1
|
Ma K, McDaniel K, Zhang D, Webb M, Qin L. Chemogenetic Inhibition of Prefrontal Cortex Ameliorates Autism-Like Social Deficits and Absence-Like Seizures in a Gene-Trap Ash1l Haploinsufficiency Mouse Model. Genes (Basel) 2024; 15:1619. [PMID: 39766886 PMCID: PMC11675260 DOI: 10.3390/genes15121619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/08/2024] [Accepted: 12/16/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND ASH1L (absent, small, or homeotic-like 1), a histone methyltransferase, has been identified as a high-risk gene for autism spectrum disorder (ASD). We previously showed that postnatal Ash1l severe deficiency in the prefrontal cortex (PFC) of male and female mice caused seizures. However, the synaptic mechanisms underlying autism-like social deficits and seizures need to be elucidated. OBJECTIVE The goal of this study is to characterize the behavioral deficits and reveal the synaptic mechanisms in an Ash1l haploinsufficiency mouse model using a targeted gene-trap knockout (gtKO) strategy. METHOD A series of behavioral tests were used to examine behavioral deficits. Electrophysiological and chemogenetic approaches were used to examine and manipulate the excitability of pyramidal neurons in the PFC of Ash1l+/GT mice. RESULTS Ash1l+/GT mice displayed social deficits, increased self-grooming, and cognitive impairments. Epileptiform discharges were found on electroencephalograms (EEGs) of Ash1l+/GT mice, indicating absence-like seizures. Ash1l haploinsufficiency increased the susceptibility for convulsive seizures when Ash1l+/GT mice were challenged by pentylenetetrazole (PTZ, a competitive GABAA receptor antagonist). Whole-cell patch-clamp recordings showed that Ash1l haploinsufficiency increased the excitability of pyramidal neurons in the PFC by altering intrinsic neuronal properties, enhancing glutamatergic synaptic transmission, and diminishing GABAergic synaptic inhibition. Chemogenetic inhibition of pyramidal neurons in the PFC of Ash1l+/GT mice ameliorated autism-like social deficits and abolished absence-like seizures. CONCLUSIONS We demonstrated that increased neural activity in the PFC contributed to the autism-like social deficits and absence-like seizures in Ash1l+/GT mice, which provides novel insights into the therapeutic strategies for patients with ASH1L-associated ASD and epilepsy.
Collapse
Affiliation(s)
- Kaijie Ma
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; (K.M.)
| | - Kylee McDaniel
- Department of Biotechnology, Mount Marty University, Yankton, SD 57078, USA;
| | - Daoqi Zhang
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; (K.M.)
| | - Maria Webb
- School of Health Sciences, University of South Dakota, Vermillion, SD 57069, USA
| | - Luye Qin
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; (K.M.)
| |
Collapse
|
2
|
Dutta M, Qamar T, Kushavah U, Siddiqi MI, Kar S. Exploring host epigenetic enzymes as targeted therapies for visceral leishmaniasis: in silico design and in vitro efficacy of KDM6B and ASH1L inhibitors. Mol Divers 2024; 28:4403-4424. [PMID: 38522046 DOI: 10.1007/s11030-024-10824-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/18/2024] [Indexed: 03/25/2024]
Abstract
In order to combat various infectious diseases, the utilization of host-directed therapies as an alternative to chemotherapy has gained a lot of attention in the recent past, since it bypasses the existing limitations of conventional therapies. The use of host epigenetic enzymes like histone lysine methyltransferases and lysine demethylases as potential drug targets has successfully been employed for controlling various inflammatory diseases like rheumatoid arthritis and acute leukemia. In our earlier study, we have already shown that the functional knockdown of KDM6B and ASH1L in the experimental model of visceral leishmaniasis has resulted in a significant reduction of organ parasite burden. Herein, we performed a high throughput virtual screening against KDM6B and ASH1L using > 53,000 compounds that were obtained from the Maybridge library and PubChem Database, followed by molecular docking to evaluate their docking score/Glide Gscore. Based on their docking scores, the selected inhibitors were later assessed for their in vitro anti-leishmanial efficacy. Out of all inhibitors designed against KDM6B and ASH1L, HTS09796, GSK-J4 and AS-99 particularly showed promising in vitro activity with IC50 < 5 µM against both extracellular promastigote and intracellular amastigote forms of L. donovani. In vitro drug interaction studies of these inhibitors further demonstrated their synergistic interaction with amphotericin-B and miltefosine. However, GSK-J4 makes an exception by displaying an in different mode of interaction with miltefosine. Collectively, our in silico and in vitro studies acted as a platform to identify the applicability of these inhibitors targeted against KDM6B and ASH1L for anti-leishmanial therapy.
