Szávuly MI, Surducan M, Nagy E, Surányi M, Speier G, Silaghi-Dumitrescu R, Kaizer J. Functional models of nonheme diiron enzymes: kinetic and computational evidence for the formation of oxoiron(iv) species from peroxo-diiron(iii) complexes, and their reactivity towards phenols and H2O2.
Dalton Trans 2016;
45:14709-18. [PMID:
27283752 DOI:
10.1039/c6dt01598k]
[Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactivity of the previously reported peroxo adducts [Fe2(μ-O2)(L(1))4(CH3CN)2](2+), and [Fe2(μ-O2)(L(2))4(CH3CN)2](2+), (L(1) = 2-(2'-pyridyl)benzimidazole and L(2) = 2-(2'-pyridyl)-N-methylbenzimidazole) towards H2O2 as catalase mimics, and towards various phenols as functional RNR-R2 mimics, is described. Kinetic, mechanistic and computational studies gave direct evidence for the involvement of the (μ-1,2-peroxo)diiron(iii) intermediate in the O-H activation process via formation of low-spin oxoiron(iv) species.
Collapse