1
|
Crudo F, Dellafiora L, Hong C, Burger L, Jobst M, Del Favero G, Marko D. Combined in vitro and in silico mechanistic approach to explore the potential of Alternaria mycotoxins alternariol and altertoxin II to hamper γH2AX formation in DNA damage signaling pathways. Toxicol Lett 2024; 394:1-10. [PMID: 38403206 DOI: 10.1016/j.toxlet.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/06/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Risk assessment of food and environmental contaminants is faced by substantial data gaps and novel strategies are needed to support science-based regulatory actions. The Alternaria mycotoxins alternariol (AOH) and altertoxin II (ATXII) have garnered attention for their possible genotoxic effects. Nevertheless, data currently available are rather scattered, hindering a comprehensive hazard characterization. This study combined in vitro/in silico approaches to elucidate the potential of AOH and ATXII to induce double-strand breaks (DSBs) in HepG2 cells. Furthermore, it examines the impact of co-exposure to AOH and the DSB-inducing drug doxorubicin (Doxo) on γH2AX expression. AOH slightly increased γH2AX expression, whereas ATXII did not elicit this response. Interestingly, AOH suppressed Doxo-induced γH2AX expression, despite evidence of increased DNA damage in the comet assay. Building on these observations, AOH was postulated to inhibit γH2AX-forming kinases. Along this line, in silico analysis supported AOH potential interaction with the ATP-binding sites of these kinases and immunofluorescence experiments showed decreased intracellular phosphorylation events. Similarly, in silico results suggested that ATXII might also interact with these kinases. This study emphasizes the importance of understanding the implications of AOH-induced γH2AX expression inhibition on DNA repair processes and underscores the need for caution when interpreting γH2AX assay results.
Collapse
Affiliation(s)
- Francesco Crudo
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38, Vienna 1090, Austria
| | - Luca Dellafiora
- Department of Food and Drug, University of Parma, Area Parco delle Scienze 27/A, Parma 43124, Italy
| | - Chenyifan Hong
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38, Vienna 1090, Austria
| | - Lena Burger
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38, Vienna 1090, Austria
| | - Maximilian Jobst
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38, Vienna 1090, Austria; Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Währinger Str. 42, Vienna 1090, Austria; University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Str. 42, Vienna 1090, Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38, Vienna 1090, Austria; Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Währinger Str. 42, Vienna 1090, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38, Vienna 1090, Austria; Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Währinger Str. 42, Vienna 1090, Austria.
| |
Collapse
|
2
|
Arslan M, Uluçay T, Kale S, Kalyoncu S. Engineering of conserved residues near antibody heavy chain complementary determining region 3 (HCDR3) improves both affinity and stability. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140915. [PMID: 37059314 DOI: 10.1016/j.bbapap.2023.140915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Affinity and stability are crucial parameters in antibody development and engineering approaches. Although improvement in both metrics is desirable, trade-offs are almost unavoidable. Heavy chain complementarity determining region 3 (HCDR3) is the best-known region for antibody affinity but its impact on stability is often neglected. Here, we present a mutagenesis study of conserved residues near HCDR3 to elicit the role of this region in the affinity-stability trade-off. These key residues are positioned around the conserved salt bridge between VH-K94 and VH-D101 which is crucial for HCDR3 integrity. We show that the additional salt bridge at the stem of HCDR3 (VH-K94:VH-D101:VH-D102) has an extensive impact on this loop's conformation, therefore simultaneous improvement in both affinity and stability. We find that the disruption of π-π stacking near HCDR3 (VH-Y100E:VL-Y49) at the VH-VL interface cause an irrecoverable loss in stability even if it improves the affinity. Molecular simulations of putative rescue mutants exhibit complex and often non-additive effects. We confirm that our experimental measurements agree with the molecular dynamic simulations providing detailed insights for the spatial orientation of HCDR3. VH-V102 right next to HCDR3 salt bridge might be an ideal candidate to overcome affinity-stability trade-off.
