1
|
Zhang L, Feng T, Liu Q, Zuo C, Wu Y, Zhao H, Yu H, Bai D, Han X, Yin N, Pu J, Yang Y, Li J, Guo J, Deng S, Xie G. Engineering thermostable fluorescent DNA aptamer for the isothermal amplification of nucleic acids. Biosens Bioelectron 2025; 273:117183. [PMID: 39862676 DOI: 10.1016/j.bios.2025.117183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/07/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
Isothermal amplification-based nucleic acid detection technologies have become rapid and efficient tools for molecular diagnostics. Sequence-specific monitoring methods are crucial for isothermal amplification, as they help identify the occurrence of extended primer dimers, which can lead to false positive results. Fluorescent aptamers are promising tools for real-time monitoring of isothermal amplification but are inherently limited by thermostability. Here, we report an engineered fluorescent DNA aptamer variant, named thermostable Lettuce (TS-Lettuce), with a 5 °C higher melting temperature and 20 times greater fluorescence at 60 °C, ideal for real-time monitoring of sequence-specific isothermal amplification. Using molecular dynamics simulations for structural analyses, we introduced mutations to wild-type Lettuce to redesign the non-core sequences of the aptamer structure for tightly stabilizing its folding, thereby enhancing thermostability. The TS-Lettuce offers greater versatility and ease of design for coupling with isothermal amplification for all-in-one nucleic acid detection. We demonstrated three applications of TS-Lettuce in isothermal amplification: fluorescent turn-off, fluorescent turn-on, and fluorescent aptamer switch, facilitating the sequence-specific detection of nucleic acids. In addition, the results generated by TS-Lettuce are visible to the naked eye, enhancing the utility of isothermal amplification reactions in resource-constrained areas. The thermostable fluorescent DNA aptamers can be further utilized in more isothermal amplification methods.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Tong Feng
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Qian Liu
- Nuclear Medicine Department, The Second Affiliated Hospital of Chongqing Medical University, Linjiang Road, Chongqing, China
| | - Chen Zuo
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yongchang Wu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China; Department of Respiratory Medicine, The Peoples Hospital of Rongchang District, Chongqing, China
| | - Huaixin Zhao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Hongyan Yu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Dan Bai
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xiaole Han
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Na Yin
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jiu Pu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yujun Yang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Junjie Li
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jinhong Guo
- School of Sensing Science and Technology, Shanghai Jiao Tong University, Dongchuan Road, Shanghai, China.
| | - Shixiong Deng
- Department of Forensic Medicine, Chongqing Medical University, Chongqing, China.
| | - Guoming Xie
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Wang Z, Ferreira Rodrigues C, Jurt S, Domínguez-Martín A, Johannsen S, Sigel RKO. Elucidating the solution structure of the monomolecular BCL2 RNA G-quadruplex: a new robust NMR assignment approach. Chem Sci 2025:d5sc01416f. [PMID: 40181818 PMCID: PMC11962745 DOI: 10.1039/d5sc01416f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025] Open
Abstract
5' untranslated regions (UTRs) of mRNA commonly feature G-quadruplexes (G4s), crucial for translational regulation and promising as drug targets to modulate gene expression. While NMR spectroscopy is well-suited for studying these motifs' structure and dynamics, their guanine-rich nature complicates resonance assignment due to high signal overlap. Exploiting the inherent rigidity of G4 cores, we developed a universally applicable assignment strategy for uniformly isotopically enriched G4 structures, relying solely on through-bond correlations to establish the G-tetrads. Applying this approach, we resolved the solution structures of two triple mutants of the RNA G4 in the 5' UTR of the human BCL2 proto-oncogene, one of the first natural monomolecular RNA G4 structures available to date. Comparative analysis with other RNA and DNA G4s reveals their notably compact and well-defined cores. Moreover, the sugar pucker geometries of the tetrad guanines are far less stringent than previously assumed, adeptly accommodating specific structural features. This contrasts with the canonical base pairing in RNA and DNA, in which the sugar pucker dictates the type of the double-helical structure. The strategy presented provides a direct path to uncovering G4 structural intricacies, advancing our grasp of their biological roles, and paving the way for RNA-targeted therapeutics.
