1
|
von Rosen T, Zdanowicz R, El Hadeg Y, Afanasyev P, Boehringer D, Leitner A, Glockshuber R, Weber-Ban E. Substrates bind to residues lining the ring of asymmetrically engaged bacterial proteasome activator Bpa. Nat Commun 2025; 16:3042. [PMID: 40155375 PMCID: PMC11953334 DOI: 10.1038/s41467-025-58073-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/12/2025] [Indexed: 04/01/2025] Open
Abstract
Mycobacteria harbor a proteasome that was acquired by Actinobacteria through horizontal gene transfer and that supports the persistence of the human pathogen Mycobacterium tuberculosis within host macrophages. The core particle of the proteasome (20S CP) associates with ring-shaped activator complexes to degrade protein substrates. One of these is the bacterial proteasome activator Bpa that stimulates the ATP-independent proteasomal degradation of the heat shock repressor HspR. In this study, we determine the cryogenic electron microscopy 3D reconstruction of the complex between Bpa and its natural substrate HspR at 4.1 Å global resolution. The resulting maps allow us to identify regions of Bpa that interact with HspR. Using structure-guided site-directed mutagenesis and in vitro biochemical assays, we confirm the importance of the identified residues for Bpa-mediated substrate recruitment and subsequent proteasomal degradation. Additionally, we show that the dodecameric Bpa ring associates asymmetrically with the heptameric α-rings of the 20S CP, adopting a conformation resembling a hinged lid, while still engaging all seven docking sites on the proteasome.
Collapse
Affiliation(s)
- Tatjana von Rosen
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Rafal Zdanowicz
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
- International Institute of Molecular Mechanisms and Machines, Polish Academy of Sciences, Warsaw, Poland
| | - Yasser El Hadeg
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Pavel Afanasyev
- Cryo-EM Knowledge Hub (CEMK), ETH Zurich, Zurich, Switzerland
| | | | - Alexander Leitner
- Institute for Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Rudi Glockshuber
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Eilika Weber-Ban
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
von Rosen T, Pepelnjak M, Quast JP, Picotti P, Weber-Ban E. ATP-independent substrate recruitment to proteasomal degradation in mycobacteria. Life Sci Alliance 2023; 6:e202301923. [PMID: 37562848 PMCID: PMC10415612 DOI: 10.26508/lsa.202301923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Mycobacteria and other actinobacteria possess proteasomal degradation pathways in addition to the common bacterial compartmentalizing protease systems. Proteasomal degradation plays a crucial role in the survival of these bacteria in adverse environments. The mycobacterial proteasome interacts with several ring-shaped activators, including the bacterial proteasome activator (Bpa), which enables energy-independent degradation of heat shock repressor HspR. However, the mechanism of substrate selection and processing by the Bpa-proteasome complex remains unclear. In this study, we present evidence that disorder in substrates is required but not sufficient for recruitment to Bpa-mediated proteasomal degradation. We demonstrate that Bpa binds to the folded N-terminal helix-turn-helix domain of HspR, whereas the unstructured C-terminal tail of the substrate acts as a sequence-specific threading handle to promote efficient proteasomal degradation. In addition, we establish that the heat shock chaperone DnaK, which interacts with and co-regulates HspR, stabilizes HspR against Bpa-mediated proteasomal degradation. By phenotypical characterization of Mycobacterium smegmatis parent and bpa deletion mutant strains, we show that Bpa-dependent proteasomal degradation supports the survival of the bacterium under stress conditions by degrading HspR that regulates vital chaperones.