Collapse
Affiliation(s)
- Merve Arslan
- Izmir Biomedicine and Genome Center, Balçova, 35340 Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balçova, 35340 Izmir, Turkey
| | - Tuğçe Uluçay
- Izmir Biomedicine and Genome Center, Balçova, 35340 Izmir, Turkey
| | - Seyit Kale
- Izmir Biomedicine and Genome Center, Balçova, 35340 Izmir, Turkey
| | - Sibel Kalyoncu
- Izmir Biomedicine and Genome Center, Balçova, 35340 Izmir, Turkey.
| |
Collapse
|
3
|
Wong A, Bi C, Chi W, Hu N, Gehring C. Amino acid motifs for the identification of novel protein interactants. Comput Struct Biotechnol J 2022; 21:326-334. [PMID: 36582434 PMCID: PMC9791077 DOI: 10.1016/j.csbj.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Biological systems consist of multiple components of different physical and chemical properties that require complex and dynamic regulatory loops to function efficiently. The discovery of ever more novel interacting sites in complex proteins suggests that we are only beginning to understand how cellular and biological functions are integrated and tuned at the molecular and systems levels. Here we review recently discovered interacting sites which have been identified through rationally designed amino acid motifs diagnostic for specific molecular functions, including enzymatic activities and ligand-binding properties. We specifically discuss the nature of the latter using as examples, novel hormone recognition and gas sensing sites that occur in moonlighting protein complexes. Drawing evidence from the current literature, we discuss the potential implications at the cellular, tissue, and/or organismal levels of such non-catalytic interacting sites and provide several promising avenues for the expansion of amino acid motif searches to discover hitherto unknown protein interactants and interaction networks. We believe this knowledge will unearth unexpected functions in both new and well-characterized proteins, thus filling existing conceptual gaps or opening new avenues for applications either as drug targets or tools in pharmacology, cell biology and bio-catalysis. Beyond this, motif searches may also support the design of novel, effective and sustainable approaches to crop improvements and the development of new therapeutics.
Collapse
Affiliation(s)
- Aloysius Wong
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Ouhai, Wenzhou, Zhejiang Province 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Chuyun Bi
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Ouhai, Wenzhou, Zhejiang Province 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Wei Chi
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Ningxin Hu
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Chris Gehring
- Department of Chemistry, Biology & Biotechnology, University of Perugia, Perugia 06121, Italy
| |
Collapse
|
4
|
Grigorenko VG, Petrova TE, Carolan C, Rubtsova MY, Uporov IV, Pereira J, Chojnowski G, Samygina VR, Lamzin VS, Egorov AM. Crystal structures of the molecular class A β-lactamase TEM-171 and its complexes with tazobactam. Acta Crystallogr D Struct Biol 2022; 78:825-834. [DOI: 10.1107/s2059798322004879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/06/2022] [Indexed: 11/10/2022] Open
Abstract
The resistance of bacteria to β-lactam antibiotics is primarily caused by the production of β-lactamases. Here, novel crystal structures of the native β-lactamase TEM-171 and two complexes with the widely used inhibitor tazobactam are presented, alongside complementary data from UV spectroscopy and fluorescence quenching. The six chemically identical β-lactamase molecules in the crystallographic asymmetric unit displayed different degrees of disorder. The tazobactam intermediate was covalently bound to the catalytic Ser70 in the trans-enamine configuration. While the conformation of tazobactam in the first complex resembled that in published β-lactamase–tazobactam structures, in the second complex, which was obtained after longer soaking of the native crystals in the inhibitor solution, a new and previously unreported tazobactam conformation was observed. It is proposed that the two complexes correspond to different stages along the deacylation path of the acyl-enzyme intermediate. The results provide a novel structural basis for the rational design of new β-lactamase inhibitors.
