1
|
Crumière M, de Vallée A, Rascle C, Gillet FX, Nahar S, van Kan JAL, Bruel C, Poussereau N, Choquer M. A LysM Effector Mediates Adhesion and Plant Immunity Suppression in the Necrotrophic Fungus Botrytis cinerea. J Basic Microbiol 2025; 65:e2400552. [PMID: 39655398 DOI: 10.1002/jobm.202400552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/06/2024] [Accepted: 11/09/2024] [Indexed: 05/04/2025]
Abstract
LysM effectors are suppressors of chitin-triggered plant immunity in biotrophic and hemibiotrophic fungi. In necrotrophic fungi, LysM effectors might induce a mechanism to suppress host immunity during the short asymptomatic phase they establish before these fungi activate plant defenses and induce host cell death leading to necrosis. Here, we characterize a secreted LysM protein from a major necrotrophic fungus, Botrytis cinerea, called BcLysM1. Transcriptional induction of BcLysM1 gene was observed in multicellular appressoria, called infection cushions, in unicellular appressoria and in the early phase of infection on bean leaves. We confirmed that BcLysM1 protein binds chitin in the fungus cell wall and protects hyphae against degradation by external chitinases. This effector is also able to suppress the chitin-induced ROS burst in Arabidopsis thaliana, suggesting sequestration of chitooligosaccharides in apoplast during infection. Moreover, contribution of BcLysM1 in infection initiation and in adhesion to bean leaf surfaces were demonstrated. Our data show for the first time that a LysM effector can play a dual role in mycelial adhesion and suppression of chitin-triggered host immunity, both of which occur during the early asymptomatic phase of infection by necrotrophic fungi.
Collapse
Affiliation(s)
- Mélanie Crumière
- Univ Lyon, Université Lyon1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
- Laboratoire Mixte, Bayer SAS, Centre de Recherche de La Dargoire, Lyon, France
| | - Amélie de Vallée
- Univ Lyon, Université Lyon1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
- Laboratoire Mixte, Bayer SAS, Centre de Recherche de La Dargoire, Lyon, France
| | - Christine Rascle
- Univ Lyon, Université Lyon1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
- Laboratoire Mixte, Bayer SAS, Centre de Recherche de La Dargoire, Lyon, France
| | - François-Xavier Gillet
- Univ Lyon, Université Lyon1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
- Laboratoire Mixte, Bayer SAS, Centre de Recherche de La Dargoire, Lyon, France
| | - Shamsun Nahar
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Jan A L van Kan
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Christophe Bruel
- Univ Lyon, Université Lyon1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
- Laboratoire Mixte, Bayer SAS, Centre de Recherche de La Dargoire, Lyon, France
| | - Nathalie Poussereau
- Univ Lyon, Université Lyon1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
- Laboratoire Mixte, Bayer SAS, Centre de Recherche de La Dargoire, Lyon, France
| | - Mathias Choquer
- Univ Lyon, Université Lyon1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, Villeurbanne, France
- Laboratoire Mixte, Bayer SAS, Centre de Recherche de La Dargoire, Lyon, France
| |
Collapse
|
2
|
Garai S, Raizada A, Kumar V, Sopory SK, Pareek A, Singla-Pareek SL, Kaur C. In silico analysis of fungal prion-like proteins for elucidating their role in plant-fungi interactions. Arch Microbiol 2024; 206:308. [PMID: 38896139 DOI: 10.1007/s00203-024-04040-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/21/2024]
Abstract
Prion-like proteins (PrLPs) have emerged as beneficial molecules with implications in adaptive responses. These proteins possess a conserved prion-like domain (PrLD) which is an intrinsically disordered region capable of adopting different conformations upon perceiving external stimuli. Owing to changes in protein conformation, functional characteristics of proteins harboring PrLDs get altered thereby, providing a unique mode of protein-based regulation. Since PrLPs are ubiquitous in nature and involved in diverse functions, through this study, we aim to explore the role of such domains in yet another important physiological process viz. plant-microbe interactions to get insights into the mechanisms dictating cross-kingdom interactions. We have evaluated the presence and functions of PrLPs in 18 different plant-associated fungi of agricultural importance to unravel their role in plant-microbe interactions. Of the 241,997 proteins scanned, 3,820 (~ 1.6%) were identified as putative PrLPs with pathogenic fungi showing significantly higher PrLP density than their beneficial counterparts. Further, through GO enrichment analysis, we could predict several PrLPs from pathogenic fungi to be involved in virulence and formation of stress granules. Notably, PrLPs involved in (retro)transposition were observed exclusively in pathogenic fungi. We even analyzed publicly available data for the expression alterations of fungal PrLPs upon their interaction with their respective hosts which revealed perturbation in the levels of some PrLP-encoding genes during interactions with plants. Overall, our work sheds light into the probable role of prion-like candidates in plant-fungi interaction, particularly in context of pathogenesis, paving way for more focused studies for validating their role.