Collapse
Affiliation(s)
- Zenghui Wang
- Department of Chemistry, University of Zürich 8057 Zürich Switzerland
| | | | - Simon Jurt
- Department of Chemistry, University of Zürich 8057 Zürich Switzerland
| | - Alicia Domínguez-Martín
- Department of Inorganic Chemistry, Faculty of Pharmacy, University of Granada 18071 Granada Spain
| | - Silke Johannsen
- Department of Chemistry, University of Zürich 8057 Zürich Switzerland
| | - Roland K O Sigel
- Department of Chemistry, University of Zürich 8057 Zürich Switzerland
| |
Collapse
|
3
|
Ito K, Tayama T, Uemura S, Iizuka R. Isolation of novel fluorogenic RNA aptamers via in vitro compartmentalization using microbead-display libraries. Talanta 2024; 278:126488. [PMID: 38955098 DOI: 10.1016/j.talanta.2024.126488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/12/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Fluorogenic RNA aptamers, which specifically bind to fluorogens and dramatically enhance their fluorescence, are valuable for imaging and detecting RNAs and metabolites in living cells. Most fluorogenic RNA aptamers have been identified and engineered through iterative rounds of in vitro selection based on their binding to target fluorogens. While such selection is an efficient approach for generating RNA aptamers, it is less efficient for isolating fluorogenic aptamers because it does not directly screen for fluorogenic properties. In this study, we combined a fluorescence-based in vitro selection technique using water-in-oil microdroplets with an affinity-based selection technique to obtain fluorogenic RNA aptamers. This approach allowed us to identify novel fluorogenic aptamers for a biotin-modified thiazole orange derivative. Our results demonstrate that our approach can expand the diversity of fluorogenic RNA aptamers, thus leading to new applications for the imaging and detection of biomolecules.
Collapse
Affiliation(s)
- Keisuke Ito
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tomotaka Tayama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Sotaro Uemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Chiyoda-ku, Tokyo, 102-0075, Japan.
| | - Ryo Iizuka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
4
|
Song Q, Tai X, Ren Q, Ren A. Structure-based insights into fluorogenic RNA aptamers. Acta Biochim Biophys Sin (Shanghai) 2024; 57:108-118. [PMID: 39148467 PMCID: PMC11802350 DOI: 10.3724/abbs.2024142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024] Open
Abstract
Fluorogenic RNA aptamers are in vitro-selected RNA molecules capable of binding to specific fluorophores, significantly increasing their intrinsic fluorescence. Over the past decade, the color palette of fluorescent RNA aptamers has greatly expanded. The emergence and development of these fluorogenic RNA aptamers has introduced a powerful approach for visualizing RNA localization and transport with high spatiotemporal resolution in live cells. To date, a variety of tertiary structures of fluorogenic RNA aptamers have been determined using X-ray crystallography or NMR spectroscopy. Many of these fluorogenic RNA aptamers feature base quadruples or base triples in their fluorophore-binding sites. This review summarizes the structure-based investigations of fluorogenic RNA aptamers, with a focus on their overall folds, ligand-binding pockets and fluorescence activation mechanisms. Additionally, the exploration of how structures guide rational optimization to enhance RNA visualization techniques is discussed.