Collapse
|
5
|
Melanker O, Goloubinoff P, Schreiber G. In vitro evolution of uracil glycosylase towards DnaKJ and GroEL binding evolves different misfolded states. J Mol Biol 2022; 434:167627. [PMID: 35597550 DOI: 10.1016/j.jmb.2022.167627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022]
Abstract
Natural evolution is driven by random mutations that improve fitness. In vitro evolution mimics this process, however, on a short time-scale and is driven by the given bait. Here, we used directed in vitro evolution of a random mutant library of Uracil glycosylase (eUNG) displayed on yeast surface to select for binding to chaperones GroEL, DnaK+DnaJ+ATP (DnaKJ) or E.coli cell extract (CE), using binding to the eUNG inhibitor Ugi as probe for native fold. The CE selected population was further divided to Ugi binders (+U) or non-binders (-U). The aim here was to evaluate the sequence space and physical state of the evolved protein binding the different baits. We found that GroEL, DnaKJ and CE-U select and enrich for mutations causing eUNG to misfold, with the three being enriched in mutations in buried and conserved positions, with a tendency to increase positive charge. Still, each selection had its own trajectory, with GroEL and CE-U selecting mutants highly sensitive to protease cleavage while DnaKJ selected partially structured misfolded species with a tendency to refold, making them less sensitive to proteases. More general, our results show that GroEL has a higher tendency to purge promiscuous misfolded protein mutants from the system, while DnaKJ binds misfolding-prone mutant species that are, upon chaperone release, more likely to natively refold. CE-U shares some of the properties of GroEL- and DnaKJ-selected populations, while harboring also unique properties that can be explained by the presence of additional chaperones in CE, such as Trigger factor, HtpG and ClpB.
Collapse
Affiliation(s)
- Oran Melanker
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Lausanne University, 1015 Lausanne, Switzerland
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
6
|
Dong X, Qin LY, Gong Z, Qin S, Zhou HX, Tang C. Preferential Interactions of a Crowder Protein with the Specific Binding Site of a Native Protein Complex. J Phys Chem Lett 2022; 13:792-800. [PMID: 35044179 PMCID: PMC8852806 DOI: 10.1021/acs.jpclett.1c03794] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nonspecific binding of crowder proteins with functional proteins is likely prevalent in vivo, yet direct quantitative evidence, let alone residue-specific information, is scarce. Here we present nuclear magnetic resonance (NMR) characterization showing that bovine serum albumin weakly but preferentially interacts with the histidine carrier protein (HPr). Notably, the binding interface overlaps with that for HPr's specific partner protein, EIN, leading to competition. The crowder protein thus decreases the EIN-HPr binding affinity and accelerates the dissociation of the native complex. In contrast, Ficoll-70 stabilizes the native complex and slows its dissociation, as one would expect from excluded-volume and microviscosity effects. Our atomistic modeling of macromolecular crowding rationalizes the experimental data and provides quantitative insights into the energetics of protein-crowder interactions. The integrated NMR and modeling study yields benchmarks for the effects of crowded cellular environments on protein-protein specific interactions, with implications for evolution regarding how nonspecific binding can be minimized or exploited.