Collapse
Affiliation(s)
- Tatjana von Rosen
- ETH Zurich, Institute of Molecular Biology and Biophysics, Zurich, Switzerland
| | - Monika Pepelnjak
- ETH Zurich, Institute of Molecular Systems Biology, Zurich Switzerland
| | - Jan-Philipp Quast
- ETH Zurich, Institute of Molecular Systems Biology, Zurich Switzerland
| | - Paola Picotti
- ETH Zurich, Institute of Molecular Systems Biology, Zurich Switzerland
| | - Eilika Weber-Ban
- ETH Zurich, Institute of Molecular Biology and Biophysics, Zurich, Switzerland
| |
Collapse
|
3
|
The β-Grasp Domain of Proteasomal ATPase Mpa Makes Critical Contacts with the Mycobacterium tuberculosis 20S Core Particle to Facilitate Degradation. mSphere 2022; 7:e0027422. [PMID: 35993699 PMCID: PMC9599533 DOI: 10.1128/msphere.00274-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mycobacterium tuberculosis possesses a Pup-proteasome system analogous to the eukaryotic ubiquitin-proteasome pathway. We have previously shown that the hexameric mycobacterial proteasome ATPase (Mpa) recruits pupylated protein substrates via interactions between amino-terminal coiled-coils in Mpa monomers and the degradation tag Pup. However, it is unclear how Mpa rings interact with a proteasome due to the presence of a carboxyl-terminal β-grasp domain unique to Mpa homologues that makes the interaction highly unstable. Here, we describe newly identified critical interactions between Mpa and 20S core proteasomes. Interestingly, the Mpa C-terminal GQYL motif binds the 20S core particle activation pocket differently than the same motif of the ATP-independent proteasome accessory factor PafE. We further found that the β-hairpin of the Mpa β-grasp domain interacts variably with the H0 helix on top of the 20S core particle via a series of ionic and hydrogen-bond interactions. Individually mutating several involved residues reduced Mpa-mediated protein degradation both in vitro and in vivo. IMPORTANCE The Pup-proteasome system in Mycobacterium tuberculosis is critical for this species to cause lethal infections in mice. Investigating the molecular mechanism of how the Mpa ATPase recruits and unfolds pupylated substrates to the 20S proteasomal core particle for degradation will be essential to fully understand how degradation is regulated, and the structural information we report may be useful for the development of new tuberculosis chemotherapies.
Collapse
|
4
|
A particle size threshold governs diffusion and segregation of PAR-3 during cell polarization. Cell Rep 2022; 39:110652. [PMID: 35417695 PMCID: PMC9093022 DOI: 10.1016/j.celrep.2022.110652] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/14/2021] [Accepted: 03/17/2022] [Indexed: 11/23/2022] Open
Abstract
The actomyosin cortex regulates the localization and function of proteins at the plasma membrane. Here, we study how membrane binding, cortical movements, and diffusion determine membrane protein distribution. In Caenorhabditis elegans zygotes, actomyosin flows transport PAR polarity proteins to establish the anterior-posterior axis. Oligomerization of a key scaffold protein, PAR-3, is required for polarization. PAR-3 oligomers are a heterogeneous population of many different sizes, and it remains unclear how oligomer size affects PAR-3 segregation. To address this question, we engineered PAR-3 to defined sizes. We report that PAR-3 trimers are necessary and sufficient for PAR-3 function during polarization and later embryo development. Quantitative analysis of PAR-3 diffusion shows that a threshold size of three subunits allows PAR-3 clusters to stably bind the membrane, where they are corralled and transported by the actomyosin cortex. Our study provides a quantitative model for size-dependent protein transportation of peripheral membrane proteins by cortical flow. The actomyosin cytoskeleton is a major regulator of cellular organization. Chang and Dickinson develop protein-engineering and particle-tracking tools to study how clustered membrane-bound proteins are transported by actomyosin contractions in vivo. Data-driven modeling reveals how membrane binding, diffusion, and collisions with F-actin contribute to protein movement.