Collapse
Affiliation(s)
- Mukul Dutta
- Infectious Diseases & Immunology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
- Molecular Microbiology & Immunology Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Tooba Qamar
- Molecular Microbiology & Immunology Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, 226014, India
| | - Unnati Kushavah
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohammad Imran Siddiqi
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Susanta Kar
- Infectious Diseases & Immunology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India.
- Molecular Microbiology & Immunology Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Astafev AA, Mezhnina V, Poe A, Jiang P, Kondratov RV. Sexual dimorphism of circadian liver transcriptome. iScience 2024; 27:109483. [PMID: 38550984 PMCID: PMC10973666 DOI: 10.1016/j.isci.2024.109483] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/14/2024] [Accepted: 03/08/2024] [Indexed: 11/12/2024] Open
Abstract
Sexual dimorphism affects various aspects of physiology, metabolism and longevity. Circadian clock is a master regulator of metabolism. Anti-aging dietary interventions reprogram circadian transcriptome in the liver and other tissues, but little is known about sexual dimorphism of circadian transcriptome. We compared circadian transcriptomes in the liver of male and female mice on ad libitum (AL) and 30% caloric restriction (CR) diets. We found that AL female mice had a larger number of oscillating genes than male mice, and the portion of the transcriptome with sex-specific rhythms displayed phase difference. We found that CR increased the number of oscillating genes in both sexes and strongly synchronized the transcriptome without complete elimination of sex dimorphism in rhythms. Sex also had an effect on the response of the rhythms to CR. Gene ontology analysis revealed sex-specific signatures in metabolic pathways, which suggests a complex interaction of sex, circadian rhythms, and diet.
Collapse
Affiliation(s)
- Artem A. Astafev
- Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, OH 44115, USA
- Department of Biological Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Volha Mezhnina
- Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, OH 44115, USA
- Department of Biological Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Allan Poe
- Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, OH 44115, USA
- Department of Biological Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Peng Jiang
- Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, OH 44115, USA
- Department of Biological Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
- Center for Applied Data Analysis and Modeling (ADAM), Cleveland State University, Cleveland, OH 44115, USA
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Roman V. Kondratov
- Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, OH 44115, USA
- Department of Biological Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| |
Collapse
|
4
|
Zeng J, Gao W, Tang Y, Wang Y, Liu X, Yin J, Su X, Zhang M, Kang E, Tian Y, Ni B, He W. Hypoxia-sensitive cells trigger NK cell activation via the KLF4-ASH1L-ICAM-1 axis, contributing to impairment in the rat epididymis. Cell Rep 2023; 42:113442. [PMID: 37952156 DOI: 10.1016/j.celrep.2023.113442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 08/31/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023] Open
Abstract
Male infertility is a global health problem especially prevalent in high-altitude regions. The epididymis is essential for sperm maturation, but the influence of environmental cues on its reshaping remains poorly understood. Here, we use single-cell transcriptomics to track the cellular profiles of epidydimal cells in rats raised under normoxia or extended hypoxia. The results show that hypoxia impairs epididymal function, evident in reduced epithelial cells, compromised blood-epididymis barrier integrity, and increased natural killer cells. Through combined analysis of gene-regulatory networks and cell-cell interaction maps, we identify epididymal hypoxia-sensitive cells that communicate with natural killer (NK) cells via increased intercellular adhesion molecule 1 (ICAM-1) driven by KLF4 recruitment of the histone methyltransferase ASL1L to the Icam1 promoter. Taken together, our study offers a detailed blueprint of epididymal changes during hypoxia and defines a KLF4-ALSH1L-ICAM-1 axis contributing to NK cell activation, yielding a potential treatment targeting hypoxia-induced infertility.
