disrupt phosphorylation sites in the activation segment, and show how KinView can be used as a comparative tool to identify differences and similarities in natural variation, cancer variants and post-translational modifications between kinase groups, families and subfamilies. Based on KinView comparisons, we identify and experimentally characterize a regulatory tyrosine (Y177PLK4) in the PLK4 C-terminal activation segment region termed the P+1 loop. To further demonstrate the application of KinView in hypothesis generation and testing, we formulate and validate a hypothesis explaining a novel predicted loss-of-function variant (D523NPKCβ) in the regulatory spine of PKCβ, a recently identified tumor suppressor kinase. KinView provides a novel, extensible interface for performing comparative analyses between subsets of kinases and for integrating multiple types of residue specific annotations in user friendly formats.
Collapse
Affiliation(s)
| | - Shima Dastgheib
- Department of Computer Science, University of Georgia, Athens, GA 30602, USA
| | - Timothy R Baffi
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Dominic P Byrne
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Samantha Ferries
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Steven Thomas Scott
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Alexandra C Newton
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Claire E Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Krzysztof J Kochut
- Department of Computer Science, University of Georgia, Athens, GA 30602, USA
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA. and Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
20
|
Abstract
The major role of RNA polymerase II (RNAP II) is to generate mRNAs. I recently uncovered a novel function of RNAP II in chromosome segregation in mitosis, installing the cohesin protector, Shugoshin, at centromeres. Here I will discuss the current understanding of RNAP II-dependent centromeric transcription in mitosis.
Collapse
Affiliation(s)
- Hong Liu
- a Department of Biochemistry and Molecular Biology , Tulane University; School of Medicine , New Orleans , LA , USA
| |
Collapse
|
21
|
Jia L, Li B, Yu H. The Bub1-Plk1 kinase complex promotes spindle checkpoint signalling through Cdc20 phosphorylation. Nat Commun 2016; 7:10818. [PMID: 26912231 PMCID: PMC4773433 DOI: 10.1038/ncomms10818] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 01/25/2016] [Indexed: 12/15/2022] Open
Abstract
The spindle checkpoint senses unattached kinetochores and inhibits the Cdc20-bound anaphase-promoting complex or cyclosome (APC/C), to delay anaphase, thereby preventing aneuploidy. A critical checkpoint inhibitor of APC/C(Cdc20) is the mitotic checkpoint complex (MCC). It is unclear whether MCC suffices to inhibit all cellular APC/C. Here we show that human checkpoint kinase Bub1 not only directly phosphorylates Cdc20, but also scaffolds Plk1-mediated phosphorylation of Cdc20. Phosphorylation of Cdc20 by Bub1-Plk1 inhibits APC/C(Cdc20) in vitro and is required for checkpoint signalling in human cells. Bub1-Plk1-dependent Cdc20 phosphorylation is regulated by upstream checkpoint signals and is dispensable for MCC assembly. A phospho-mimicking Cdc20 mutant restores nocodazole-induced mitotic arrest in cells depleted of Mad2 or BubR1. Thus, Bub1-Plk1-mediated phosphorylation of Cdc20 constitutes an APC/C-inhibitory mechanism that is parallel, but not redundant, to MCC formation. Both mechanisms are required to sustain mitotic arrest in response to spindle defects.