Collapse
Affiliation(s)
- Sampurna Garai
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Avi Raizada
- National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India
| | - Vijay Kumar
- National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India
| | - Sudhir K Sopory
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Ashwani Pareek
- National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Charanpreet Kaur
- National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India.
| |
Collapse
|
3
|
Jia M, Gong X, Fan M, Liu H, Zhou H, Gu S, Liu Y, Dong J. Identification and analysis of the secretome of plant pathogenic fungi reveals lifestyle adaptation. Front Microbiol 2023; 14:1171618. [PMID: 37152749 PMCID: PMC10156984 DOI: 10.3389/fmicb.2023.1171618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/29/2023] [Indexed: 05/09/2023] Open
Abstract
The secretory proteome plays an important role in the pathogenesis of phytopathogenic fungi. However, the relationship between the large-scale secretome of phytopathogenic fungi and their lifestyle is not fully understood. In the present study, the secretomes of 150 plant pathogenic fungi were predicted and the characteristics associated with different lifestyles were investigated. In total, 94,974 secreted proteins (SPs) were predicted from these fungi. The number of the SPs ranged from 64 to 1,662. Among these fungi, hemibiotrophic fungi had the highest number (average of 970) and proportion (7.1%) of SPs. Functional annotation showed that hemibiotrophic and necrotroph fungi, differ from biotrophic and symbiotic fungi, contained much more carbohydrate enzymes, especially polysaccharide lyases and carbohydrate esterases. Furthermore, the core and lifestyle-specific SPs orthogroups were identified. Twenty-seven core orthogroups contained 16% of the total SPs and their motif function annotation was represented by serine carboxypeptidase, carboxylesterase and asparaginase. In contrast, 97 lifestyle-specific orthogroups contained only 1% of the total SPs, with diverse functions such as PAN_AP in hemibiotroph-specific and flavin monooxygenases in necrotroph-specific. Moreover, obligate biotrophic fungi had the largest number of effectors (average of 150), followed by hemibiotrophic fungi (average of 120). Among these effectors, 4,155 had known functional annotation and pectin lyase had the highest proportion in the functionally annotated effectors. In addition, 32 sets of RNA-Seq data on pathogen-host interactions were collected and the expression levels of SPs were higher than that of non-SPs, and the expression level of effector genes was higher in biotrophic and hemibiotrophic fungi than in necrotrophic fungi, while secretase genes were highly expressed in necrotrophic fungi. Finally, the secretory activity of five predicted SPs from Setosphearia turcica was experimentally verified. In conclusion, our results provide a foundation for the study of pathogen-host interaction and help us to understand the fungal lifestyle adaptation.