Collapse
Affiliation(s)
- Qianqian Song
- Life Sciences InstituteSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhou310058China
| | - Xiaoqing Tai
- Life Sciences InstituteSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhou310058China
| | - Qianyu Ren
- Agricultural CollegeYangzhou UniversityYangzhou225009China
| | - Aiming Ren
- Life Sciences InstituteSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhou310058China
| |
Collapse
|
5
|
Lu X, Passalacqua LFM, Nodwell M, Kong KYS, Caballero-García G, Dolgosheina EV, Ferré-D'Amaré AR, Britton R, Unrau PJ. Symmetry breaking of fluorophore binding to a G-quadruplex generates an RNA aptamer with picomolar KD. Nucleic Acids Res 2024; 52:8039-8051. [PMID: 38945550 DOI: 10.1093/nar/gkae493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/21/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024] Open
Abstract
Fluorogenic RNA aptamer tags with high affinity enable RNA purification and imaging. The G-quadruplex (G4) based Mango (M) series of aptamers were selected to bind a thiazole orange based (TO1-Biotin) ligand. Using a chemical biology and reselection approach, we have produced a MII.2 aptamer-ligand complex with a remarkable set of properties: Its unprecedented KD of 45 pM, formaldehyde resistance (8% v/v), temperature stability and ligand photo-recycling properties are all unusual to find simultaneously within a small RNA tag. Crystal structures demonstrate how MII.2, which differs from MII by a single A23U mutation, and modification of the TO1-Biotin ligand to TO1-6A-Biotin achieves these results. MII binds TO1-Biotin heterogeneously via a G4 surface that is surrounded by a stadium of five adenosines. Breaking this pseudo-rotational symmetry results in a highly cooperative and homogeneous ligand binding pocket: A22 of the G4 stadium stacks on the G4 binding surface while the TO1-6A-Biotin ligand completely fills the remaining three quadrants of the G4 ligand binding face. Similar optimization attempts with MIII.1, which already binds TO1-Biotin in a homogeneous manner, did not produce such marked improvements. We use the novel features of the MII.2 complex to demonstrate a powerful optically-based RNA purification system.
Collapse
Affiliation(s)
- Xiaocen Lu
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Luiz F M Passalacqua
- Laboratory of Nucleic Acids, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| | - Matthew Nodwell
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Kristen Y S Kong
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | | - Elena V Dolgosheina
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Adrian R Ferré-D'Amaré
- Laboratory of Nucleic Acids, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| | - Robert Britton
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Peter J Unrau
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
6
|
Schneekloth JS, Yang M, Prestwood P, Passalacqua L, Balaratnam S, Fullenkamp C, Arney W, Weeks KM, Ferre-D'Amare A. Structure-Informed Design of an Ultra Bright RNA-activated Fluorophore. RESEARCH SQUARE 2024:rs.3.rs-4750449. [PMID: 39149476 PMCID: PMC11326382 DOI: 10.21203/rs.3.rs-4750449/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Fluorogenic RNAs such as the Mango aptamers are uniquely powerful tools for imaging RNA. A central challenge has been to develop brighter, more specific, and higher affinity aptamer-ligand systems for cellular imaging. Here, we report an ultra-bright fluorophore for the Mango II system discovered using a structure-informed, fragment-based small molecule microarray approach. The new dye, Structure informed, Array-enabled LigAnD 1 (SALAD1) exhibits 3.5-fold brighter fluorescence than TO1-Biotin and subnanomolar aptamer affinity. Improved performance comes solely from alteration of dye-RNA interactions, without alteration of the chromophore itself. Multiple high-resolution structures reveal a unique and specific binding mode for the new dye resulting from improved pocket occupancy, a more defined binding pose, and a novel bonding interaction with potassium. The dye notably improves in-cell confocal RNA imaging. This work provides both introduces a new RNA-activated fluorophore and also a powerful demonstration of how to leverage fragment-based ligand discovery against RNA targets.