Collapse
Affiliation(s)
- Luying Jia
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, Texas 75390, USA
| | - Bing Li
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, Texas 75390, USA
| | - Hongtao Yu
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, Texas 75390, USA
| |
Collapse
|
22
|
Baron AP, von Schubert C, Cubizolles F, Siemeister G, Hitchcock M, Mengel A, Schröder J, Fernández-Montalván A, von Nussbaum F, Mumberg D, Nigg EA. Probing the catalytic functions of Bub1 kinase using the small molecule inhibitors BAY-320 and BAY-524. eLife 2016; 5. [PMID: 26885717 PMCID: PMC4769170 DOI: 10.7554/elife.12187] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/21/2016] [Indexed: 12/14/2022] Open
Abstract
The kinase Bub1 functions in the spindle assembly checkpoint (SAC) and in chromosome congression, but the role of its catalytic activity remains controversial. Here, we use two novel Bub1 inhibitors, BAY-320 and BAY-524, to demonstrate potent Bub1 kinase inhibition both in vitro and in intact cells. Then, we compared the cellular phenotypes of Bub1 kinase inhibition in HeLa and RPE1 cells with those of protein depletion, indicative of catalytic or scaffolding functions, respectively. Bub1 inhibition affected chromosome association of Shugoshin and the chromosomal passenger complex (CPC), without abolishing global Aurora B function. Consequently, inhibition of Bub1 kinase impaired chromosome arm resolution but exerted only minor effects on mitotic progression or SAC function. Importantly, BAY-320 and BAY-524 treatment sensitized cells to low doses of Paclitaxel, impairing both chromosome segregation and cell proliferation. These findings are relevant to our understanding of Bub1 kinase function and the prospects of targeting Bub1 for therapeutic applications. DOI:http://dx.doi.org/10.7554/eLife.12187.001 The DNA in our cells is packaged into structures called chromosomes. When a cell divides, these chromosomes need to be copied and then correctly separated so that both daughter cells have a full set of genetic information. Errors in separating chromosomes can lead to the death of cells, birth defects or contribute to the development of cancer. Chromosomes are separated by an array of protein fibers called the mitotic spindle. A surveillance mechanism known as the spindle assembly checkpoint prevents the cell from dividing until all the chromosomes have properly attached to the spindle. A protein called Bub1 is a central element of the SAC. However, it was not clear whether Bub1 works primarily as an enzyme or as a scaffolding protein. Baron, von Schubert et al. characterized two new molecules that inhibit Bub1’s enzyme activity and used them to investigate what role the enzyme plays in the spindle assembly checkpoint in human cells. The experiments compared the effects of these inhibitors to the effects of other molecules that block the production of Bub1. Baron, von Schubert et al.’s findings suggest that Bub1 works primarily as a scaffolding protein, but that the enzyme activity is required for optimal performance. Further experiments show that when the molecules that inhibit the Bub1 enzyme are combined with paclitaxel – a widely used therapeutic drug – cancer cells have more difficulties in separating their chromosomes and divide less often. The new inhibitors used by Baron, von Schubert et al. will be useful for future studies of this protein in different situations. Furthermore, these molecules may have the potential to be used as anti-cancer therapies in combination with other drugs. DOI:http://dx.doi.org/10.7554/eLife.12187.002
Collapse
Affiliation(s)
- Anna P Baron
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | | | | | - Anne Mengel
- Global Drug Discovery, Bayer Pharma AG, Berlin, Germany
| | - Jens Schröder
- Global Drug Discovery, Bayer Pharma AG, Berlin, Germany
| | | | | | | | - Erich A Nigg
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
23
|
Breit C, Bange T, Petrovic A, Weir JR, Müller F, Vogt D, Musacchio A. Role of Intrinsic and Extrinsic Factors in the Regulation of the Mitotic Checkpoint Kinase Bub1. PLoS One 2015; 10:e0144673. [PMID: 26658523 PMCID: PMC4675524 DOI: 10.1371/journal.pone.0144673] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 11/20/2015] [Indexed: 12/16/2022] Open
Abstract
The spindle assembly checkpoint (SAC) monitors microtubule attachment to kinetochores to ensure accurate sister chromatid segregation during mitosis. The SAC members Bub1 and BubR1 are paralogs that underwent significant functional specializations during evolution. We report an in-depth characterization of the kinase domains of Bub1 and BubR1. BubR1 kinase domain binds nucleotides but is unable to deliver catalytic activity in vitro. Conversely, Bub1 is an active kinase regulated by intra-molecular phosphorylation at the P+1 loop. The crystal structure of the phosphorylated Bub1 kinase domain illustrates a hitherto unknown conformation of the P+1 loop docked into the active site of the Bub1 kinase. Both Bub1 and BubR1 bind Bub3 constitutively. A hydrodynamic characterization of Bub1:Bub3 and BubR1:Bub3 demonstrates both complexes to have 1:1 stoichiometry, with no additional oligomerization. Conversely, Bub1:Bub3 and BubR1:Bub3 combine to form a heterotetramer. Neither BubR1:Bub3 nor Knl1, the kinetochore receptor of Bub1:Bub3, modulate the kinase activity of Bub1 in vitro, suggesting autonomous regulation of the Bub1 kinase domain. We complement our study with an analysis of the Bub1 substrates. Our results contribute to the mechanistic characterization of a crucial cell cycle checkpoint.