Collapse
Affiliation(s)
- Jitao Zeng
- Reproductive Medical Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Weiwu Gao
- Institute of Immunology, People's Liberation Army (PLA), and Department of Immunology, College of Basic Medicine, Army Medical University, Chongqing, China
| | - Ying Tang
- Reproductive Medical Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Ying Wang
- Reproductive Medical Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xiaona Liu
- Reproductive Medical Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jun Yin
- Department of Pathophysiology, College of High-Altitude Military Medicine, Army Medical University, Chongqing, China
| | - Xingxing Su
- Hepatological Surgery Department, Southwest Hospital, Army Medical University, Chongqing, China
| | - Mengjie Zhang
- Department of Pathophysiology, College of High-Altitude Military Medicine, Army Medical University, Chongqing, China
| | - Enchuan Kang
- Reproductive Medical Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yi Tian
- Institute of Immunology, People's Liberation Army (PLA), and Department of Immunology, College of Basic Medicine, Army Medical University, Chongqing, China
| | - Bing Ni
- Department of Pathophysiology, College of High-Altitude Military Medicine, Army Medical University, Chongqing, China
| | - Wei He
- Reproductive Medical Center, Southwest Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
5
|
Cheon S, Culver AM, Bagnell AM, Ritchie FD, Vacharasin JM, McCord MM, Papendorp CM, Chukwurah E, Smith AJ, Cowen MH, Moreland TA, Ghate PS, Davis SW, Liu JS, Lizarraga SB. Counteracting epigenetic mechanisms regulate the structural development of neuronal circuitry in human neurons. Mol Psychiatry 2022; 27:2291-2303. [PMID: 35210569 PMCID: PMC9133078 DOI: 10.1038/s41380-022-01474-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/02/2022] [Indexed: 01/23/2023]
Abstract
Autism spectrum disorders (ASD) are associated with defects in neuronal connectivity and are highly heritable. Genetic findings suggest that there is an overrepresentation of chromatin regulatory genes among the genes associated with ASD. ASH1 like histone lysine methyltransferase (ASH1L) was identified as a major risk factor for ASD. ASH1L methylates Histone H3 on Lysine 36, which is proposed to result primarily in transcriptional activation. However, how mutations in ASH1L lead to deficits in neuronal connectivity associated with ASD pathogenesis is not known. We report that ASH1L regulates neuronal morphogenesis by counteracting the catalytic activity of Polycomb Repressive complex 2 group (PRC2) in stem cell-derived human neurons. Depletion of ASH1L decreases neurite outgrowth and decreases expression of the gene encoding the neurotrophin receptor TrkB whose signaling pathway is linked to neuronal morphogenesis. The neuronal morphogenesis defect is overcome by inhibition of PRC2 activity, indicating that a balance between the Trithorax group protein ASH1L and PRC2 activity determines neuronal morphology. Thus, our work suggests that ASH1L may epigenetically regulate neuronal morphogenesis by modulating pathways like the BDNF-TrkB signaling pathway. Defects in neuronal morphogenesis could potentially impair the establishment of neuronal connections which could contribute to the neurodevelopmental pathogenesis associated with ASD in patients with ASH1L mutations.