Collapse
|
7
|
Abdolahzadeh A, Ang QR, Caine JR, Panchapakesan SSS, Thio S, Cojocaru R, Unrau PJ. Turn-on RNA Mango Beacons for trans-acting fluorogenic nucleic acid detection. RNA (NEW YORK, N.Y.) 2024; 30:392-403. [PMID: 38282417 PMCID: PMC10946430 DOI: 10.1261/rna.079833.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024]
Abstract
The Mango I and II RNA aptamers have been widely used in vivo and in vitro as genetically encodable fluorogenic markers that undergo large increases in fluorescence upon binding to their ligand, TO1-Biotin. However, while studying nucleic acid sequences, it is often desirable to have trans-acting probes that induce fluorescence upon binding to a target sequence. Here, we rationally design three types of light-up RNA Mango Beacons based on a minimized Mango core that induces fluorescence upon binding to a target RNA strand. Our first design is bimolecular in nature and uses a DNA inhibition strand to prevent folding of the Mango aptamer core until binding to a target RNA. Our second design is unimolecular in nature, and features hybridization arms flanking the core that inhibit G-quadruplex folding until refolding is triggered by binding to a target RNA strand. Our third design builds upon this structure, and incorporates a self-inhibiting domain into one of the flanking arms that deliberately binds to, and precludes folding of, the aptamer core until a target is bound. This design separates G-quadruplex folding inhibition and RNA target hybridization into separate modules, enabling a more universal unimolecular beacon design. All three Mango Beacons feature high contrasts and low costs when compared to conventional molecular beacons, with excellent potential for in vitro and in vivo applications.
Collapse
Affiliation(s)
- Amir Abdolahzadeh
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Quiana R Ang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Jana R Caine
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| | | | - Shinta Thio
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Razvan Cojocaru
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Peter J Unrau
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| |
Collapse
|
8
|
Fischermeier D, Steinmetzger C, Höbartner C, Mitrić R. Conformational preferences of modified nucleobases in RNA aptamers and their effect on Förster resonant energy transfer. Phys Chem Chem Phys 2023; 26:241-248. [PMID: 38054366 DOI: 10.1039/d3cp04704k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Förster resonant energy transfer (FRET) can be utilized in the study of tertiary structures of RNA aptamers, which bind specific fluorophoric ligands to form a fluorogenic aptamer complex. By introducing the emissive nucleobase analog 4-cyanoindole into the fluorogenic Chili RNA aptamer a FRET pair was established. The interpretation of studies aiming to investigate those tertiary structures using FRET, however, relies on prior knowledge about conformational properties of the nucleobase, which govern exciton transfer capabilities. Herein we employed classical molecular dynamics combined with Förster exciton theory to elucidate the preferred orientation relative to proximate bases and the influence on exciton transfer efficiency in multiple substitution sites. We did this by comparing the chromophoric distances emergent from MD simulations with experimental FRET data based on structural data of the native aptamer. We present the outlined methodology as a means to reliably evaluate future nucleobase analogue candidates in terms of their structural behavior and emergent exciton transfer properties as exemplified in the study of the preferred orientation of 4-cyanoindole in the Chili RNA aptamer.
Collapse
Affiliation(s)
- David Fischermeier
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Christian Steinmetzger
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Claudia Höbartner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Roland Mitrić
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
9
|
Deng J, Fang X, Huang L, Li S, Xu L, Ye K, Zhang J, Zhang K, Zhang QC. RNA structure determination: From 2D to 3D. FUNDAMENTAL RESEARCH 2023; 3:727-737. [PMID: 38933295 PMCID: PMC11197651 DOI: 10.1016/j.fmre.2023.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2024] Open
Abstract
RNA molecules serve a wide range of functions that are closely linked to their structures. The basic structural units of RNA consist of single- and double-stranded regions. In order to carry out advanced functions such as catalysis and ligand binding, certain types of RNAs can adopt higher-order structures. The analysis of RNA structures has progressed alongside advancements in structural biology techniques, but it comes with its own set of challenges and corresponding solutions. In this review, we will discuss recent advances in RNA structure analysis techniques, including structural probing methods, X-ray crystallography, nuclear magnetic resonance, cryo-electron microscopy, and small-angle X-ray scattering. Often, a combination of multiple techniques is employed for the integrated analysis of RNA structures. We also survey important RNA structures that have been recently determined using various techniques.