Collapse
|
5
|
Kavalchuk M, Jomaa A, Müller AU, Weber-Ban E. Structural basis of prokaryotic ubiquitin-like protein engagement and translocation by the mycobacterial Mpa-proteasome complex. Nat Commun 2022; 13:276. [PMID: 35022401 PMCID: PMC8755798 DOI: 10.1038/s41467-021-27787-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/13/2021] [Indexed: 12/19/2022] Open
Abstract
Proteasomes are present in eukaryotes, archaea and Actinobacteria, including the human pathogen Mycobacterium tuberculosis, where proteasomal degradation supports persistence inside the host. In mycobacteria and other members of Actinobacteria, prokaryotic ubiquitin-like protein (Pup) serves as a degradation tag post-translationally conjugated to target proteins for their recruitment to the mycobacterial proteasome ATPase (Mpa). Here, we use single-particle cryo-electron microscopy to determine the structure of Mpa in complex with the 20S core particle at an early stage of pupylated substrate recruitment, shedding light on the mechanism of substrate translocation. Two conformational states of Mpa show how substrate is translocated stepwise towards the degradation chamber of the proteasome core particle. We also demonstrate, in vitro and in vivo, the importance of a structural feature in Mpa that allows formation of alternating charge-complementary interactions with the proteasome resulting in radial, rail-guided movements during the ATPase conformational cycle. Pup is the bacterial analog of ubiquitin for targeting proteins to the proteasome. Here, the authors use cryoEM to visualize structures of the Mycobacterium tuberculosis proteasome translocating a Pup-tagged substrate.
Collapse
Affiliation(s)
- Mikhail Kavalchuk
- ETH Zurich, Institute of Molecular Biology & Biophysics, CH-8093, Zurich, Switzerland
| | - Ahmad Jomaa
- ETH Zurich, Institute of Molecular Biology & Biophysics, CH-8093, Zurich, Switzerland.
| | - Andreas U Müller
- ETH Zurich, Institute of Molecular Biology & Biophysics, CH-8093, Zurich, Switzerland
| | - Eilika Weber-Ban
- ETH Zurich, Institute of Molecular Biology & Biophysics, CH-8093, Zurich, Switzerland.
| |
Collapse
|
6
|
Probing allosteric interactions in homo-oligomeric molecular machines using solution NMR spectroscopy. Proc Natl Acad Sci U S A 2021; 118:2116325118. [PMID: 34893543 DOI: 10.1073/pnas.2116325118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 11/18/2022] Open
Abstract
Developments in solution NMR spectroscopy have significantly impacted the biological questions that can now be addressed by this methodology. By means of illustration, we present here a perspective focusing on studies of a number of molecular machines that are critical for cellular homeostasis. The role of NMR in elucidating the structural dynamics of these important molecules is emphasized, focusing specifically on intersubunit allosteric communication in homo-oligomers. In many biophysical studies of oligomers, allostery is inferred by showing that models specifically including intersubunit communication best fit the data of interest. Ideally, however, experimental studies focusing on one subunit of a multisubunit system would be performed as an important complement to the more traditional bulk measurements in which signals from all components are measured simultaneously. Using an approach whereby asymmetric molecules are prepared in concert with NMR experiments focusing on the structural dynamics of individual protomers, we present examples of how intersubunit allostery can be directly observed in high-molecular-weight protein systems. These examples highlight some of the unique roles of solution NMR spectroscopy in studies of complex biomolecules and emphasize the important synergy between NMR and other atomic resolution biophysical methods.
Collapse
|
7
|
von Rosen T, Keller LM, Weber-Ban E. Survival in Hostile Conditions: Pupylation and the Proteasome in Actinobacterial Stress Response Pathways. Front Mol Biosci 2021; 8:685757. [PMID: 34179091 PMCID: PMC8223512 DOI: 10.3389/fmolb.2021.685757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/04/2021] [Indexed: 12/31/2022] Open
Abstract
Bacteria employ a multitude of strategies to cope with the challenges they face in their natural surroundings, be it as pathogens, commensals or free-living species in rapidly changing environments like soil. Mycobacteria and other Actinobacteria acquired proteasomal genes and evolved a post-translational, ubiquitin-like modification pathway called pupylation to support their survival under rapidly changing conditions and under stress. The proteasomal 20S core particle (20S CP) interacts with ring-shaped activators like the hexameric ATPase Mpa that recruits pupylated substrates. The proteasomal subunits, Mpa and pupylation enzymes are encoded in the so-called Pup-proteasome system (PPS) gene locus. Genes in this locus become vital for bacteria to survive during periods of stress. In the successful human pathogen Mycobacterium tuberculosis, the 20S CP is essential for survival in host macrophages. Other members of the PPS and proteasomal interactors are crucial for cellular homeostasis, for example during the DNA damage response, iron and copper regulation, and heat shock. The multiple pathways that the proteasome is involved in during different stress responses suggest that the PPS plays a vital role in bacterial protein quality control and adaptation to diverse challenging environments.