Collapse
Affiliation(s)
- Mingxuan Jia
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Xiaodong Gong
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
- College of Life Sciences, Hebei Agricultural University, Baoding, China
- Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Baoding, China
| | - Mengmeng Fan
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Haoran Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - He Zhou
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Shouqin Gu
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
- College of Life Sciences, Hebei Agricultural University, Baoding, China
- Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Baoding, China
- *Correspondence: Shouqin Gu, ; Yuwei Liu, ; Jingao Dong,
| | - Yuwei Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
- College of Life Sciences, Hebei Agricultural University, Baoding, China
- Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Baoding, China
- *Correspondence: Shouqin Gu, ; Yuwei Liu, ; Jingao Dong,
| | - Jingao Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
- College of Plant Protection, Hebei Agricultural University, Baoding, China
- *Correspondence: Shouqin Gu, ; Yuwei Liu, ; Jingao Dong,
| |
Collapse
|
4
|
Ali A, Kumar R, Khan A, Khan AU. Interaction of LysM BON family protein domain with carbapenems: A putative mechanism of carbapenem resistance. Int J Biol Macromol 2020; 160:212-223. [PMID: 32464197 DOI: 10.1016/j.ijbiomac.2020.05.172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 10/24/2022]
Abstract
Carbapenem resistance in Gram-negative pathogens has become a global concern for health workers worldwide. In one of our earlier studies, a Klebsiella pneumoniae-carbapenemase-2 producing strain was induced with meropenem to explore differentially expressed proteins under induced and uninduced conditions. There is, LysM domain BON family protein, was found over 12-fold expressed under the induced state. A hypothesis was proposed that LysM domain protein might have an affinity towards carbapenem antibiotics making them unavailable to bind with their target. Hence, we initiated a study to understand the binding mode of carbapenem with LysM domain protein. MICs of imipenem and meropenem against LysM clone were increased by several folds as compared to NP-6 clinical strain as well as DH5 α (PET-28a KPC-2) clone. This study further revealed a strong binding of both antibiotics to LysM domain protein. Molecular simulation studies of LysM domain protein with meropenem and imipenem for 80 ns has also showed stable structure. We concluded that overexpressed LysM domain under induced condition interacted with carbapenems, leading to enhanced resistance as proved by high MIC values. Hence, the study proved the proposed hypothesis that the LysM domain plays a significant role in the putative mechanism of antibiotics resistance.
Collapse
Affiliation(s)
- Abid Ali
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, UP, India
| | - Rakesh Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110067, India
| | - Arbab Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, UP, India
| | - Asad U Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, UP, India; Faculty of Science and Marine Environment, University Malysia Terengganu, Kuala Terengganu, Malaysia.
| |
Collapse
|
5
|
Queiroz CBD, Santana MF. Prediction of the secretomes of endophytic and nonendophytic fungi reveals similarities in host plant infection and colonization strategies. Mycologia 2020; 112:491-503. [PMID: 32286912 DOI: 10.1080/00275514.2020.1716566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Endophytic fungi are microorganisms that inhabit internal plant tissues without causing apparent damage. During the infection process, both endophytic and phytopathogenic fungi secrete proteins to resist or supplant the plant's defense mechanisms. This study analyzed the predicted secretomes of six species of endophytic fungi and compared them with predicted secretomes of eight fungal species with different lifestyles: saprophytic, necrotrophic, hemibiotrophic, and biotrophic. The sizes of the predicted secretomes varied from 260 to 1640 proteins, and the predicted secretomes have a wide diversity of CAZymes, proteases, and conserved domains. Regarding the CAZymes in the secretomes of the analyzed fungi, the most abundant CAZyme families were glycosyl hydrolase and serine proteases. Several predicted proteins have characteristics similar to those found in small, secreted proteins with effector characteristics (SSPEC). The most abundant conserved domains, besides those found in the SSPEC, have oxidation activities, indicating that these proteins can protect the fungus against oxidative stress, against domains with protease activity, which may be involved in the mechanisms of nutrition, or against lytic enzymes secreted by the host plant. This study demonstrates that secretomes of endophytic and nonendophytic fungi share an arsenal of proteins important in the process of infection and colonization of host plants.
