1
|
Bademosi AT, Decet M, Kuenen S, Calatayud C, Swerts J, Gallego SF, Schoovaerts N, Karamanou S, Louros N, Martin E, Sibarita JB, Vints K, Gounko NV, Meunier FA, Economou A, Versées W, Rousseau F, Schymkowitz J, Soukup SF, Verstreken P. EndophilinA-dependent coupling between activity-induced calcium influx and synaptic autophagy is disrupted by a Parkinson-risk mutation. Neuron 2023; 111:1402-1422.e13. [PMID: 36827984 PMCID: PMC10166451 DOI: 10.1016/j.neuron.2023.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/09/2022] [Accepted: 01/31/2023] [Indexed: 02/26/2023]
Abstract
Neuronal activity causes use-dependent decline in protein function. However, it is unclear how this is coupled to local quality control mechanisms. We show in Drosophila that the endocytic protein Endophilin-A (EndoA) connects activity-induced calcium influx to synaptic autophagy and neuronal survival in a Parkinson disease-relevant fashion. Mutations in the disordered loop, including a Parkinson disease-risk mutation, render EndoA insensitive to neuronal stimulation and affect protein dynamics: when EndoA is more flexible, its mobility in membrane nanodomains increases, making it available for autophagosome formation. Conversely, when EndoA is more rigid, its mobility reduces, blocking stimulation-induced autophagy. Balanced stimulation-induced autophagy is required for dopagminergic neuron survival, and a variant in the human ENDOA1 disordered loop conferring risk to Parkinson disease also blocks nanodomain protein mobility and autophagy both in vivo and in human-induced dopaminergic neurons. Thus, we reveal a mechanism that neurons use to connect neuronal activity to local autophagy and that is critical for neuronal survival.
Collapse
Affiliation(s)
- Adekunle T Bademosi
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium; Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia Campus, Brisbane, QLD 4072, Australia
| | - Marianna Decet
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium
| | - Sabine Kuenen
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium
| | - Carles Calatayud
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium
| | - Jef Swerts
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium
| | - Sandra F Gallego
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium
| | - Nils Schoovaerts
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium
| | - Spyridoula Karamanou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven 3000, Belgium
| | - Nikolaos Louros
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven 3000, Belgium
| | - Ella Martin
- VIB-VUB Center for Structural Biology, Brussels 1050, Belgium; Department of Structural Biology Brussels, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Jean-Baptiste Sibarita
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, F-33000 Bordeaux, France
| | - Katlijn Vints
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium; VIB Bio Core, KU Leuven, Leuven 3000, Belgium
| | - Natalia V Gounko
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium; VIB Bio Core, KU Leuven, Leuven 3000, Belgium
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia Campus, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, St Lucia Campus, Brisbane, QLD 4072, Australia
| | - Anastassios Economou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven 3000, Belgium
| | - Wim Versées
- VIB-VUB Center for Structural Biology, Brussels 1050, Belgium; Department of Structural Biology Brussels, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Frederic Rousseau
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven 3000, Belgium
| | - Joost Schymkowitz
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven 3000, Belgium
| | | | - Patrik Verstreken
- VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, Leuven 3000, Belgium.
| |
Collapse
|
2
|
Smets D, Tsirigotaki A, Smit JH, Krishnamurthy S, Portaliou AG, Vorobieva A, Vranken W, Karamanou S, Economou A. Evolutionary adaptation of the protein folding pathway for secretability. EMBO J 2022; 41:e111344. [PMID: 36031863 PMCID: PMC9713715 DOI: 10.15252/embj.2022111344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/14/2022] [Accepted: 08/02/2022] [Indexed: 01/15/2023] Open
Abstract
Secretory preproteins of the Sec pathway are targeted post-translationally and cross cellular membranes through translocases. During cytoplasmic transit, mature domains remain non-folded for translocase recognition/translocation. After translocation and signal peptide cleavage, mature domains fold to native states in the bacterial periplasm or traffic further. We sought the structural basis for delayed mature domain folding and how signal peptides regulate it. We compared how evolution diversified a periplasmic peptidyl-prolyl isomerase PpiA mature domain from its structural cytoplasmic PpiB twin. Global and local hydrogen-deuterium exchange mass spectrometry showed that PpiA is a slower folder. We defined at near-residue resolution hierarchical folding initiated by similar foldons in the twins, at different order and rates. PpiA folding is delayed by less hydrophobic native contacts, frustrated residues and a β-turn in the earliest foldon and by signal peptide-mediated disruption of foldon hierarchy. When selected PpiA residues and/or its signal peptide were grafted onto PpiB, they converted it into a slow folder with enhanced in vivo secretion. These structural adaptations in a secretory protein facilitate trafficking.