Collapse
Affiliation(s)
- Tatjana von Rosen
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Lena Ml Keller
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Eilika Weber-Ban
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Bendre AD, Peters PJ, Kumar J. Recent Insights into the Structure and Function of Mycobacterial Membrane Proteins Facilitated by Cryo-EM. J Membr Biol 2021; 254:321-341. [PMID: 33954837 PMCID: PMC8099146 DOI: 10.1007/s00232-021-00179-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 03/23/2021] [Indexed: 12/26/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is one of the deadliest pathogens encountered by humanity. Over the decades, its characteristic membrane organization and composition have been understood. However, there is still limited structural information and mechanistic understanding of the constituent membrane proteins critical for drug discovery pipelines. Recent advances in single-particle cryo-electron microscopy and cryo-electron tomography have provided the much-needed impetus towards structure determination of several vital Mtb membrane proteins whose structures were inaccessible via X-ray crystallography and NMR. Important insights into membrane composition and organization have been gained via a combination of electron tomography and biochemical and biophysical assays. In addition, till the time of writing this review, 75 new structures of various Mtb proteins have been reported via single-particle cryo-EM. The information obtained from these structures has improved our understanding of the mechanisms of action of these proteins and the physiological pathways they are associated with. These structures have opened avenues for structure-based drug design and vaccine discovery programs that might help achieve global-TB control. This review describes the structural features of selected membrane proteins (type VII secretion systems, Rv1819c, Arabinosyltransferase, Fatty Acid Synthase, F-type ATP synthase, respiratory supercomplex, ClpP1P2 protease, ClpB disaggregase and SAM riboswitch), their involvement in physiological pathways, and possible use as a drug target. Tuberculosis is a deadly disease caused by Mycobacterium tuberculosis. The Cryo-EM and tomography have simplified the understanding of the mycobacterial membrane organization. Some proteins are located in the plasma membrane; some span the entire envelope, while some, like MspA, are located in the mycomembrane. Cryo-EM has made the study of such membrane proteins feasible.
Collapse
Affiliation(s)
- Ameya D Bendre
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University Campus, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Peter J Peters
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Nanoscopy, Maastricht University, Maastricht, The Netherlands
| | - Janesh Kumar
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University Campus, Ganeshkhind, Pune, Maharashtra, 411007, India.
| |
Collapse
|
9
|
Rößler P, Mathieu D, Gossert AD. NMR‐Studien an biologischen Makromolekülen (>100 kDa) ohne Notwendigkeit der Deuterierung: Das XL‐ALSOFAST Experiment mit verzögerter Entkopplung. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Philip Rößler
- Institut für Molekularbiologie und Biophysik Department Biologie und Biomolekulare NMR Spektroskopie Plattform Department Biologie ETH Zürich Otto-Stern-Weg 5 8093 Zürich Schweiz
| | - Daniel Mathieu
- Bruker BioSpin GmbH Silberstreifen 4 76287 Rheinstetten Deutschland
| | - Alvar D. Gossert
- Institut für Molekularbiologie und Biophysik Department Biologie und Biomolekulare NMR Spektroskopie Plattform Department Biologie ETH Zürich Otto-Stern-Weg 5 8093 Zürich Schweiz
| |
Collapse
|
10
|
Rößler P, Mathieu D, Gossert AD. Enabling NMR Studies of High Molecular Weight Systems Without the Need for Deuteration: The XL-ALSOFAST Experiment with Delayed Decoupling. Angew Chem Int Ed Engl 2020; 59:19329-19337. [PMID: 32743971 PMCID: PMC7589290 DOI: 10.1002/anie.202007715] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Indexed: 11/30/2022]
Abstract
Current biological research increasingly focusses on large human proteins and their complexes. Such proteins are difficult to study by NMR spectroscopy because they often can only be produced in higher eukaryotic expression systems, where deuteration is hardly feasible. Here, we present the XL-ALSOFAST-[13 C,1 H]-HMQC experiment with much improved sensitivity for fully protonated high molecular weight proteins. For the tested systems ranging from 100 to 240 kDa in size, 3-fold higher sensitivity was obtained on average for fast relaxing signals compared to current state-of-the-art experiments. In the XL-ALSOFAST approach, non-observed magnetisation is optimally exploited and transverse relaxation is minimized by the newly introduced concept of delayed decoupling. The combination of high sensitivity and superior artefact suppression makes it ideal for studying inherently unstable membrane proteins or for analysing therapeutic antibodies at natural 13 C abundance. The XL-ALSOFAST and delayed decoupling will therefore expand the range of biomolecular systems accessible to NMR spectroscopy.