Collapse
Affiliation(s)
- Xu Dong
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Ling-Yun Qin
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhou Gong
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Sanbo Qin
- Department of Chemistry and Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, United States
| | - Huan-Xiang Zhou
- Department of Chemistry and Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Chun Tang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Zahradník J, Dey D, Marciano S, Kolářová L, Charendoff CI, Subtil A, Schreiber G. A Protein-Engineered, Enhanced Yeast Display Platform for Rapid Evolution of Challenging Targets. ACS Synth Biol 2021; 10:3445-3460. [PMID: 34809429 PMCID: PMC8689690 DOI: 10.1021/acssynbio.1c00395] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Indexed: 02/08/2023]
Abstract
Here, we enhanced the popular yeast display method by multiple rounds of DNA and protein engineering. We introduced surface exposure-tailored reporters, eUnaG2 and DnbALFA, creating a new platform of C and N terminal fusion vectors. The optimization of eUnaG2 resulted in five times brighter fluorescence and 10 °C increased thermostability than UnaG. The optimized DnbALFA has 10-fold the level of expression of the starting protein. Following this, different plasmids were developed to create a complex platform allowing a broad range of protein expression organizations and labeling strategies. Our platform showed up to five times better separation between nonexpressing and expressing cells compared with traditional pCTcon2 and c-myc labeling, allowing for fewer rounds of selection and achieving higher binding affinities. Testing 16 different proteins, the enhanced system showed consistently stronger expression signals over c-myc labeling. In addition to gains in simplicity, speed, and cost-effectiveness, new applications were introduced to monitor protein surface exposure and protein retention in the secretion pathway that enabled successful protein engineering of hard-to-express proteins. As an example, we show how we optimized the WD40 domain of the ATG16L1 protein for yeast surface and soluble bacterial expression, starting from a nonexpressing protein. As a second example, we show how using the here-presented enhanced yeast display method we rapidly selected high-affinity binders toward two protein targets, demonstrating the simplicity of generating new protein-protein interactions. While the methodological changes are incremental, it results in a qualitative enhancement in the applicability of yeast display for many applications.
Collapse
Affiliation(s)
- Jiří Zahradník
- Weizmann
Institute of Science, Herzl St. 234, Rehovot 7610001, Israel
| | - Debabrata Dey
- Weizmann
Institute of Science, Herzl St. 234, Rehovot 7610001, Israel
| | - Shir Marciano
- Weizmann
Institute of Science, Herzl St. 234, Rehovot 7610001, Israel
| | - Lucie Kolářová
- Institute
of Biotechnology, CAS v.v.i., Prumyslova 595, Vestec 252 50 Prague region, Czech Republic
| | - Chloé I. Charendoff
- Institut
Pasteur, Unité de Biologie cellulaire de l’infection
microbienne, 25 rue du Dr Roux, Paris 75015, France
| | - Agathe Subtil
- Institut
Pasteur, Unité de Biologie cellulaire de l’infection
microbienne, 25 rue du Dr Roux, Paris 75015, France
| | - Gideon Schreiber
- Weizmann
Institute of Science, Herzl St. 234, Rehovot 7610001, Israel
| |
Collapse
|
8
|
Zahradník J, Schreiber G. Protein Engineering in the Design of Protein-Protein Interactions: SARS-CoV-2 Inhibitors as a Test Case. Biochemistry 2021; 60:3429-3435. [PMID: 34196543 PMCID: PMC8613841 DOI: 10.1021/acs.biochem.1c00356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/01/2021] [Indexed: 11/28/2022]
Abstract
The formation of specific protein-protein interactions (PPIs) drive most biological processes. Malfunction of such interactions is the molecular driver of many diseases. Our ability to engineer existing PPIs or create new ones has become a vital research tool. In addition, engineered proteins with new or altered interactions are among the most critical drugs that have been developed in recent years. These include antibodies, cytokines, inhibitors, and others. Here, we provide a perspective on the current status of the methods used to engineer new or altered PPIs. The emergence of the COVID-19 pandemic, which resulted in a worldwide quest to develop specific PPI inhibitors as drugs, provided an up-to-date and state-of-the-art status report on the methodologies for engineering PPIs targeting the interaction of the viral spike protein with its cellular target, ACE2. Multiple, very high affinity binders were generated within a few months using in vitro evolution by itself, or in combination with computational design. The different experimental and computational methods used to block this interaction provide a road map for the future of PPI engineering.