Collapse
Affiliation(s)
- Dries Smets
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular BacteriologyKU LeuvenLeuvenBelgium
| | - Alexandra Tsirigotaki
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular BacteriologyKU LeuvenLeuvenBelgium
| | - Jochem H Smit
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular BacteriologyKU LeuvenLeuvenBelgium
| | - Srinath Krishnamurthy
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular BacteriologyKU LeuvenLeuvenBelgium
| | - Athina G Portaliou
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular BacteriologyKU LeuvenLeuvenBelgium
| | - Anastassia Vorobieva
- Structural Biology BrusselsVrije Universiteit Brussel and Center for Structural BiologyBrusselsBelgium
- VIB‐VUB Center for Structural Biology, VIBBrusselsBelgium
| | - Wim Vranken
- Structural Biology BrusselsVrije Universiteit Brussel and Center for Structural BiologyBrusselsBelgium
- VIB‐VUB Center for Structural Biology, VIBBrusselsBelgium
- Interuniversity Institute of Bioinformatics in BrusselsFree University of BrusselsBrusselsBelgium
| | - Spyridoula Karamanou
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular BacteriologyKU LeuvenLeuvenBelgium
| | - Anastassios Economou
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular BacteriologyKU LeuvenLeuvenBelgium
| |
Collapse
|
3
|
Hamid M, Khalid MF, Chaudhary SU, Khan S. The Solvation of the E. coli CheY Phosphorylation Site Mapped by XFMS. Int J Mol Sci 2022; 23:ijms232112771. [PMID: 36361564 PMCID: PMC9659070 DOI: 10.3390/ijms232112771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli CheY protein belongs to a large bacterial response regulator superfamily. X-ray hydroxy radical foot-printing with mass spectroscopy (XFMS) has shown that allosteric activation of CheY by its motor target triggers a concerted internalization of aromatic sidechains. We reanalyzed the XFMS data to compare polar versus non-polar CheY residue positions. The polar residues around and including the 57D phosphorylated site had an elevated hydroxy radical reactivity. Bioinformatic measures revealed that a water-mediated hydrogen bond network connected this ring of residues with the central 57D. These residues solvated 57D to energetically stabilize the apo-CheY fold. The abundance of these reactive residues was reduced upon activation. This result was supported by the bioinformatics and consistent with the previously reported activation-induced increase in core hydrophobicity. It further illustrated XFMS detection of structural waters. Direct contacts between the ring residues and the phosphorylation site would stabilize the aspartyl phosphate. In addition, we report that the ring residue, 18R, is a constant central node in the 57D solvation network and that 18R non-polar substitutions determine CheY diversity as assessed by its evolutionary trace in bacteria with well-studied chemotaxis. These results showcase the importance of structured water dynamics for phosphorylation-mediated signal transduction.