Collapse
Affiliation(s)
- Philip Rößler
- Institute of Molecular Biology and BiophysicsDepartment of Biology and Biomolecular NMR Spectroscopy PlatformDepartment of BiologyETH ZürichOtto-Stern-Weg 58093ZürichSwitzerland
| | - Daniel Mathieu
- Bruker BioSpin GmbHSilberstreifen 476287RheinstettenGermany
| | - Alvar D. Gossert
- Institute of Molecular Biology and BiophysicsDepartment of Biology and Biomolecular NMR Spectroscopy PlatformDepartment of BiologyETH ZürichOtto-Stern-Weg 58093ZürichSwitzerland
| |
Collapse
|
11
|
Majumder P, Baumeister W. Proteasomes: unfoldase-assisted protein degradation machines. Biol Chem 2020; 401:183-199. [PMID: 31665105 DOI: 10.1515/hsz-2019-0344] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/02/2019] [Indexed: 01/05/2023]
Abstract
Proteasomes are the principal molecular machines for the regulated degradation of intracellular proteins. These self-compartmentalized macromolecular assemblies selectively degrade misfolded, mistranslated, damaged or otherwise unwanted proteins, and play a pivotal role in the maintenance of cellular proteostasis, in stress response, and numerous other processes of vital importance. Whereas the molecular architecture of the proteasome core particle (CP) is universally conserved, the unfoldase modules vary in overall structure, subunit complexity, and regulatory principles. Proteasomal unfoldases are AAA+ ATPases (ATPases associated with a variety of cellular activities) that unfold protein substrates, and translocate them into the CP for degradation. In this review, we summarize the current state of knowledge about proteasome - unfoldase systems in bacteria, archaea, and eukaryotes, the three domains of life.
Collapse
Affiliation(s)
- Parijat Majumder
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| |
Collapse
|
12
|
Müller AU, Weber-Ban E. The Bacterial Proteasome at the Core of Diverse Degradation Pathways. Front Mol Biosci 2019; 6:23. [PMID: 31024929 PMCID: PMC6466877 DOI: 10.3389/fmolb.2019.00023] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/18/2019] [Indexed: 12/02/2022] Open
Abstract
Proteasomal protein degradation exists in mycobacteria and other actinobacteria, and expands their repertoire of compartmentalizing protein degradation pathways beyond the usual bacterial types. A product of horizontal gene transfer, bacterial proteasomes have evolved to support the organism's survival under challenging environmental conditions like nutrient starvation and physical or chemical stresses. Like the eukaryotic 20S proteasome, the bacterial core particle is gated and must associate with a regulator complex to form a fully active protease capable of recruiting and internalizing substrate proteins. By association with diverse regulator complexes that employ different recruitment strategies, the bacterial 20S core particle is able to act in different cellular degradation pathways. In association with the mycobacterial proteasomal ATPase Mpa, the proteasome degrades substrates post-translationally modified with prokaryotic, ubiquitin-like protein Pup in a process called pupylation. Upon interaction with the ATP-independent bacterial proteasome activator Bpa, poorly structured substrates are recruited for proteasomal degradation. A potential third degradation route might employ a Cdc48-like protein of actinobacteria (Cpa), for which interaction with the 20S core was recently demonstrated but no degradation substrates have been identified yet. The alternative interaction partners and wide range of substrate proteins suggest that the bacterial proteasome is a modular, functionally flexible and conditionally regulated degradation machine in bacteria that encounter rapidly changing and challenging conditions.
