1
|
D'Amico RN, Boehr DD. Allostery, engineering and inhibition of tryptophan synthase. Curr Opin Struct Biol 2023; 82:102657. [PMID: 37467527 DOI: 10.1016/j.sbi.2023.102657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023]
Abstract
The final two steps of tryptophan biosynthesis are catalyzed by the enzyme tryptophan synthase (TS), composed of alpha (αTS) and beta (βTS) subunits. Recently, experimental and computational methods have mapped "allosteric networks" that connect the αTS and βTS active sites. In αTS, allosteric networks change across the catalytic cycle, which might help drive the conformational changes associated with its function. Directed evolution studies to increase catalytic function and expand the substrate profile of stand-alone βTS have also revealed the importance of αTS in modulating the conformational changes in βTS. These studies also serve as a foundation for the development of TS inhibitors, which can find utility against Mycobacterium tuberculosis and other bacterial pathogens.
Collapse
Affiliation(s)
- Rebecca N D'Amico
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA, 16802
| | - David D Boehr
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA, 16802.
| |
Collapse
|
2
|
Ghosh RK, Hilario E, Chang CEA, Mueller LJ, Dunn MF. Allosteric regulation of substrate channeling: Salmonella typhimurium tryptophan synthase. Front Mol Biosci 2022; 9:923042. [PMID: 36172042 PMCID: PMC9512447 DOI: 10.3389/fmolb.2022.923042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
The regulation of the synthesis of L-tryptophan (L-Trp) in enteric bacteria begins at the level of gene expression where the cellular concentration of L-Trp tightly controls expression of the five enzymes of the Trp operon responsible for the synthesis of L-Trp. Two of these enzymes, trpA and trpB, form an αββα bienzyme complex, designated as tryptophan synthase (TS). TS carries out the last two enzymatic processes comprising the synthesis of L-Trp. The TS α-subunits catalyze the cleavage of 3-indole D-glyceraldehyde 3′-phosphate to indole and D-glyceraldehyde 3-phosphate; the pyridoxal phosphate-requiring β-subunits catalyze a nine-step reaction sequence to replace the L-Ser hydroxyl by indole giving L-Trp and a water molecule. Within αβ dimeric units of the αββα bienzyme complex, the common intermediate indole is channeled from the α site to the β site via an interconnecting 25 Å-long tunnel. The TS system provides an unusual example of allosteric control wherein the structures of the nine different covalent intermediates along the β-reaction catalytic path and substrate binding to the α-site provide the allosteric triggers for switching the αββα system between the open (T) and closed (R) allosteric states. This triggering provides a linkage that couples the allosteric conformational coordinate to the covalent chemical reaction coordinates at the α- and β-sites. This coupling drives the α- and β-sites between T and R conformations to achieve regulation of substrate binding and/or product release, modulation of the α- and β-site catalytic activities, prevention of indole escape from the confines of the active sites and the interconnecting tunnel, and synchronization of the α- and β-site catalytic activities. Here we review recent advances in the understanding of the relationships between structure, function, and allosteric regulation of the complex found in Salmonella typhimurium.
Collapse
Affiliation(s)
- Rittik K. Ghosh
- Department of Biochemistry, University of California, Riverside, Riverside, CA, United States
| | - Eduardo Hilario
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States
| | - Chia-en A. Chang
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States
| | - Leonard J. Mueller
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Leonard J. Mueller, ; Michael F. Dunn,
| | - Michael F. Dunn
- Department of Biochemistry, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Leonard J. Mueller, ; Michael F. Dunn,
| |
Collapse
|
3
|
Abstract
Regulatory processes in biology can be re-conceptualized in terms of logic gates, analogous to those in computer science. Frequently, biological systems need to respond to multiple, sometimes conflicting, inputs to provide the correct output. The language of logic gates can then be used to model complex signal transduction and metabolic processes. Advances in synthetic biology in turn can be used to construct new logic gates, which find a variety of biotechnology applications including in the production of high value chemicals, biosensing, and drug delivery. In this review, we focus on advances in the construction of logic gates that take advantage of biological catalysts, including both protein-based and nucleic acid-based enzymes. These catalyst-based biomolecular logic gates can read a variety of molecular inputs and provide chemical, optical, and electrical outputs, allowing them to interface with other types of biomolecular logic gates or even extend to inorganic systems. Continued advances in molecular modeling and engineering will facilitate the construction of new logic gates, further expanding the utility of biomolecular computing.