Collapse
Affiliation(s)
- Casley Borges de Queiroz
- Laboratório de Biologia Molecular, Embrapa Amazônia Ocidental , Rodovia AM 10, km 29, s/n, CEP: 69010-970, Manaus, Amazonas, Brazil
| | - Mateus Ferreira Santana
- Departamento de Microbiologia (BIOAGRO), Universidade Federal de Viçosa , CEP: 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
6
|
Zhang S, Lin C, Zhou T, Zhang LH, Deng YZ. Karyopherin MoKap119-mediated nuclear import of cyclin-dependent kinase regulator MoCks1 is essential for Magnaporthe oryzae pathogenicity. Cell Microbiol 2019; 22:e13114. [PMID: 31487436 DOI: 10.1111/cmi.13114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/21/2019] [Accepted: 09/02/2019] [Indexed: 12/29/2022]
Abstract
Nuclear import of proteins relies on nuclear import receptors called importins/karyopherins (Kaps), whose functions were reported in yeasts, fungi, plants, and animal cells, including cell cycle control, morphogenesis, stress sensing/response, and also fungal pathogenecity. However, limited is known about the physiological function and regulatory mechanism of protein import in the rice-blast fungus Magnaporthe oryzae. Here, we identified an ortholog of β-importin in M. oryzae encoded by an ortholog of KAP119 gene. Functional characterisation of this gene via reverse genetics revealed that it is required for vegetative growth, conidiation, melanin pigmentation, and pathogenicity of M. oryzae. The mokap119Δ mutant was also defective in formation of appressorium-like structure from hyphal tips. By affinity assay and liquid chromatography-tandem mass spectrometry, we identified potential MoKap119-interacting proteins and further verified that MoKap119 interacts with the cyclin-dependent kinase subunit MoCks1 and mediates its nuclear import. Transcriptional profiling indicated that MoKap119 may regulate transcription of infection-related genes via MoCks1 regulation of MoSom1. Overall, our findings provide a novel insight into the regulatory mechanism of M. oryzae pathogenesis likely by MoKap119-mediated nuclear import of the cyclin-dependent kinase subunit MoCks1.
Collapse
Affiliation(s)
- Shulin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China.,Integrative Microbiology Research Centre/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Chaoxiang Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China.,Integrative Microbiology Research Centre/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Tian Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China.,Integrative Microbiology Research Centre/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Lian-Hui Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China.,Integrative Microbiology Research Centre/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Yi Zhen Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China.,Integrative Microbiology Research Centre/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Debiec KT, Whitley MJ, Koharudin LMI, Chong LT, Gronenborn AM. Integrating NMR, SAXS, and Atomistic Simulations: Structure and Dynamics of a Two-Domain Protein. Biophys J 2019; 114:839-855. [PMID: 29490245 DOI: 10.1016/j.bpj.2018.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/19/2017] [Accepted: 01/02/2018] [Indexed: 12/21/2022] Open
Abstract
Multidomain proteins with two or more independently folded functional domains are prevalent in nature. Whereas most multidomain proteins are linked linearly in sequence, roughly one-tenth possess domain insertions where a guest domain is implanted into a loop of a host domain, such that the two domains are connected by a pair of interdomain linkers. Here, we characterized the influence of the interdomain linkers on the structure and dynamics of a domain-insertion protein in which the guest LysM domain is inserted into a central loop of the host CVNH domain. Expanding upon our previous crystallographic and NMR studies, we applied SAXS in combination with NMR paramagnetic relaxation enhancement to construct a structural model of the overall two-domain system. Although the two domains have no fixed relative orientation, certain orientations were found to be preferred over others. We also assessed the accuracies of molecular mechanics force fields in modeling the structure and dynamics of tethered multidomain proteins by integrating our experimental results with microsecond-scale atomistic molecular dynamics simulations. In particular, our evaluation of two different combinations of the latest force fields and water models revealed that both combinations accurately reproduce certain structural and dynamical properties, but are inaccurate for others. Overall, our study illustrates the value of integrating experimental NMR and SAXS studies with long timescale atomistic simulations for characterizing structural ensembles of flexibly linked multidomain systems.
Collapse
Affiliation(s)
- Karl T Debiec
- Molecular Biophysics and Structural Biology Graduate Program, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, Pennsylvania; Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Matthew J Whitley
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Leonardus M I Koharudin
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Lillian T Chong
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Angela M Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
8
|
The repertoire of effector candidates in Colletotrichum lindemuthianum reveals important information about Colletotrichum genus lifestyle. Appl Microbiol Biotechnol 2019; 103:2295-2309. [DOI: 10.1007/s00253-019-09639-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 01/04/2023]
|
9
|
Buendia L, Girardin A, Wang T, Cottret L, Lefebvre B. LysM Receptor-Like Kinase and LysM Receptor-Like Protein Families: An Update on Phylogeny and Functional Characterization. FRONTIERS IN PLANT SCIENCE 2018; 9:1531. [PMID: 30405668 PMCID: PMC6207691 DOI: 10.3389/fpls.2018.01531] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/28/2018] [Indexed: 05/18/2023]
Abstract
Members of plant specific families of receptor-like kinases (RLKs) and receptor-like proteins (RLPs), containing 3 extracellular LysMs have been shown to directly bind and/or to be involved in perception of lipo-chitooligosaccharides (LCO), chitooligosaccharides (CO), and peptidoglycan (PGN), three types of GlcNAc-containing molecules produced by microorganisms. These receptors are involved in microorganism perception by plants and can activate different plant responses leading either to symbiosis establishment or to defense responses against pathogens. LysM-RLK/Ps belong to multigenic families. Here, we provide a phylogeny of these families in eight plant species, including dicotyledons and monocotyledons, and we discuss known or putative biological roles of the members in each of the identified phylogenetic groups. We also report and discuss known biochemical properties of the LysM-RLK/Ps.