Collapse
Affiliation(s)
- Andreas U Müller
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Eilika Weber-Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Abstract
Proteasomes are a class of protease that carry out the degradation of a specific set of cellular proteins. While essential for eukaryotic life, proteasomes are found only in a small subset of bacterial species. In this chapter, we present the current knowledge of bacterial proteasomes, detailing the structural features and catalytic activities required to achieve proteasomal proteolysis. We describe the known mechanisms by which substrates are doomed for degradation, and highlight potential non-degradative roles for components of bacterial proteasome systems. Additionally, we highlight several pathways of microbial physiology that rely on proteasome activity. Lastly, we explain the various gaps in our understanding of bacterial proteasome function and emphasize several opportunities for further study.
Collapse
Affiliation(s)
- Samuel H Becker
- Department of Microbiology, New York University School of Medicine, 430 E. 29th Street, Room 312, New York, NY, 10016, USA
| | - Huilin Li
- Van Andel Research Institute, Cryo-EM Structural Biology Laboratory, 333 Bostwick Ave, NE, Grand Rapids, MI, 4950, USA
| | - K Heran Darwin
- Department of Microbiology, New York University School of Medicine, 430 E. 29th Street, Room 312, New York, NY, 10016, USA.
| |
Collapse
|
14
|
Gatsogiannis C, Merino F, Roderer D, Balchin D, Schubert E, Kuhlee A, Hayer-Hartl M, Raunser S. Tc toxin activation requires unfolding and refolding of a β-propeller. Nature 2018; 563:209-213. [DOI: 10.1038/s41586-018-0556-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 08/23/2018] [Indexed: 12/14/2022]
|
15
|
Hu K, Jastrab JB, Zhang S, Kovach A, Zhao G, Darwin KH, Li H. Proteasome substrate capture and gate opening by the accessory factor PafE from Mycobacterium tuberculosis. J Biol Chem 2018; 293:4713-4723. [PMID: 29414791 DOI: 10.1074/jbc.ra117.001471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/31/2018] [Indexed: 11/06/2022] Open
Abstract
In all domains of life, proteasomes are gated, chambered proteases that require opening by activators to facilitate protein degradation. Twelve proteasome accessory factor E (PafE) monomers assemble into a single dodecameric ring that promotes proteolysis required for the full virulence of the human bacterial pathogen Mycobacterium tuberculosis Whereas the best characterized proteasome activators use ATP to deliver proteins into a proteasome, PafE does not require ATP. Here, to unravel the mechanism of PafE-mediated protein targeting and proteasome activation, we studied the interactions of PafE with native substrates, including a newly identified proteasome substrate, the ParA-like protein, Rv3213c, and with proteasome core particles. We characterized the function of a highly conserved feature in bacterial proteasome activator proteins: a glycine-glutamine-tyrosine-leucine (GQYL) motif at their C termini that is essential for stimulating proteolysis. Using cryo-electron microscopy (cryo-EM), we found that the GQYL motif of PafE interacts with specific residues in the α subunits of the proteasome core particle to trigger gate opening and degradation. Finally, we also found that PafE rings have 40-Å openings lined with hydrophobic residues that form a chamber for capturing substrates before they are degraded, suggesting PafE has a previously unrecognized chaperone activity. In summary, we have identified the interactions between PafE and the proteasome core particle that cause conformational changes leading to the opening of the proteasome gate and have uncovered a mechanism of PafE-mediated substrate degradation. Collectively, our results provide detailed insights into the mechanism of ATP-independent proteasome degradation in bacteria.