Collapse
|
4
|
Bosken YK, Ai R, Hilario E, Ghosh RK, Dunn MF, Kan S, Niks D, Zhou H, Ma W, Mueller LJ, Fan L, Chang CA. Discovery of antimicrobial agent targeting tryptophan synthase. Protein Sci 2022; 31:432-442. [PMID: 34767267 PMCID: PMC8820114 DOI: 10.1002/pro.4236] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/27/2021] [Accepted: 11/09/2021] [Indexed: 02/03/2023]
Abstract
Antibiotic resistance is a continually growing challenge in the treatment of various bacterial infections worldwide. New drugs and new drug targets are necessary to curb the threat of infectious diseases caused by multidrug-resistant pathogens. The tryptophan biosynthesis pathway is essential for bacterial growth but is absent in higher animals and humans. Drugs that can inhibit the bacterial biosynthesis of tryptophan offer a new class of antibiotics. In this work, we combined a structure-based strategy using in silico docking screening and molecular dynamics (MD) simulations to identify compounds targeting the α subunit of tryptophan synthase with experimental methods involving the whole-cell minimum inhibitory concentration (MIC) test, solution state NMR, and crystallography to confirm the inhibition of L-tryptophan biosynthesis. Screening 1,800 compounds from the National Cancer Institute Diversity Set I against α subunit revealed 28 compounds for experimental validation; four of the 28 hit compounds showed promising activity in MIC testing. We performed solution state NMR experiments to demonstrate that a one successful inhibitor, 3-amino-3-imino-2-phenyldiazenylpropanamide (Compound 1) binds to the α subunit. We also report a crystal structure of Salmonella enterica serotype Typhimurium tryptophan synthase in complex with Compound 1 which revealed a binding site at the αβ interface of the dimeric enzyme. MD simulations were carried out to examine two binding sites for the compound. Our results show that this small molecule inhibitor could be a promising lead for future drug development.
Collapse
Affiliation(s)
- Yuliana K. Bosken
- Department of ChemistryUniversity of California at RiversideRiversideCalifornia
| | - Rizi Ai
- Department of ChemistryUniversity of California at RiversideRiversideCalifornia
| | - Eduardo Hilario
- Department of ChemistryUniversity of California at RiversideRiversideCalifornia
| | - Rittik K. Ghosh
- Department of BiochemistryUniversity of California at RiversideRiversideCalifornia
| | - Michael F. Dunn
- Department of BiochemistryUniversity of California at RiversideRiversideCalifornia
| | - Shih‐Hsin Kan
- Department of ChemistryUniversity of California at RiversideRiversideCalifornia,Present address:
CHOC Research InstituteOrangeCalifornia
| | - Dimitri Niks
- Department of BiochemistryUniversity of California at RiversideRiversideCalifornia
| | - Huanbin Zhou
- Department of Microbiology and Plant PathologyUniversity of California at RiversideRiversideCalifornia,Present address:
Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Wenbo Ma
- Department of Microbiology and Plant PathologyUniversity of California at RiversideRiversideCalifornia,Present address:
The Sainsbury LaboratoryNorwich Research ParkNorwichUK
| | - Leonard J. Mueller
- Department of ChemistryUniversity of California at RiversideRiversideCalifornia
| | - Li Fan
- Department of BiochemistryUniversity of California at RiversideRiversideCalifornia
| | - Chia‐En A. Chang
- Department of ChemistryUniversity of California at RiversideRiversideCalifornia
| |
Collapse
|
5
|
D'Amico RN, Bosken YK, O'Rourke KF, Murray AM, Admasu W, Chang CEA, Boehr DD. Substitution of a Surface-Exposed Residue Involved in an Allosteric Network Enhances Tryptophan Synthase Function in Cells. Front Mol Biosci 2021; 8:679915. [PMID: 34124159 PMCID: PMC8187860 DOI: 10.3389/fmolb.2021.679915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/11/2021] [Indexed: 11/13/2022] Open
Abstract
Networks of noncovalent amino acid interactions propagate allosteric signals throughout proteins. Tryptophan synthase (TS) is an allosterically controlled bienzyme in which the indole product of the alpha subunit (αTS) is transferred through a 25 Å hydrophobic tunnel to the active site of the beta subunit (βTS). Previous nuclear magnetic resonance and molecular dynamics simulations identified allosteric networks in αTS important for its function. We show here that substitution of a distant, surface-exposed network residue in αTS enhances tryptophan production, not by activating αTS function, but through dynamically controlling the opening of the indole channel and stimulating βTS activity. While stimulation is modest, the substitution also enhances cell growth in a tryptophan-auxotrophic strain of Escherichia coli compared to complementation with wild-type αTS, emphasizing the biological importance of the network. Surface-exposed networks provide new opportunities in allosteric drug design and protein engineering, and hint at potential information conduits through which the functions of a metabolon or even larger proteome might be coordinated and regulated.