Collapse
Affiliation(s)
- Seonhye Cheon
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Allison M Culver
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Anna M Bagnell
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Foster D Ritchie
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Janay M Vacharasin
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Mikayla M McCord
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Carin M Papendorp
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Evelyn Chukwurah
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Austin J Smith
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Mara H Cowen
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Trevor A Moreland
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Pankaj S Ghate
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Shannon W Davis
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Judy S Liu
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI, USA
- Department of Neurology, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Sofia B Lizarraga
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
6
|
Deficiency of autism risk factor ASH1L in prefrontal cortex induces epigenetic aberrations and seizures. Nat Commun 2021; 12:6589. [PMID: 34782621 PMCID: PMC8593046 DOI: 10.1038/s41467-021-26972-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/29/2021] [Indexed: 12/30/2022] Open
Abstract
ASH1L, a histone methyltransferase, is identified as a top-ranking risk factor for autism spectrum disorder (ASD), however, little is known about the biological mechanisms underlying the link of ASH1L haploinsufficiency to ASD. Here we show that ASH1L expression and H3K4me3 level are significantly decreased in the prefrontal cortex (PFC) of postmortem tissues from ASD patients. Knockdown of Ash1L in PFC of juvenile mice induces the downregulation of risk genes associated with ASD, intellectual disability (ID) and epilepsy. These downregulated genes are enriched in excitatory and inhibitory synaptic function and have decreased H3K4me3 occupancy at their promoters. Furthermore, Ash1L deficiency in PFC causes the diminished GABAergic inhibition, enhanced glutamatergic transmission, and elevated PFC pyramidal neuronal excitability, which is associated with severe seizures and early mortality. Chemogenetic inhibition of PFC pyramidal neuronal activity, combined with the administration of GABA enhancer diazepam, rescues PFC synaptic imbalance and seizures, but not autistic social deficits or anxiety-like behaviors. These results have revealed the critical role of ASH1L in regulating synaptic gene expression and seizures, which provides insights into treatment strategies for ASH1L-associated brain diseases.
Collapse
|
7
|
Zhang C, Xu L, Zheng X, Liu S, Che F. Role of Ash1l in Tourette syndrome and other neurodevelopmental disorders. Dev Neurobiol 2021; 81:79-91. [PMID: 33258273 PMCID: PMC8048680 DOI: 10.1002/dneu.22795] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023]
Abstract
Ash1l potentially contributes to neurodevelopmental diseases. Although specific Ash1l mutations are rare, they have led to informative studies in animal models that may bring therapeutic advances. Ash1l is highly expressed in the brain and correlates with the neuropathology of Tourette syndrome (TS), autism spectrum disorder, and intellectual disability during development, implicating shared epigenetic factors and overlapping neuropathological mechanisms. Functional convergence of Ash1l generated several significant signaling pathways: chromatin remodeling and transcriptional regulation, protein synthesis and cellular metabolism, and synapse development and function. Here, we systematically review the literature on Ash1l, including its discovery, expression, function, regulation, implication in the nervous system, signaling pathway, mutations, and putative involvement in TS and other neurodevelopmental traits. Such findings highlight Ash1l pleiotropy and the necessity of transcending a single gene to complicated mechanisms of network convergence underlying these diseases. With the progress in functional genomic analysis (highlighted in this review), and although the importance and necessity of Ash1l becomes increasingly apparent in the medical field, further research is required to discover the precise function and molecular regulatory mechanisms related to Ash1l. Thus, a new perspective is proposed for basic scientific research and clinical interventions for cross-disorder diseases.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of NeurologyThe Eleventh Clinical Medical College of Qingdao University, Linyi People's HospitalLinyiChina
| | - Lulu Xu
- Department of Geriatric MedicineThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Xueping Zheng
- Department of Geriatric MedicineThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Shiguo Liu
- Medical Genetic DepartmentThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Fengyuan Che
- Department of NeurologyThe Eleventh Clinical Medical College of Qingdao University, Linyi People's HospitalLinyiChina
| |
Collapse
|