Collapse
|
10
|
Franceschetti M, Maqbool A, Jiménez-Dalmaroni MJ, Pennington HG, Kamoun S, Banfield MJ. Effectors of Filamentous Plant Pathogens: Commonalities amid Diversity. Microbiol Mol Biol Rev 2017; 81:e00066-16. [PMID: 28356329 PMCID: PMC5485802 DOI: 10.1128/mmbr.00066-16] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fungi and oomycetes are filamentous microorganisms that include a diversity of highly developed pathogens of plants. These are sophisticated modulators of plant processes that secrete an arsenal of effector proteins to target multiple host cell compartments and enable parasitic infection. Genome sequencing revealed complex catalogues of effectors of filamentous pathogens, with some species harboring hundreds of effector genes. Although a large fraction of these effector genes encode secreted proteins with weak or no sequence similarity to known proteins, structural studies have revealed unexpected similarities amid the diversity. This article reviews progress in our understanding of effector structure and function in light of these new insights. We conclude that there is emerging evidence for multiple pathways of evolution of effectors of filamentous plant pathogens but that some families have probably expanded from a common ancestor by duplication and diversification. Conserved folds, such as the oomycete WY and the fungal MAX domains, are not predictive of the precise function of the effectors but serve as a chassis to support protein structural integrity while providing enough plasticity for the effectors to bind different host proteins and evolve unrelated activities inside host cells. Further effector evolution and diversification arise via short linear motifs, domain integration and duplications, and oligomerization.
Collapse
Affiliation(s)
- Marina Franceschetti
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Abbas Maqbool
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | | | - Helen G Pennington
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Mark J Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
11
|
Liu S, Wang J, Han Z, Gong X, Zhang H, Chai J. Molecular Mechanism for Fungal Cell Wall Recognition by Rice Chitin Receptor OsCEBiP. Structure 2016; 24:1192-200. [DOI: 10.1016/j.str.2016.04.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/19/2016] [Accepted: 04/19/2016] [Indexed: 01/25/2023]
|
12
|
Molecular basis of lipo-chitooligosaccharide recognition by the lysin motif receptor-like kinase LYR3 in legumes. Biochem J 2016; 473:1369-78. [DOI: 10.1042/bcj20160073] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 03/16/2016] [Indexed: 12/28/2022]
Abstract
LYR3 [LysM (lysin motif) receptor-like kinase 3] of Medicago truncatula is a high-affinity binding protein for symbiotic LCO (lipo-chitooligosaccharide) signals, produced by rhizobia bacteria and arbuscular mycorrhizal fungi. The present study shows that LYR3 from several other legumes, but not from two Lupinus species which are incapable of forming the mycorrhizal symbiosis, bind LCOs with high affinity and discriminate them from COs (chitooligosaccharides). The biodiversity of these proteins and the lack of binding to the Lupinus proteins were used to identify features required for high-affinity LCO binding. Swapping experiments between each of the three LysMs of the extracellular domain of the M. truncatula and Lupinus angustifolius LYR3 proteins revealed the crucial role of the third LysM in LCO binding. Site-directed mutagenesis identified a tyrosine residue, highly conserved in all LYR3 LCO-binding proteins, which is essential for high-affinity binding. Molecular modelling suggests that it may be part of a hydrophobic tunnel able to accommodate the LCO acyl chain. The lack of conservation of these features in the binding site of plant LysM proteins binding COs provides a mechanistic explanation of how LCO recognition might differ from CO perception by structurally related LysM receptors.
Collapse
|