Collapse
Affiliation(s)
- Maham Hamid
- Biomedical Informatics and Engineering Research Laboratory (BIRL), Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan
| | - Muhammad Farhan Khalid
- Biomedical Informatics and Engineering Research Laboratory (BIRL), Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan
| | - Safee Ullah Chaudhary
- Biomedical Informatics and Engineering Research Laboratory (BIRL), Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan
- Correspondence: (S.U.C.); (S.K.)
| | - Shahid Khan
- Syed Babar Ali School of Science & Engineering, Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan
- Molecular Biology Consortium, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Correspondence: (S.U.C.); (S.K.)
| |
Collapse
|
4
|
Bondar AN. Graphs of Hydrogen-Bond Networks to Dissect Protein Conformational Dynamics. J Phys Chem B 2022; 126:3973-3984. [PMID: 35639610 DOI: 10.1021/acs.jpcb.2c00200] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dynamic hydrogen bonds and hydrogen-bond networks are ubiquitous in proteins and protein complexes. Functional roles that have been assigned to hydrogen-bond networks include structural plasticity for protein function, allosteric conformational coupling, long-distance proton transfers, and transient storage of protons. Advances in structural biology provide invaluable insights into architectures of large proteins and protein complexes of direct interest to human physiology and disease, including G Protein Coupled Receptors (GPCRs) and the SARS-Covid-19 spike protein S, and give rise to the challenge of how to identify those interactions that are more likely to govern protein dynamics. This Perspective discusses applications of graph-based algorithms to dissect dynamical hydrogen-bond networks of protein complexes, with illustrations for GPCRs and spike protein S. H-bond graphs provide an overview of sites in GPCR structures where hydrogen-bond dynamics would be required to assemble longer-distance networks between functionally important motifs. In the case of spike protein S, graphs identify regions of the protein where hydrogen bonds rearrange during the reaction cycle and where local hydrogen-bond networks likely change in a virus variant of concern.
Collapse
Affiliation(s)
- Ana-Nicoleta Bondar
- University of Bucharest, Faculty of Physics, Str. Atomiştilor 405, 077125 Bucharest-Măgurele, Romania.,Institute for Neuroscience and Medicine and Institute for Advanced Simulations (IAS-5/INM-9), Computational Biomedicine, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
5
|
Lazaratos M, Siemers M, Brown LS, Bondar AN. Conserved hydrogen-bond motifs of membrane transporters and receptors. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183896. [PMID: 35217000 DOI: 10.1016/j.bbamem.2022.183896] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/04/2022] [Accepted: 02/16/2022] [Indexed: 01/18/2023]
Abstract
Membrane transporters and receptors often rely on conserved hydrogen bonds to assemble transient paths for ion transfer or long-distance conformational couplings. For transporters and receptors that use proton binding and proton transfer for function, inter-helical hydrogen bonds of titratable protein sidechains that could change protonation are of central interest to formulate hypotheses about reaction mechanisms. Knowledge of hydrogen bonds common at sites of potential interest for proton binding could thus inform and guide studies on functional mechanisms of protonation-coupled membrane proteins. Here we apply graph-theory approaches to identify hydrogen-bond motifs of carboxylate and histidine sidechains in a large data set of static membrane protein structures. We find that carboxylate-hydroxyl hydrogen bonds are present in numerous structures of the dataset, and can be part of more extended H-bond clusters that could be relevant to conformational coupling. Carboxylate-carboxyamide and imidazole-imidazole hydrogen bonds are represented in comparably fewer protein structures of the dataset. Atomistic simulations on two membrane transporters in lipid membranes suggest that many of the hydrogen bond motifs present in static protein structures tend to be robust, and can be part of larger hydrogen-bond clusters that recruit additional hydrogen bonds.
Collapse
Affiliation(s)
- Michalis Lazaratos
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, Arnimallee 14, D14195 Berlin, Germany
| | - Malte Siemers
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, Arnimallee 14, D14195 Berlin, Germany
| | - Leonid S Brown
- University of Guelph, Department of Physics, 50 Stone Road E., Guelph, Ontario N1G 2W1, Canada
| | - Ana-Nicoleta Bondar
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, Arnimallee 14, D14195 Berlin, Germany; University of Bucharest, Faculty of Physics, Atomiștilor 405, Măgurele 077125, Romania; Forschungszentrum Jülich, Institute for Neuroscience and Medicine and Institute for Advanced Simulations (IAS-5/INM-9), Computational Biomedicine, Wilhelm-Johnen Straße, 52428 Jülich, Germany.