Collapse
Affiliation(s)
- Jie Deng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xianyang Fang
- Beijing Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Shanshan Li
- MOE Key Laboratory for Cellular Dynamics and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Lilei Xu
- Beijing Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Keqiong Ye
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinsong Zhang
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Kaiming Zhang
- MOE Key Laboratory for Cellular Dynamics and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
10
|
Maloshenok LG, Abushinova GA, Ryazanova AY, Bruskin SA, Zherdeva VV. Visualizing the Nucleome Using the CRISPR–Cas9 System: From in vitro to in vivo. BIOCHEMISTRY (MOSCOW) 2023; 88:S123-S149. [PMID: 37069118 PMCID: PMC9940691 DOI: 10.1134/s0006297923140080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
One of the latest methods in modern molecular biology is labeling genomic loci in living cells using fluorescently labeled Cas protein. The NIH Foundation has made the mapping of the 4D nucleome (the three-dimensional nucleome on a timescale) a priority in the studies aimed to improve our understanding of chromatin organization. Fluorescent methods based on CRISPR-Cas are a significant step forward in visualization of genomic loci in living cells. This approach can be used for studying epigenetics, cell cycle, cellular response to external stimuli, rearrangements during malignant cell transformation, such as chromosomal translocations or damage, as well as for genome editing. In this review, we focused on the application of CRISPR-Cas fluorescence technologies as components of multimodal imaging methods for in vivo mapping of chromosomal loci, in particular, attribution of fluorescence signal to morphological and anatomical structures in a living organism. The review discusses the approaches to the highly sensitive, high-precision labeling of CRISPR-Cas components, delivery of genetically engineered constructs into cells and tissues, and promising methods for molecular imaging.
Collapse
Affiliation(s)
- Liliya G Maloshenok
- Bach Institute of Biochemistry, Federal Research Center for Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Gerel A Abushinova
- Bach Institute of Biochemistry, Federal Research Center for Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alexandra Yu Ryazanova
- Bach Institute of Biochemistry, Federal Research Center for Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Sergey A Bruskin
- Bach Institute of Biochemistry, Federal Research Center for Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Victoria V Zherdeva
- Bach Institute of Biochemistry, Federal Research Center for Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
11
|
Rees HC, Gogacz W, Li NS, Koirala D, Piccirilli JA. Structural Basis for Fluorescence Activation by Pepper RNA. ACS Chem Biol 2022; 17:1866-1875. [PMID: 35759696 PMCID: PMC9969808 DOI: 10.1021/acschembio.2c00290] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pepper is a fluorogenic RNA aptamer tag that binds to a variety of benzylidene-cyanophenyl (HBC) derivatives with tight affinity and activates their fluorescence. To investigate how Pepper RNA folds to create a binding site for HBC, we used antibody-assisted crystallography to determine the structures of Pepper bound to HBC530 and HBC599 to 2.3 and 2.7 Å resolutions, respectively. The structural data show that Pepper folds into an elongated structure and organizes nucleotides within an internal bulge to create the ligand binding site, assisted by an out-of-plane platform created by tertiary interactions with an adjacent bulge. As predicted from a lack of K+ dependence, Pepper does not use a G-quadruplex to form a binding pocket for HBC. Instead, Pepper uses a unique base-quadruple·base-triple stack to sandwich the ligand with a U·G wobble pair. Site-bound Mg2+ ions support ligand binding structurally and energetically. This research provides insight into the structural features that allow the Pepper aptamer to bind HBC and show how Pepper's function may expand to allow the in vivo detection of other small molecules and metals.