Collapse
Affiliation(s)
- Jiří Zahradník
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
9
|
Rynkiewicz P, Lynch ML, Cui F, Hudson AO, Babbitt GA. Functional binding dynamics relevant to the evolution of zoonotic spillovers in endemic and emergent Betacoronavirus strains. J Biomol Struct Dyn 2021; 40:10978-10996. [PMID: 34286673 PMCID: PMC8776918 DOI: 10.1080/07391102.2021.1953604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/04/2021] [Indexed: 01/03/2023]
Abstract
Comparative functional analysis of the dynamic interactions between various Betacoronavirus mutant strains and broadly utilized target proteins such as ACE2 and CD26, is crucial for a more complete understanding of zoonotic spillovers of viruses that cause diseases such as COVID-19. Here, we employ machine learning to replicated sets of nanosecond scale GPU accelerated molecular dynamics simulations to statistically compare and classify atom motions of these target proteins in both the presence and absence of different endemic and emergent strains of the viral receptor binding domain (RBD) of the S spike glycoprotein. A multi-agent classifier successfully identified functional binding dynamics that are evolutionarily conserved from bat CoV-HKU4 to human endemic/emergent strains. Conserved dynamics regions of ACE2 involve both the N-terminal helices, as well as a region of more transient dynamics encompassing residues K353, Q325 and a novel motif AAQPFLL 386-92 that appears to coordinate their dynamic interactions with the viral RBD at N501. We also demonstrate that the functional evolution of Betacoronavirus zoonotic spillovers involving ACE2 interaction dynamics are likely pre-adapted from two precise and stable binding sites involving the viral bat progenitor strain's interaction with CD26 at SAMLI 291-5 and SS 333-334. Our analyses further indicate that the human endemic strains hCoV-HKU1 and hCoV-OC43 have evolved more stable N-terminal helix interactions through enhancement of an interfacing loop region on the viral RBD, whereas the highly transmissible SARS-CoV-2 variants (B.1.1.7, B.1.351 and P.1) have evolved more stable viral binding via more focused interactions between the viral N501 and ACE2 K353 alone.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Patrick Rynkiewicz
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester NY, USA 14623
| | - Miranda L. Lynch
- Hauptmann-Woodward Medical Research Institute, Buffalo NY, USA 14203
| | - Feng Cui
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester NY, USA 14623
| | - André O. Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester NY, USA 14623
| | - Gregory A. Babbitt
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester NY, USA 14623
| |
Collapse
|
10
|
Sörensen T, Leeb S, Danielsson J, Oliveberg M. Polyanions Cause Protein Destabilization Similar to That in Live Cells. Biochemistry 2021; 60:735-746. [PMID: 33635054 PMCID: PMC8028048 DOI: 10.1021/acs.biochem.0c00889] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/11/2021] [Indexed: 12/25/2022]
Abstract
The structural stability of proteins is found to markedly change upon their transfer to the crowded interior of live cells. For some proteins, the stability increases, while for others, it decreases, depending on both the sequence composition and the type of host cell. The mechanism seems to be linked to the strength and conformational bias of the diffusive in-cell interactions, where protein charge is found to play a decisive role. Because most proteins, nucleotides, and membranes carry a net-negative charge, the intracellular environment behaves like a polyanionic (Z:1) system with electrostatic interactions different from those of standard 1:1 ion solutes. To determine how such polyanion conditions influence protein stability, we use negatively charged polyacetate ions to mimic the net-negatively charged cellular environment. The results show that, per Na+ equivalent, polyacetate destabilizes the model protein SOD1barrel significantly more than monoacetate or NaCl. At an equivalent of 100 mM Na+, the polyacetate destabilization of SOD1barrel is similar to that observed in live cells. By the combined use of equilibrium thermal denaturation, folding kinetics, and high-resolution nuclear magnetic resonance, this destabilization is primarily assigned to preferential interaction between polyacetate and the globally unfolded protein. This interaction is relatively weak and involves mainly the outermost N-terminal region of unfolded SOD1barrel. Our findings point thus to a generic influence of polyanions on protein stability, which adds to the sequence-specific contributions and needs to be considered in the evaluation of in vivo data.