Collapse
Affiliation(s)
- Claudia Breit
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Tanja Bange
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Arsen Petrovic
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - John R. Weir
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Franziska Müller
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Doro Vogt
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitätsstrasse, 45141, Essen, Germany
- * E-mail:
| |
Collapse
|
24
|
Wang Q, Wei H, Du J, Cao Y, Zhang N, Liu X, Liu X, Chen D, Ma W. H3 Thr3 phosphorylation is crucial for meiotic resumption and anaphase onset in oocyte meiosis. Cell Cycle 2015; 15:213-24. [PMID: 26636626 DOI: 10.1080/15384101.2015.1121330] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Haspin-catalyzed histone H3 threonine 3 (Thr3) phosphorylation facilitates chromosomal passenger complex (CPC) docking at centromeres, regulating indirectly chromosome behavior during somatic mitosis. It is not fully known about the expression and function of H3 with phosphorylated Thr3 (H3T3-P) during meiosis in oocytes. In this study, we investigated the expression and sub-cellular distribution of H3T3-P, as well as its function in mouse oocytes during meiotic division. Western blot analysis revealed that H3T3-P expression was only detected after germinal vesicle breakdown (GVBD), and gradually increased to peak level at metaphase I (MI), but sharply decreased at metaphase II (MII). Immunofluorescence showed H3T3-P was only brightly labeled on chromosomes after GVBD, with relatively high concentration across the whole chromosome axis from pro-metaphase I (pro-MI) to MI. Specially, H3T3-P distribution was exclusively limited to the local space between sister centromeres at MII stage. Haspin inhibitor, 5-iodotubercidin (5-ITu), dose- and time-dependently blocked H3T3-P expression in mouse oocytes. H3T3-P inhibition delayed the resumption of meiosis (GVBD) and chromatin condensation. Moreover, the loss of H3T3-P speeded up the meiotic transition to MII of pro-MI oocytes in spite of the presence of non-aligned chromosomes, even reversed MI-arrest induced with Nocodazole. The inhibition of H3T3-P expression distinguishably damaged MAD1 recruitment on centromeres, which indicates the spindle assembly checkpoint was impaired in function, logically explaining the premature onset of anaphase I. Therefore, Haspin-catalyzed histone H3 phosphorylation is essential for chromatin condensation and the following timely transition from meiosis I to meiosis II in mouse oocytes during meiotic division.
Collapse
Affiliation(s)
- Qian Wang
- a Department of Histology and Embryology , School of Basic Medical Sciences, Capital Medical University , Beijing , China
| | - Haojie Wei
- a Department of Histology and Embryology , School of Basic Medical Sciences, Capital Medical University , Beijing , China
| | - Juan Du
- a Department of Histology and Embryology , School of Basic Medical Sciences, Capital Medical University , Beijing , China
| | - Yan Cao
- a Department of Histology and Embryology , School of Basic Medical Sciences, Capital Medical University , Beijing , China
| | - Nana Zhang
- a Department of Histology and Embryology , School of Basic Medical Sciences, Capital Medical University , Beijing , China
| | - Xiaoyun Liu
- a Department of Histology and Embryology , School of Basic Medical Sciences, Capital Medical University , Beijing , China
| | - Xiaoyu Liu
- a Department of Histology and Embryology , School of Basic Medical Sciences, Capital Medical University , Beijing , China
| | - Dandan Chen
- a Department of Histology and Embryology , School of Basic Medical Sciences, Capital Medical University , Beijing , China
| | - Wei Ma
- a Department of Histology and Embryology , School of Basic Medical Sciences, Capital Medical University , Beijing , China
| |
Collapse
|
25
|
Mechanistic basis of Nek7 activation through Nek9 binding and induced dimerization. Nat Commun 2015; 6:8771. [PMID: 26522158 PMCID: PMC4632185 DOI: 10.1038/ncomms9771] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/01/2015] [Indexed: 01/02/2023] Open
Abstract
Mitotic spindle assembly requires the regulated activities of protein kinases such as Nek7 and Nek9. Nek7 is autoinhibited by the protrusion of Tyr97 into the active site and activated by the Nek9 non-catalytic C-terminal domain (CTD). CTD binding apparently releases autoinhibition because mutation of Tyr97 to phenylalanine increases Nek7 activity independently of Nek9. Here we find that self-association of the Nek9-CTD is needed for Nek7 activation. We map the minimal Nek7 binding region of Nek9 to residues 810-828. A crystal structure of Nek7(Y97F) bound to Nek9(810-828) reveals a binding site on the C-lobe of the Nek7 kinase domain. Nek7(Y97F) crystallizes as a back-to-back dimer between kinase domain N-lobes, in which the specific contacts within the interface are coupled to the conformation of residue 97. Hence, we propose that the Nek9-CTD activates Nek7 through promoting back-to-back dimerization that releases the autoinhibitory tyrosine residue, a mechanism conserved in unrelated kinase families.