Collapse
Affiliation(s)
- Kuan Hu
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Jordan B Jastrab
- Department of Microbiology, New York University School of Medicine, New York, New York 10016
| | - Susan Zhang
- Department of Microbiology, New York University School of Medicine, New York, New York 10016
| | - Amanda Kovach
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Gongpu Zhao
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - K Heran Darwin
- Department of Microbiology, New York University School of Medicine, New York, New York 10016.
| | - Huilin Li
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, Michigan 49503.
| |
Collapse
|
16
|
Probing the cooperativity of Thermoplasma acidophilum proteasome core particle gating by NMR spectroscopy. Proc Natl Acad Sci U S A 2017; 114:E9846-E9854. [PMID: 29087330 DOI: 10.1073/pnas.1712297114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The 20S proteasome core particle (20S CP) plays an integral role in cellular homeostasis by degrading proteins no longer required for function. The process is, in part, controlled via gating residues localized to the ends of the heptameric barrel-like CP structure that occlude substrate entry pores, preventing unregulated degradation of substrates that might otherwise enter the proteasome. Previously, we showed that the N-terminal residues of the α-subunits of the CP from the archaeon Thermoplasma acidophilum are arranged such that, on average, two of the seven termini are localized inside the lumen of the proteasome, thereby plugging the entry pore and functioning as a gate. However, the mechanism of gating remains unclear. Using solution NMR and a labeling procedure in which a series of mixed proteasome rings are prepared such that the percentage of gate-containing subunits is varied, we address the energetics of gating and establish whether gating is a cooperative process involving the concerted action of residues from more than a single protomer. Our results establish that the intrinsic probability of a gate entering the lumen favors the in state by close to 20-fold, that entry of each gate is noncooperative, with the number of gates that can be accommodated inside the lumen a function of the substrate entry pore size and the bulkiness of the gating residues. Insight into the origin of the high affinity for the in state is obtained from spin-relaxation experiments. More generally, our approach provides an avenue for dissecting interactions of individual protomers in homo-oligomeric complexes.
Collapse
|
17
|
de la Peña AH, Lander GC. What's the Key to Unlocking the Proteasome's Gate? Structure 2017; 24:2037-2038. [PMID: 27926830 DOI: 10.1016/j.str.2016.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In this issue of Structure, Bolten et al. (2016) describe the organization of the mycobacterial proteasome in complex with the ATP-independent bacterial proteasome activator (Bpa, PafE). They confirm several activation motifs employed by archaea and eukaryotes and highlight differences that pose Bpa as a novel architectural class of proteasome activators.
Collapse
Affiliation(s)
- Andres H de la Peña
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA.
| |
Collapse
|
18
|
Alhuwaider AAH, Dougan DA. AAA+ Machines of Protein Destruction in Mycobacteria. Front Mol Biosci 2017; 4:49. [PMID: 28770209 PMCID: PMC5515868 DOI: 10.3389/fmolb.2017.00049] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 06/27/2017] [Indexed: 01/05/2023] Open
Abstract
The bacterial cytosol is a complex mixture of macromolecules (proteins, DNA, and RNA), which collectively are responsible for an enormous array of cellular tasks. Proteins are central to most, if not all, of these tasks and as such their maintenance (commonly referred to as protein homeostasis or proteostasis) is vital for cell survival during normal and stressful conditions. The two key aspects of protein homeostasis are, (i) the correct folding and assembly of proteins (coupled with their delivery to the correct cellular location) and (ii) the timely removal of unwanted or damaged proteins from the cell, which are performed by molecular chaperones and proteases, respectively. A major class of proteins that contribute to both of these tasks are the AAA+ (ATPases associated with a variety of cellular activities) protein superfamily. Although much is known about the structure of these machines and how they function in the model Gram-negative bacterium Escherichia coli, we are only just beginning to discover the molecular details of these machines and how they function in mycobacteria. Here we review the different AAA+ machines, that contribute to proteostasis in mycobacteria. Primarily we will focus on the recent advances in the structure and function of AAA+ proteases, the substrates they recognize and the cellular pathways they control. Finally, we will discuss the recent developments related to these machines as novel drug targets.