Collapse
Affiliation(s)
- Therese Sörensen
- Department of Biochemistry and Biophysics,
Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| | - Sarah Leeb
- Department of Biochemistry and Biophysics,
Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| | - Jens Danielsson
- Department of Biochemistry and Biophysics,
Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| | - Mikael Oliveberg
- Department of Biochemistry and Biophysics,
Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
11
|
Leeb S, Sörensen T, Yang F, Mu X, Oliveberg M, Danielsson J. Diffusive protein interactions in human versus bacterial cells. Curr Res Struct Biol 2020; 2:68-78. [PMID: 34235470 PMCID: PMC8244477 DOI: 10.1016/j.crstbi.2020.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/05/2020] [Accepted: 04/06/2020] [Indexed: 01/14/2023] Open
Abstract
Random encounters between proteins in crowded cells are by no means passive, but found to be under selective control. This control enables proteome solubility, helps to optimise the diffusive search for interaction partners, and allows for adaptation to environmental extremes. Interestingly, the residues that modulate the encounters act mesoscopically through protein surface hydrophobicity and net charge, meaning that their detailed signatures vary across organisms with different intracellular constraints. To examine such variations, we use in-cell NMR relaxation to compare the diffusive behaviour of bacterial and human proteins in both human and Escherichia coli cytosols. We find that proteins that ‘stick’ in E. coli are generally less restricted in mammalian cells. Furthermore, the rotational diffusion in the mammalian cytosol is less sensitive to surface-charge mutations. This implies that, in terms of protein motions, the mammalian cytosol is more forgiving to surface alterations than E. coli cells. The cellular differences seem not linked to the proteome properties per se, but rather to a 6-fold difference in protein concentrations. Our results outline a scenario in which the tolerant cytosol of mammalian cells, found in long-lived multicellular organisms, provides an enlarged evolutionary playground, where random protein-surface mutations are less deleterious than in short-generational bacteria. Random protein encounters and diffusibility in cells are controlled by surface charge. Protein rotational diffusion is less restricted in human cells than in E. coli. Human cells are less sensitive to alterations of protein charge than Escherichia coli cells.
Collapse
Affiliation(s)
- Sarah Leeb
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91, Stockholm, Sweden
| | - Therese Sörensen
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91, Stockholm, Sweden
| | - Fan Yang
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91, Stockholm, Sweden
| | - Xin Mu
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91, Stockholm, Sweden
| | - Mikael Oliveberg
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91, Stockholm, Sweden
| | - Jens Danielsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91, Stockholm, Sweden
| |
Collapse
|
12
|
Competing Ligands Can Both Obstruct and Enhance Protein-Complex Formation. Biophys J 2019; 117:1552-1553. [PMID: 31606122 DOI: 10.1016/j.bpj.2019.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 11/24/2022] Open
|
13
|
Zahradník J, Kolářová L, Peleg Y, Kolenko P, Svidenská S, Charnavets T, Unger T, Sussman JL, Schneider B. Flexible regions govern promiscuous binding ofIL‐24 to receptorsIL‐20R1 andIL‐22R1. FEBS J 2019; 286:3858-3873. [DOI: 10.1111/febs.14945] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/05/2019] [Accepted: 05/30/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Jiří Zahradník
- Institute of Biotechnology of the Czech Academy of Sciences BIOCEV Vestec Czech Republic
- Weizmann Institute of Science Rehovot Israel
| | - Lucie Kolářová
- Institute of Biotechnology of the Czech Academy of Sciences BIOCEV Vestec Czech Republic
| | - Yoav Peleg
- Weizmann Institute of Science Rehovot Israel
| | - Petr Kolenko
- Institute of Biotechnology of the Czech Academy of Sciences BIOCEV Vestec Czech Republic
- Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague Prague Czech Republic
| | - Silvie Svidenská
- Institute of Biotechnology of the Czech Academy of Sciences BIOCEV Vestec Czech Republic