Collapse
|
26
|
Asghar A, Lajeunesse A, Dulla K, Combes G, Thebault P, Nigg EA, Elowe S. Bub1 autophosphorylation feeds back to regulate kinetochore docking and promote localized substrate phosphorylation. Nat Commun 2015; 6:8364. [PMID: 26399325 PMCID: PMC4598568 DOI: 10.1038/ncomms9364] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 08/13/2015] [Indexed: 12/15/2022] Open
Abstract
During mitosis, Bub1 kinase phosphorylates histone H2A-T120 to promote centromere sister chromatid cohesion through recruitment of shugoshin (Sgo) proteins. The regulation and dynamics of H2A-T120 phosphorylation are poorly understood. Using quantitative phosphoproteomics we show that Bub1 is autophosphorylated at numerous sites. We confirm mitosis-specific autophosphorylation of a several residues and show that Bub1 activation is primed in interphase but fully achieved only in mitosis. Mutation of a single autophosphorylation site T589 alters kinetochore turnover of Bub1 and results in uniform H2A-T120 phosphorylation and Sgo recruitment along chromosome arms. Consequently, improper sister chromatid resolution and chromosome segregation errors are observed. Kinetochore tethering of Bub1-T589A refocuses H2A-T120 phosphorylation and Sgo1 to centromeres. Recruitment of the Bub1-Bub3-BubR1 axis to kinetochores has recently been extensively studied. Our data provide novel insight into the regulation and kinetochore residency of Bub1 and indicate that its localization is dynamic and tightly controlled through feedback autophosphorylation.
Collapse
Affiliation(s)
- Adeel Asghar
- Faculty of Medicine, Department of Molecular and Cellular Biology, Université Laval, Québec, Canada G1V 0A6.,Department of Reproduction, Mother and Youth Health, Centre de recherche du Centre Hospitalier Universitaire de Québec, Québec, Canada G1V 4G2
| | - Audrey Lajeunesse
- Faculty of Medicine, Department of Molecular and Cellular Biology, Université Laval, Québec, Canada G1V 0A6
| | - Kalyan Dulla
- ProQR Therapeutics N.V., Darwinweg 24, Leiden 2333 CR, The Netherlands
| | - Guillaume Combes
- Faculty of Medicine, Department of Molecular and Cellular Biology, Université Laval, Québec, Canada G1V 0A6.,Department of Reproduction, Mother and Youth Health, Centre de recherche du Centre Hospitalier Universitaire de Québec, Québec, Canada G1V 4G2
| | - Philippe Thebault
- Department of Reproduction, Mother and Youth Health, Centre de recherche du Centre Hospitalier Universitaire de Québec, Québec, Canada G1V 4G2
| | - Erich A Nigg
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, Basel CH-4056, Switzerland
| | - Sabine Elowe
- Faculty of Medicine, Department of Molecular and Cellular Biology, Université Laval, Québec, Canada G1V 0A6.,Department of Reproduction, Mother and Youth Health, Centre de recherche du Centre Hospitalier Universitaire de Québec, Québec, Canada G1V 4G2
| |
Collapse
|
27
|
Liu H, Qu Q, Warrington R, Rice A, Cheng N, Yu H. Mitotic Transcription Installs Sgo1 at Centromeres to Coordinate Chromosome Segregation. Mol Cell 2015; 59:426-36. [PMID: 26190260 DOI: 10.1016/j.molcel.2015.06.018] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 05/06/2015] [Accepted: 06/10/2015] [Indexed: 12/18/2022]
Abstract
Human sister chromatids at metaphase are primarily linked by centromeric cohesion, forming the iconic X shape. Premature loss of centromeric cohesion disrupts orderly mitotic progression. Shugoshin (Sgo1) binds to and protects cohesin at inner centromeres. The kinetochore kinase Bub1 phosphorylates histone H2A at T120 (H2A-pT120) and recruits Sgo1 to kinetochores, 0.5 μm from inner centromeres. Here, we show that Sgo1 is a direct reader of the H2A-pT120 mark. Bub1 also recruits RNA polymerase II (Pol II) to unattached kinetochores and promotes active transcription at mitotic kinetochores. Mitosis-specific inactivation of Pol II traps Sgo1 at kinetochores and weakens centromeric cohesion. Sgo1 interacts with Pol II in human cells and with RNA in vitro. We propose that Pol II-dependent transcription enables kinetochore-bound Sgo1 initially recruited by H2A-pT120 to reach cohesin embedded in centromeric chromatin. Our study implicates mitotic transcription in targeting regulatory factors to highly compacted mitotic chromatin.
Collapse
Affiliation(s)
- Hong Liu
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Qianhui Qu
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Ross Warrington
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Allyson Rice
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Ningyan Cheng
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Hongtao Yu
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA.
| |
Collapse
|