Collapse
Affiliation(s)
- Adnan Ali H Alhuwaider
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe UniversityMelbourne, VIC, Australia
| | - David A Dougan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe UniversityMelbourne, VIC, Australia
| |
Collapse
|
19
|
Yedidi RS, Wendler P, Enenkel C. AAA-ATPases in Protein Degradation. Front Mol Biosci 2017; 4:42. [PMID: 28676851 PMCID: PMC5476697 DOI: 10.3389/fmolb.2017.00042] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 06/06/2017] [Indexed: 11/13/2022] Open
Abstract
Proteolytic machineries containing multisubunit protease complexes and AAA-ATPases play a key role in protein quality control and the regulation of protein homeostasis. In these protein degradation machineries, the proteolytically active sites are formed by either threonines or serines which are buried inside interior cavities of cylinder-shaped complexes. In eukaryotic cells, the proteasome is the most prominent protease complex harboring AAA-ATPases. To degrade protein substrates, the gates of the axial entry ports of the protease need to be open. Gate opening is accomplished by AAA-ATPases, which form a hexameric ring flanking the entry ports of the protease. Protein substrates with unstructured domains can loop into the entry ports without the assistance of AAA-ATPases. However, folded proteins require the action of AAA-ATPases to unveil an unstructured terminus or domain. Cycles of ATP binding/hydrolysis fuel the unfolding of protein substrates which are gripped by loops lining up the central pore of the AAA-ATPase ring. The AAA-ATPases pull on the unfolded polypeptide chain for translocation into the proteolytic cavity of the protease. Conformational changes within the AAA-ATPase ring and the adjacent protease chamber create a peristaltic movement for substrate degradation. The review focuses on new technologies toward the understanding of the function and structure of AAA-ATPases to achieve substrate recognition, unfolding and translocation into proteasomes in yeast and mammalian cells and into proteasome-equivalent proteases in bacteria and archaea.
Collapse
Affiliation(s)
| | - Petra Wendler
- Department of Biochemistry, Institute of Biochemistry and Biology, University of PotsdamPotsdam, Germany
| | - Cordula Enenkel
- Department of Biochemistry, University of TorontoToronto, ON, Canada
| |
Collapse
|
20
|
Hsu HC, Singh PK, Fan H, Wang R, Sukenick G, Nathan C, Lin G, Li H. Structural Basis for the Species-Selective Binding of N,C-Capped Dipeptides to the Mycobacterium tuberculosis Proteasome. Biochemistry 2016; 56:324-333. [PMID: 27976853 DOI: 10.1021/acs.biochem.6b01107] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The Mycobacterium tuberculosis (Mtb) 20S proteasome is vital for the pathogen to survive under nitrosative stress in vitro and to persist in mice. To qualify for drug development, inhibitors targeting Mtb 20S must spare both the human constitutive proteasome (c-20S) and immunoproteasome (i-20S). We recently reported members of a family of noncovalently binding dipeptide proteasome inhibitors that are highly potent and selective for Mtb 20S over human c-20S and i-20S. To understand the structural basis of their potency and selectivity, we have studied the structure-activity relationship of six derivatives and solved their cocrystal structures with Mtb 20S. The dipeptide inhibitors form an antiparallel β-strand with the active site β-strands. Selectivity is conferred by several features of Mtb 20S relative to its mouse counterparts, including a larger S1 pocket, additional hydrogen bonds in the S3 pocket, and hydrophobic interactions in the S4 pocket. Serine-20 and glutamine-22 of Mtb 20S interact with the dipeptides and confer Mtb-specific inhibition over c-20S and i-20S. The Mtb 20S and mammalian i-20S have a serine-27 that interacts strongly with the dipeptides, potentially explaining the higher inhibitory activity of the dipeptides toward i-20S over c-20S. This detailed structural knowledge will aid in optimizing the dipeptides as anti-tuberculosis drugs.
Collapse
Affiliation(s)
- Hao-Chi Hsu
- Van Andel Research Institute , Grand Rapids, Michigan 49503, United States
| | | | | | - Rong Wang
- NMR Analytical Core Facility, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - George Sukenick
- NMR Analytical Core Facility, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | | | | | - Huilin Li
- Van Andel Research Institute , Grand Rapids, Michigan 49503, United States
| |
Collapse
|