| |
Collapse
|
6
|
Karathanou K, Bondar AN. Algorithm to catalogue topologies of dynamic lipid hydrogen-bond networks. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183859. [PMID: 34999081 DOI: 10.1016/j.bbamem.2022.183859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/21/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Lipid membrane interfaces host reactions essential for the functioning of cells. The hydrogen-bonding environment at the membrane interface is particularly important for binding of proteins, drug molecules, and ions. We present here the implementation and applications of a depth-first search algorithm that analyzes dynamic lipid interaction networks. Lipid hydrogen-bond networks sampled transiently during simulations of lipid bilayers are clustered according to main types of topologies that characterize three-dimensional arrangements of lipids connected to each other via short water bridges. We characterize the dynamics of hydrogen-bonded lipid clusters in simulations of model POPE and POPE:POPG membranes that are often used for bacterial membrane proteins, in a model of the Escherichia coli membrane with six different lipid types, and in POPS membranes. We find that all lipids sample dynamic hydrogen-bonded networks with linear, star, or circular arrangements of the lipid headgroups, and larger networks with combinations of these three types of topologies. Overall, linear lipid-water bridges tend to be short. Water-mediated lipid clusters in all membranes with PE lipids tend to be somewhat small, with about four lipids in all membranes studied here. POPS membranes allow circular arrangements of three POPS lipids to be sampled frequently, and complex arrangements of linear, star, and circular paths may also be sampled. These findings suggest a molecular picture of the membrane interface whereby lipid molecules transiently connect in clusters with somewhat small spatial extension.
Collapse
Affiliation(s)
- Konstantina Karathanou
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, Arnimallee 14, D-14195 Berlin, Germany
| | - Ana-Nicoleta Bondar
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, Arnimallee 14, D-14195 Berlin, Germany; University of Bucharest, Faculty of Physics, Str. Atomiştilor 405, Bucharest-Măgurele 077125, Romania; Institute for Neuroscience and Medicine and Institute for Advanced Simulations (IAS-5/INM-9), Computational Biomedicine, Forschungszentrum Jülich, 52425 Jülich, Germany.
| |
Collapse
|
7
|
Krishnamurthy S, Sardis MF, Eleftheriadis N, Chatzi KE, Smit JH, Karathanou K, Gouridis G, Portaliou AG, Bondar AN, Karamanou S, Economou A. Preproteins couple the intrinsic dynamics of SecA to its ATPase cycle to translocate via a catch and release mechanism. Cell Rep 2022; 38:110346. [PMID: 35139375 DOI: 10.1016/j.celrep.2022.110346] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/22/2021] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Protein machines undergo conformational motions to interact with and manipulate polymeric substrates. The Sec translocase promiscuously recognizes, becomes activated, and secretes >500 non-folded preprotein clients across bacterial cytoplasmic membranes. Here, we reveal that the intrinsic dynamics of the translocase ATPase, SecA, and of preproteins combine to achieve translocation. SecA possesses an intrinsically dynamic preprotein clamp attached to an equally dynamic ATPase motor. Alternating motor conformations are finely controlled by the γ-phosphate of ATP, while ADP causes motor stalling, independently of clamp motions. Functional preproteins physically bridge these independent dynamics. Their signal peptides promote clamp closing; their mature domain overcomes the rate-limiting ADP release. While repeated ATP cycles shift the motor between unique states, multiple conformationally frustrated prongs in the clamp repeatedly "catch and release" trapped preprotein segments until translocation completion. This universal mechanism allows any preprotein to promiscuously recognize the translocase, usurp its intrinsic dynamics, and become secreted.