Collapse
Affiliation(s)
- Huw C. Rees
- Department of Chemistry, University of Chicago, Chicago, Illinois, 60637, United States
| | - Wojciech Gogacz
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, 60637, United States
| | - Nan-Sheng Li
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, 60637, United States
| | - Deepak Koirala
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, 60637, United States
| | - Joseph A. Piccirilli
- Department of Chemistry, University of Chicago, Chicago, Illinois, 60637, United States,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, 60637, United States,corresponding author
| |
Collapse
|
12
|
Chandris P, Giannouli CC, Panayotou G. Imaging Approaches for the Study of Metabolism in Real Time Using Genetically Encoded Reporters. Front Cell Dev Biol 2022; 9:725114. [PMID: 35118062 PMCID: PMC8804523 DOI: 10.3389/fcell.2021.725114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022] Open
Abstract
Metabolism comprises of two axes in order to serve homeostasis: anabolism and catabolism. Both axes are interbranched with the so-called bioenergetics aspect of metabolism. There is a plethora of analytical biochemical methods to monitor metabolites and reactions in lysates, yet there is a rising need to monitor, quantify and elucidate in real time the spatiotemporal orchestration of complex biochemical reactions in living systems and furthermore to analyze the metabolic effect of chemical compounds that are destined for the clinic. The ongoing technological burst in the field of imaging creates opportunities to establish new tools that will allow investigators to monitor dynamics of biochemical reactions and kinetics of metabolites at a resolution that ranges from subcellular organelle to whole system for some key metabolites. This article provides a mini review of available toolkits to achieve this goal but also presents a perspective on the open space that can be exploited to develop novel methodologies that will merge classic biochemistry of metabolism with advanced imaging. In other words, a perspective of "watching metabolism in real time."
Collapse
Affiliation(s)
- Panagiotis Chandris
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, Vari, Greece
| | | | - George Panayotou
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, Vari, Greece
| |
Collapse
|
13
|
Trachman RJ, Ferré-D'Amaré AR. An uncommon [K +(Mg 2+) 2] metal ion triad imparts stability and selectivity to the Guanidine-I riboswitch. RNA (NEW YORK, N.Y.) 2021; 27:1257-1264. [PMID: 34257148 PMCID: PMC8457001 DOI: 10.1261/rna.078824.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
The widespread ykkC-I riboswitch class exemplifies divergent riboswitch evolution. To analyze how natural selection has diversified its versatile RNA fold, we determined the X-ray crystal structure of the Burkholderia sp. TJI49 ykkC-I subtype-1 (Guanidine-I) riboswitch aptamer domain. Differing from the previously reported structures of orthologs from Dickeya dadantii and Sulfobacillus acidophilus, our Burkholderia structure reveals a chelated K+ ion adjacent to two Mg2+ ions in the guanidine-binding pocket. Thermal melting analysis shows that K+ chelation, which induces localized conformational changes in the binding pocket, improves guanidinium-RNA interactions. Analysis of ribosome structures suggests that the [K+(Mg2+)2] ion triad is uncommon. It is, however, reminiscent of metal ion clusters found in the active sites of ribozymes and DNA polymerases. Previous structural characterization of ykkC-I subtype-2 RNAs, which bind the effector ligands ppGpp and PRPP, indicate that in those paralogs, an adenine responsible for K+ chelation in the Burkholderia Guanidine-I riboswitch is replaced by a pyrimidine. This mutation results in a water molecule and Mg2+ ion binding in place of the K+ ion. Thus, our structural analysis demonstrates how ion and solvent chelation tune divergent ligand specificity and affinity among ykkC-I riboswitches.
Collapse
Affiliation(s)
- Robert J Trachman
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892-8012, USA
| | - Adrian R Ferré-D'Amaré
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892-8012, USA
| |
Collapse
|
14
|
Daems E, Moro G, Campos R, De Wael K. Mapping the gaps in chemical analysis for the characterisation of aptamer-target interactions. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Abstract
Technologies for RNA imaging in live cells play an important role in understanding the function and regulatory process of RNAs. One approach for genetically encoded fluorescent RNA imaging involves fluorescent light-up aptamers (FLAPs), which are short RNA sequences that can bind cognate fluorogens and activate their fluorescence greatly. Over the past few years, FLAPs have emerged as genetically encoded RNA-based fluorescent biosensors for the cellular imaging and detection of various targets of interest. In this review, we first give a brief overview of the development of the current FLAPs based on various fluorogens. Then we further discuss on the photocycles of the reversibly photoswitching properties in FLAPs and their photostability. Finally, we focus on the applications of FLAPs as genetically encoded RNA-based fluorescent biosensors in biosensing and bioimaging, including RNA, non-nucleic acid molecules, metal ions imaging and quantitative imaging. Their design strategies and recent cellular applications are emphasized and summarized in detail.