| | - Tatsiana Charnavets
- Institute of Biotechnology of the Czech Academy of Sciences BIOCEV Vestec Czech Republic
| | - Tamar Unger
- Weizmann Institute of Science Rehovot Israel
| | | | - Bohdan Schneider
- Institute of Biotechnology of the Czech Academy of Sciences BIOCEV Vestec Czech Republic
| |
Collapse
|
14
|
Garcia‐Seisdedos H, Villegas JA, Levy ED. Infinite Ansammlungen gefalteter Proteine im Kontext von Evolution, Krankheiten und Proteinentwicklung. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201806092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - José A. Villegas
- Department of Structural BiologyWeizmann Institute of Science Rehovot 7610001 Israel
| | - Emmanuel D. Levy
- Department of Structural BiologyWeizmann Institute of Science Rehovot 7610001 Israel
| |
Collapse
|
15
|
Garcia‐Seisdedos H, Villegas JA, Levy ED. Infinite Assembly of Folded Proteins in Evolution, Disease, and Engineering. Angew Chem Int Ed Engl 2019; 58:5514-5531. [PMID: 30133878 PMCID: PMC6471489 DOI: 10.1002/anie.201806092] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/06/2018] [Indexed: 12/14/2022]
Abstract
Mutations and changes in a protein's environment are well known for their potential to induce misfolding and aggregation, including amyloid formation. Alternatively, such perturbations can trigger new interactions that lead to the polymerization of folded proteins. In contrast to aggregation, this process does not require misfolding and, to highlight this difference, we refer to it as agglomeration. This term encompasses the amorphous assembly of folded proteins as well as the polymerization in one, two, or three dimensions. We stress the remarkable potential of symmetric homo-oligomers to agglomerate even by single surface point mutations, and we review the double-edged nature of this potential: how aberrant assemblies resulting from agglomeration can lead to disease, but also how agglomeration can serve in cellular adaptation and be exploited for the rational design of novel biomaterials.
Collapse
Affiliation(s)
| | - José A. Villegas
- Department of Structural BiologyWeizmann Institute of ScienceRehovot7610001Israel
| | - Emmanuel D. Levy
- Department of Structural BiologyWeizmann Institute of ScienceRehovot7610001Israel
| |
Collapse
|
16
|
Ghosh A, Smith PES, Qin S, Yi M, Zhou HX. Both Ligands and Macromolecular Crowders Preferentially Bind to Closed Conformations of Maltose Binding Protein. Biochemistry 2019; 58:2208-2217. [PMID: 30950267 DOI: 10.1021/acs.biochem.9b00154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In cellular environments, proteins not only interact with their specific partners but also encounter a high concentration of bystander macromolecules, or crowders. Nonspecific interactions with macromolecular crowders modulate the activities of proteins, but our knowledge about the rules of nonspecific interactions is still very limited. In previous work, we presented experimental evidence that macromolecular crowders acted competitively in inhibiting the binding of maltose binding protein (MBP) with its ligand maltose. Competition between a ligand and an inhibitor may result from binding to either the same site or different conformations of the protein. Maltose binds to the cleft between two lobes of MBP, and in a series of mutants, the affinities increased with an increase in the extent of lobe closure. Here we investigated whether macromolecular crowders also have a conformational or site preference when binding to MBP. The affinities of a polymer crowder, Ficoll70, measured by monitoring tryptophan fluorescence were 3-6-fold higher for closure mutants than for wild-type MBP. Competition between the ligand and crowder, as indicated by fitting of titration data and directly by nuclear magnetic resonance spectroscopy, and their similar preferences for closed MBP conformations further suggest the scenario in which the crowder, like maltose, preferentially binds to the interlobe cleft of MBP. Similar observations were made for bovine serum albumin as a protein crowder. Conformational and site preferences in MBP-crowder binding allude to the paradigm that nonspecific interactions can possess hallmarks of molecular recognition, which may be essential for intracellular organizations including colocalization of proteins and liquid-liquid phase separation.