Collapse
Affiliation(s)
- Srinath Krishnamurthy
- KU Leuven, University of Leuven, Rega Institute, Department of Microbiology and Immunology, 3000 Leuven, Belgium
| | - Marios-Frantzeskos Sardis
- KU Leuven, University of Leuven, Rega Institute, Department of Microbiology and Immunology, 3000 Leuven, Belgium
| | - Nikolaos Eleftheriadis
- KU Leuven, University of Leuven, Rega Institute, Department of Microbiology and Immunology, 3000 Leuven, Belgium
| | - Katerina E Chatzi
- KU Leuven, University of Leuven, Rega Institute, Department of Microbiology and Immunology, 3000 Leuven, Belgium
| | - Jochem H Smit
- KU Leuven, University of Leuven, Rega Institute, Department of Microbiology and Immunology, 3000 Leuven, Belgium
| | - Konstantina Karathanou
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics Group, Arnimallee 14, 14195 Berlin, Germany
| | - Giorgos Gouridis
- KU Leuven, University of Leuven, Rega Institute, Department of Microbiology and Immunology, 3000 Leuven, Belgium; Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands; Structural Biology Division, Institute of Molecular Biology and Biotechnology (IMBB-FORTH), Nikolaou Plastira 100, Heraklion, Crete, Greece
| | - Athina G Portaliou
- KU Leuven, University of Leuven, Rega Institute, Department of Microbiology and Immunology, 3000 Leuven, Belgium
| | - Ana-Nicoleta Bondar
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics Group, Arnimallee 14, 14195 Berlin, Germany; University of Bucharest, Faculty of Physics, Atomiștilor 405, 077125 Măgurele, Romania; Forschungszentrum Jülich, Institute of Computational Biomedicine, IAS-5/INM-9, Wilhelm-Johnen Straße, 5428 Jülich, Germany
| | - Spyridoula Karamanou
- KU Leuven, University of Leuven, Rega Institute, Department of Microbiology and Immunology, 3000 Leuven, Belgium
| | - Anastassios Economou
- KU Leuven, University of Leuven, Rega Institute, Department of Microbiology and Immunology, 3000 Leuven, Belgium.
| |
Collapse
|
8
|
Claesen J, Krishnamurthy S, Lau AM, Economou A. Moderated Test Statistics to Detect Differential Deuteration in Hydrogen/Deuterium Exchange Mass Spectrometry Experiments. Anal Chem 2021; 93:16341-16349. [PMID: 34841860 DOI: 10.1021/acs.analchem.1c02346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
With differential hydrogen/deuterium exchange, differences in the structure and dynamics of protein states can be studied. Detecting statistically significant differentially deuterated peptides is crucial to draw meaningful conclusions about the distinct conformations and dynamics of the protein under study. Here, we introduced a linear model in combination with an empirical Bayes approach to detect differentially deuterated peptides. Using a linear model allows one to test for differences in deuteration between two (two-sample t-test) or more groups (F-statistic), while potentially controlling for the effects of other variables that are not of interest. The empirical Bayes approach improves the estimation of deuteration-level variances, especially in experiments with a low number of replicates. As a consequence, the two sample t-tests and the F-statistic become moderated, resulting in a lower number of false positive and false negative findings. Furthermore, we introduce a thresholded-moderated t-statistic to test if the observed deuteration differences are larger than a specified, biologically relevant difference. Finally, we underline the importance of having a sufficient number of replicates, and the effect of the number of replicates on the power of the statistical significance tests. The R-code for the proposed moderated test statistics is available upon request.