Collapse
Affiliation(s)
- Huangmei Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, China.,NYU-ECNU Institute of Physics at NYU Shanghai, Shanghai, China
| |
Collapse
|
16
|
Jeng SCY, Trachman RJ, Weissenboeck F, Truong L, Link KA, Jepsen MDE, Knutson JR, Andersen ES, Ferré-D'Amaré AR, Unrau PJ. Fluorogenic aptamers resolve the flexibility of RNA junctions using orientation-dependent FRET. RNA (NEW YORK, N.Y.) 2021; 27:433-444. [PMID: 33376189 PMCID: PMC7962493 DOI: 10.1261/rna.078220.120] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/20/2020] [Indexed: 05/26/2023]
Abstract
To further understand the transcriptome, new tools capable of measuring folding, interactions, and localization of RNA are needed. Although Förster resonance energy transfer (FRET) is an angle- and distance-dependent phenomenon, the majority of FRET measurements have been used to report distances, by assuming rotationally averaged donor-acceptor pairs. Angle-dependent FRET measurements have proven challenging for nucleic acids due to the difficulties in incorporating fluorophores rigidly into local substructures in a biocompatible manner. Fluorescence turn-on RNA aptamers are genetically encodable tags that appear to rigidly confine their cognate fluorophores, and thus have the potential to report angular-resolved FRET. Here, we use the fluorescent aptamers Broccoli and Mango-III as donor and acceptor, respectively, to measure the angular dependence of FRET. Joining the two fluorescent aptamers by a helix of variable length allowed systematic rotation of the acceptor fluorophore relative to the donor. FRET oscillated in a sinusoidal manner as a function of helix length, consistent with simulated data generated from models of oriented fluorophores separated by an inflexible helix. Analysis of the orientation dependence of FRET allowed us to demonstrate structural rigidification of the NiCo riboswitch upon transition metal-ion binding. This application of fluorescence turn-on aptamers opens the way to improved structural interpretation of ensemble and single-molecule FRET measurements of RNA.
Collapse
Affiliation(s)
- Sunny C Y Jeng
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Robert J Trachman
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892-8012, USA
| | - Florian Weissenboeck
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Lynda Truong
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892-8012, USA
| | - Katie A Link
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892-8012, USA
| | - Mette D E Jepsen
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
| | - Jay R Knutson
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892-8012, USA
| | - Ebbe S Andersen
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
| | - Adrian R Ferré-D'Amaré
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892-8012, USA
| | - Peter J Unrau
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| |
Collapse
|
17
|
Abstract
G-quadruplexes (G4s) are four-stranded nucleic acid structures that arise from the stacking of G-quartets, cyclic arrangements of four guanines engaged in Hoogsteen base-pairing. Until recently, most RNA G4 structures were thought to conform to a sequence pattern in which guanines stacking within the G4 would also be contiguous in sequence (e.g., four successive guanine trinucleotide tracts separated by loop nucleotides). Such a sequence restriction, and the stereochemical constraints inherent to RNA (arising, in particular, from the presence of the 2'-OH), dictate relatively simple RNA G4 structures. Recent crystallographic and solution NMR structure determinations of a number of in vitro selected RNA aptamers have revealed RNA G4 structures of unprecedented complexity. Structures of the Sc1 aptamer that binds an RGG peptide from the Fragile-X mental retardation protein, various fluorescence turn-on aptamers (Corn, Mango, and Spinach), and the spiegelmer that binds the complement protein C5a, in particular, reveal complexity hitherto unsuspected in RNA G4s, including nucleotides in syn conformation, locally inverted strand polarity, and nucleotide quartets that are not all-G. Common to these new structures, the sequences folding into G4s do not conform to the requirement that guanine stacks arise from consecutive (contiguous in sequence) nucleotides. This review highlights how emancipation from this constraint drastically expands the structural possibilities of RNA G-quadruplexes.