Collapse
Affiliation(s)
- Archishman Ghosh
- Institute of Molecular Biophysics , Florida State University , Tallahassee , Florida 30306 , United States.,Department of Chemistry and Department of Physics , University of Illinois at Chicago , Chicago , Illinois 60607 , United States
| | - Pieter E S Smith
- Institute of Molecular Biophysics , Florida State University , Tallahassee , Florida 30306 , United States
| | - Sanbo Qin
- Institute of Molecular Biophysics , Florida State University , Tallahassee , Florida 30306 , United States.,Department of Chemistry and Department of Physics , University of Illinois at Chicago , Chicago , Illinois 60607 , United States
| | - Myunggi Yi
- Department of Biomedical Engineering , Pukyong National University , Busan 48513 , South Korea
| | - Huan-Xiang Zhou
- Institute of Molecular Biophysics , Florida State University , Tallahassee , Florida 30306 , United States.,Department of Chemistry and Department of Physics , University of Illinois at Chicago , Chicago , Illinois 60607 , United States
| |
Collapse
|
17
|
Armenta S, Sánchez-Cuapio Z, Munguia ME, Pulido NO, Farrés A, Manoutcharian K, Hernandez-Santoyo A, Moreno-Mendieta S, Sánchez S, Rodríguez-Sanoja R. The role of conserved non-aromatic residues in the Lactobacillus amylovorus α-amylase CBM26-starch interaction. Int J Biol Macromol 2019; 121:829-838. [DOI: 10.1016/j.ijbiomac.2018.10.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 10/28/2022]
|
18
|
Könning D, Kolmar H. Beyond antibody engineering: directed evolution of alternative binding scaffolds and enzymes using yeast surface display. Microb Cell Fact 2018; 17:32. [PMID: 29482656 PMCID: PMC6389260 DOI: 10.1186/s12934-018-0881-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/22/2018] [Indexed: 01/08/2023] Open
Abstract
Pioneered exactly 20 years ago, yeast surface display (YSD) continues to take a major role in protein engineering among the high-throughput display methodologies that have been developed to date. The classical yeast display technology relies on tethering an engineered protein to the cell wall by genetic fusion to one subunit of a dimeric yeast-mating agglutination receptor complex. This method enables an efficient genotype-phenotype linkage while exploiting the benefits of a eukaryotic expression machinery. Over the past two decades, a plethora of protein engineering efforts encompassing conventional antibody Fab and scFv fragments have been reported. In this review, we will focus on the versatility of YSD beyond conventional antibody engineering and, instead, place the focus on alternative scaffold proteins and enzymes which have successfully been tailored for purpose with regard to improving binding, activity or specificity.
Collapse
Affiliation(s)
- Doreen Könning
- Antibody-Drug Conjugates and Targeted NBE Therapeutics, Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, 64287 Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, 64287 Darmstadt, Germany
| |
Collapse
|
19
|
Dey S, Levy ED. Inferring and Using Protein Quaternary Structure Information from Crystallographic Data. Methods Mol Biol 2018; 1764:357-375. [PMID: 29605927 DOI: 10.1007/978-1-4939-7759-8_23] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A precise knowledge of the quaternary structure of proteins is essential to illuminate both their function and their evolution. The major part of our knowledge on quaternary structure is inferred from X-ray crystallography data, but this inference process is hard and error-prone. The difficulty lies in discriminating fortuitous protein contacts, which make up the lattice of protein crystals, from biological protein contacts that exist in the native cellular environment. Here, we review methods devised to discriminate between both types of contacts and describe resources for downloading protein quaternary structure information and identifying high-confidence quaternary structures. The use of high-confidence datasets of quaternary structures will be critical for the analysis of structural, functional, and evolutionary properties of proteins.
Collapse
Affiliation(s)
- Sucharita Dey
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Emmanuel D Levy
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|