Collapse
Affiliation(s)
- Rebecca N D'Amico
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| | - Yuliana K Bosken
- Department of Chemistry, The University of California Riverside, Riverside, CA, United States
| | - Kathleen F O'Rourke
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| | - Alec M Murray
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| | - Woudasie Admasu
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| | - Chia-En A Chang
- Department of Chemistry, The University of California Riverside, Riverside, CA, United States
| | - David D Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
6
|
O'Rourke KF, D'Amico RN, Sahu D, Boehr DD. Distinct conformational dynamics and allosteric networks in alpha tryptophan synthase during active catalysis. Protein Sci 2020; 30:543-557. [PMID: 33314435 DOI: 10.1002/pro.4011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/21/2020] [Accepted: 12/06/2020] [Indexed: 12/13/2022]
Abstract
Experimental observations of enzymes under active turnover conditions have brought new insight into the role of protein motions and allosteric networks in catalysis. Many of these studies characterize enzymes under dynamic chemical equilibrium conditions, in which the enzyme is actively catalyzing both the forward and reverse reactions during data acquisition. We have previously analyzed conformational dynamics and allosteric networks of the alpha subunit of tryptophan synthase under such conditions using NMR. We have proposed that this working state represents a four to one ratio of the enzyme bound with the indole-3-glycerol phosphate substrate (E:IGP) to the enzyme bound with the products indole and glyceraldehyde-3-phosphate (E:indole:G3P). Here, we analyze the inactive D60N variant to deconvolute the contributions of the substrate- and products-bound states to the working state. While the D60N substitution itself induces small structural and dynamic changes, the D60N E:IGP and E:indole:G3P states cannot entirely account for the conformational dynamics and allosteric networks present in the working state. The act of chemical bond breakage and/or formation, or possibly the generation of an intermediate, may alter the structure and dynamics present in the working state. As the enzyme transitions from the substrate-bound to the products-bound state, millisecond conformational exchange processes are quenched and new allosteric connections are made between the alpha active site and the surface which interfaces with the beta subunit. The structural ordering of the enzyme and these new allosteric connections may be important in coordinating the channeling of the indole product into the beta subunit.
Collapse
Affiliation(s)
- Kathleen F O'Rourke
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Rebecca N D'Amico
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Debashish Sahu
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - David D Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
7
|
D'Amico RN, Murray AM, Boehr DD. Driving Protein Conformational Cycles in Physiology and Disease: "Frustrated" Amino Acid Interaction Networks Define Dynamic Energy Landscapes: Amino Acid Interaction Networks Change Progressively Along Alpha Tryptophan Synthase's Catalytic Cycle. Bioessays 2020; 42:e2000092. [PMID: 32720327 DOI: 10.1002/bies.202000092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/09/2020] [Indexed: 12/22/2022]
Abstract
A general framework by which dynamic interactions within a protein will promote the necessary series of structural changes, or "conformational cycle," required for function is proposed. It is suggested that the free-energy landscape of a protein is biased toward this conformational cycle. Fluctuations into higher energy, although thermally accessible, conformations drive the conformational cycle forward. The amino acid interaction network is defined as those intraprotein interactions that contribute most to the free-energy landscape. Some network connections are consistent in every structural state, while others periodically change their interaction strength according to the conformational cycle. It is reviewed here that structural transitions change these periodic network connections, which then predisposes the protein toward the next set of network changes, and hence the next structural change. These concepts are illustrated by recent work on tryptophan synthase. Disruption of these dynamic connections may lead to aberrant protein function and disease states.
Collapse
Affiliation(s)
- Rebecca N D'Amico
- Department of Chemistry, The Pennsylvania State University, 107 Chemistry Building, University Park, PA, 16802, USA
| | - Alec M Murray
- Department of Chemistry, The Pennsylvania State University, 107 Chemistry Building, University Park, PA, 16802, USA
| | - David D Boehr
- Department of Chemistry, The Pennsylvania State University, 107 Chemistry Building, University Park, PA, 16802, USA
| |
Collapse
|
8
|
Leitner DM, Hyeon C, Reid KM. Water-mediated biomolecular dynamics and allostery. J Chem Phys 2020; 152:240901. [DOI: 10.1063/5.0011392] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- David M. Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA
| | - Changbong Hyeon
- Korea Institute for Advanced Study, Seoul 02455, South Korea
| | - Korey M. Reid
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA
| |
Collapse
|