Collapse
Affiliation(s)
- Michael T Banco
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892-8012, USA
| | - Adrian R Ferré-D'Amaré
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892-8012, USA
| |
Collapse
|
18
|
Kong KYS, Jeng SCY, Rayyan B, Unrau PJ. RNA Peach and Mango: Orthogonal two-color fluorogenic aptamers distinguish nearly identical ligands. RNA (NEW YORK, N.Y.) 2021; 27:rna.078493.120. [PMID: 33674421 PMCID: PMC8051271 DOI: 10.1261/rna.078493.120] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Two-channel fluorogenic RNA aptamer-based imaging is currently challenging. While we have previously characterized the Mango series of aptamers that bind tightly and specifically to the green fluorophore TO1-Biotin, the next aim was to identify an effective fluorogenic aptamer partner for two-color imaging. A competitive in vitro selection for TO3-Biotin binding aptamers was performed resulting in the Peach I and II aptamers. Remarkably, given that the TO1-Biotin and TO3-Biotin heterocycles differ by only two bridging carbons, these new aptamers exhibit a marked preference for TO3-Biotin binding relative to the iM3 and Mango III A10U aptamers, which preferentially bind TO1-Biotin. Peach I, like Mango I and II, appears to contain a quadruplex core isolated by a GAA^A type tetraloop-like adaptor from its closing stem. Thermal melts of the Peach aptamers reveal that TO3-Biotin binding is cooperative, while TO1-Biotin binding is not, suggesting a unique and currently uncharacterized mode of ligand differentiation. Using only fluorescent measurements, the concentrations of Peach and Mango aptamers could be reliably determined in vitro. The utility of this orthogonal pair provides a possible route to in vivo two-color RNA imaging.
Collapse
|
19
|
Liu P, Wang R, Su W, Qian C, Li X, Gao L, Jiao T. Research advances in preparation and application of chitosan nanofluorescent probes. Int J Biol Macromol 2020; 163:1884-1896. [DOI: 10.1016/j.ijbiomac.2020.09.190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022]
|
20
|
Micura R, Höbartner C. Fundamental studies of functional nucleic acids: aptamers, riboswitches, ribozymes and DNAzymes. Chem Soc Rev 2020; 49:7331-7353. [PMID: 32944725 DOI: 10.1039/d0cs00617c] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review aims at juxtaposing common versus distinct structural and functional strategies that are applied by aptamers, riboswitches, and ribozymes/DNAzymes. Focusing on recently discovered systems, we begin our analysis with small-molecule binding aptamers, with emphasis on in vitro-selected fluorogenic RNA aptamers and their different modes of ligand binding and fluorescence activation. Fundamental insights are much needed to advance RNA imaging probes for detection of exo- and endogenous RNA and for RNA process tracking. Secondly, we discuss the latest gene expression-regulating mRNA riboswitches that respond to the alarmone ppGpp, to PRPP, to NAD+, to adenosine and cytidine diphosphates, and to precursors of thiamine biosynthesis (HMP-PP), and we outline new subclasses of SAM and tetrahydrofolate-binding RNA regulators. Many riboswitches bind protein enzyme cofactors that, in principle, can catalyse a chemical reaction. For RNA, however, only one system (glmS ribozyme) has been identified in Nature thus far that utilizes a small molecule - glucosamine-6-phosphate - to participate directly in reaction catalysis (phosphodiester cleavage). We wonder why that is the case and what is to be done to reveal such likely existing cellular activities that could be more diverse than currently imagined. Thirdly, this brings us to the four latest small nucleolytic ribozymes termed twister, twister-sister, pistol, and hatchet as well as to in vitro selected DNA and RNA enzymes that promote new chemistry, mainly by exploiting their ability for RNA labelling and nucleoside modification recognition. Enormous progress in understanding the strategies of nucleic acids catalysts has been made by providing thorough structural fundaments (e.g. first structure of a DNAzyme, structures of ribozyme transition state mimics) in combination with functional assays and atomic mutagenesis.
Collapse
Affiliation(s)
- Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck CMBI, Leopold-Franzens University Innsbruck, Innsbruck, Austria.
| | | |
Collapse
|