Collapse
Affiliation(s)
- Jürgen Claesen
- Department of Epidemiology and Data Science, Amsterdam UMC, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands.,I-BioStat, Data Science Institute, Hasselt University, 3500 Hasselt, Belgium
| | - Srinath Krishnamurthy
- Laboratory of Molecular Bacteriology, Rega Institute of Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Andy M Lau
- Department of Computer Science, University College London, London WC1E 6BT, U.K
| | - Anastassios Economou
- Laboratory of Molecular Bacteriology, Rega Institute of Medical Research, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
9
|
Structural Dynamics of the Functional Nonameric Type III Translocase Export Gate. J Mol Biol 2021; 433:167188. [PMID: 34454944 DOI: 10.1016/j.jmb.2021.167188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/20/2022]
Abstract
Type III protein secretion is widespread in Gram-negative pathogens. It comprises the injectisome with a surface-exposed needle and an inner membrane translocase. The translocase contains the SctRSTU export channel enveloped by the export gate subunit SctV that binds chaperone/exported clients and forms a putative ante-chamber. We probed the assembly, function, structure and dynamics of SctV from enteropathogenic E. coli (EPEC). In both EPEC and E. coli lab strains, SctV forms peripheral oligomeric clusters that are detergent-extracted as homo-nonamers. Membrane-embedded SctV9 is necessary and sufficient to act as a receptor for different chaperone/exported protein pairs with distinct C-domain binding sites that are essential for secretion. Negative staining electron microscopy revealed that peptidisc-reconstituted His-SctV9 forms a tripartite particle of ∼22 nm with a N-terminal domain connected by a short linker to a C-domain ring structure with a ∼5 nm-wide inner opening. The isolated C-domain ring was resolved with cryo-EM at 3.1 Å and structurally compared to other SctV homologues. Its four sub-domains undergo a three-stage "pinching" motion. Hydrogen-deuterium exchange mass spectrometry revealed this to involve dynamic and rigid hinges and a hyper-flexible sub-domain that flips out of the ring periphery and binds chaperones on and between adjacent protomers. These motions are coincident with local conformational changes at the pore surface and ring entry mouth that may also be modulated by the ATPase inner stalk. We propose that the intrinsic dynamics of the SctV protomer are modulated by chaperones and the ATPase and could affect allosterically the other subunits of the nonameric ring during secretion.
Collapse
|
10
|
Smit JH, Krishnamurthy S, Srinivasu BY, Parakra R, Karamanou S, Economou A. Probing Universal Protein Dynamics Using Hydrogen-Deuterium Exchange Mass Spectrometry-Derived Residue-Level Gibbs Free Energy. Anal Chem 2021; 93:12840-12847. [PMID: 34523340 DOI: 10.1021/acs.analchem.1c02155] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrogen-deuterium exchange mass spectrometry (HDX-MS) is a powerful technique to monitor protein intrinsic dynamics. The technique provides high-resolution information on how protein intrinsic dynamics are altered in response to biological signals, such as ligand binding, oligomerization, or allosteric networks. However, identification, interpretation, and visualization of such events from HDX-MS data sets is challenging as these data sets consist of many individual data points collected across peptides, time points, and experimental conditions. Here, we present PyHDX, an open-source Python package and webserver, that allows the user to batch extract the universal quantity Gibbs free energy at residue levels over multiple protein conditions and homologues. The output is directly visualized on a linear map or 3D structures or is exported as .csv files or PyMOL scripts.
Collapse
Affiliation(s)
- Jochem H Smit
- Department of Microbiology, Immunology and Transplantation, Rega Institute of Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, 3000 Leuven, Belgium
| | - Srinath Krishnamurthy
- Department of Microbiology, Immunology and Transplantation, Rega Institute of Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, 3000 Leuven, Belgium
| | - Bindu Y Srinivasu
- Department of Microbiology, Immunology and Transplantation, Rega Institute of Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, 3000 Leuven, Belgium
| | - Rinky Parakra
- Department of Microbiology, Immunology and Transplantation, Rega Institute of Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, 3000 Leuven, Belgium
| | - Spyridoula Karamanou
- Department of Microbiology, Immunology and Transplantation, Rega Institute of Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, 3000 Leuven, Belgium
| | - Anastassios Economou
- Department of Microbiology, Immunology and Transplantation, Rega Institute of Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
11
|
Chen W, Komives EA. Open, engage, bind, translocate: The multi-level dynamics of bacterial protein translocation. Structure 2021; 29:781-782. [PMID: 34358463 DOI: 10.1016/j.str.2021.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The bacterial Sec translocase transports unfolded proteins across membranes. In this issue of Structure, Krishnamurthy et al. (2021) report a nexus of conformational dynamics in the translocase motor protein, SecA. Their findings shed light on the Sec activation mechanism and suggest a general role for multi-level dynamics in protein functions.
Collapse
Affiliation(s)
- Wei Chen
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
12
|
|